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Free models of T -algebraic theories

computed as Kan extensions

Paul-André Melliès Nicolas Tabareau ∗

Abstract

One fundamental aspect of Lawvere’s categorical semantics is that every algebraic theory (eg.

of monoid, of Lie algebra) induces a free construction (eg. of free monoid, of free Lie algebra)

computed as a Kan extension. Unfortunately, the principle fails when one shifts to linear variants

of algebraic theories, like Adams and Mac Lane’s PROPs, and similar PROs and PROBs. Here,

we introduce the notion of T -algebraic theory for a pseudomonad T — a mild generalization of

equational doctrine — in order to describe these various kinds of “algebraic theories”. Then,

we formulate two conditions (the first one combinatorial, the second one algebraic) which ensure

that the free model of a T -algebraic theory exists and is computed as an Kan extension. The proof

is based on Bénabou’s theory of distributors, and of an axiomatization of the colimit computation

in Wood’s proarrow equipments.

Keywords: Lawvere theories, PROs, PROPs, PROBs, operads, Kan extensions, distributors,
enriched categories, free constructions, algebras, coalgebras.
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1 Introduction

1.1 The tensor algebra

The investigation reported in this article is motivated by a basic and well-known problem in
algebra, which we expose briefly here. Let k denote a commutative ring. To every k-module A
is associated a particular k-algebra TA called its tensor algebra, defined as an infinite sum of
tensorial powers:

TA =
⊕

n∈N

A⊗n (1)

where we write A ⊗ B for the tensor product A ⊗k B of two k-modules A and B, and A⊗n for
A⊗· · ·⊗A taken n times. Note that we take the freedom here and onwards to consider this tensor
product strictly associative.

In the language of category theory, one says that the construction T is functorial. This means
that it defines a functor

T : k-Mod −→ k-Alg

from the category k-Mod of k-modules and k-module morphisms to the category k-Alg of k-
algebras and k-algebra morphisms. Besides, this functor T is left adjoint to the forgetful functor

U : k-Alg −→ k-Mod (2)

which transports every k-algebra to its underlying k-module. The adjunction, noted

T ⊣ U

indicates that every morphism f : A −→M from a k-module A to a k-algebra M factors uniquely
as:

M

A
η //

f

==|||||||||
TA

h

OO
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where h is a k-algebra morphism and η is the canonical injection induced by Equation (1). This
property states precisely that TA is the free k-algebra generated by the k-module A.

Now, recall that a k-algebra M is defined as a k-module equipped with two morphisms,

k
e
−→ M

m
←− M ⊗M

called unit and multiplication, making the diagrams below commute:

M ⊗M ⊗M
m⊗M //

M⊗m

��

M ⊗M

m

��
M ⊗M

m // M

k ⊗M
e⊗M //

∼=
%%KKKKKKKKKKKK

M ⊗M

m

��

M ⊗ k
M⊗eoo

∼=
yyssssssssssss

M

(3)

For a more visual representation, we provide the corresponding string diagrams.

M M M

M

=

M M M

M

M

M

=

M

M

=

M

M

So, a k-algebra is the same thing as a monoid object in the category k-Mod, seen as a monoidal
category equipped with the familiar tensor product ⊗ of k-modules. Hence, the k-algebra TA is
the free monoid object in the category k-Mod.

1.2 A basic problem in algebra

The existence of a free k-algebra TA for every k-module A should be contrasted to the fact,
which is folklore among mathematicians, that there exists (in general) no free k-bialgebra for a
given k-module. This deserves further explanation. First, recall that a k-cogebra k is a k-module
equipped with two morphisms

k
u
←− K

d
−→ K ⊗K

called counit and comultiplication, making the diagrams dual to (3) (reverse the direction of ar-
rows) commute. Hence, a k-cogebra is the same thing as a comonoid object in the monoidal
category k-Mod. This defines a category k-Cog of k-cogebras and k-cogebra morphisms.

Then, a k-bialgebra H is a k-module equipped with a k-algebra and a k-cogebra structure,
making the so-called Hopf compatibility diagrams commute:

H ⊗H
m //

d⊗d

��

H
d // H ⊗H

H ⊗H ⊗H ⊗H
H⊗τ⊗H // H ⊗H ⊗H ⊗H

m⊗m

OO

k
e //

d

��

H

d

��
k ⊗ k

e⊗e // H ⊗H

H

u

��?
??

??
??

??

k

e

??���������
k

H ⊗H
u⊗u //

m

��

k ⊗ k

m

��
H

u // k
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Here, τ denotes the symmetry H ⊗ H −→ H ⊗ H of the symmetric monoidal category k-Mod.
Again, we provide a description of this compatibility through string diagrams

=

= = =

Note that the categories k-Alg and k-Cog inherit the monoidal structure from the category k-Mod,
and that a k-bialgebra may be seen alternatively as a monoid object in the category k-Cog of
comonoid objects, and as a comonoid object in the category k-Alg of monoid objects.

Now, let k-Big denote the category of k-bialgebras, and k-algebra and k-cogebra morphisms
between them. It is folklore that the forgetful functor

Ubij : k-Big −→ k-Mod (4)

does not have a left adjoint, for k an arbitrary commutative ring. This result states precisely that
there exists no such thing as a free k-bialgebra.

In this article, we want to understand more conceptually what distinguishes the forgetful func-
tor (2) which has a left adjoint, from the forgetful functor (4) which does not have a left adjoint.
Moreover, we want to extract, in the good situations, a formula like (1) to compute the left adjoint,
and hence the free construction, associated to the forgetful functor.

We carry out the investigation in Lawvere’s functorial semantics, and take advantage of the
extraordinary toolbox provided by categorical algebra, more specifically the concepts of algebraic
theory and Kan extensions — which we explain now.

1.3 Lawvere theories

In his dissertation [8], Lawvere reformulates the familiar notion of algebraic theory (eg. of
monoids, Lie algebras, etc.) as a category L with finite products, whose objects are the natural
numbers: 0, 1, 2, . . . and in which the categorical product of k objects m1, . . . ,mk is provided
by their arithmetic sum m1 + . . . + mk. As will become clear in the course of the article, the
underlying idea is to represent every n-ary operation of the algebraic theory as a morphism n −→
1 of the category L; and to encode the equational theory on these n-ary operations inside the
composition law of the category L.

Then, an L-model in a category C with finite products (noted ×) is defined as a finite-product
preserving functor

A : L −→ C.

By “finite-product preserving functor”, one means that the canonical morphism

A[m1 + . . .+mk] −→ A[m1]× . . .×A[mk] (5)

4



is an isomorphism. This implies that the functor A(−) transports (up to isomorphism) the natural
number n to the n-th power of the object A = A[1]:

A[n] ∼= A×n.

Hence, the functor A transports (up to isomorphism again) every n-ary operation n −→ 1 of the
algebraic theory to an n-ary operation on the object A:

A×n −→ A. (6)

For that reason, A is called the underlying object of the L-model, and the morphism (6) is called
the interpretation of the n-ary operation n −→ 1. The terminology is justified by the fact that
the L-model A is characterized (up to natural isomorphism) by its underlying object A and the
interpretation of every n-ary operation of the algebraic theory L.

Every algebraic theory L and category C with finite products define together a category Model(L, C)
whose objects are the L-models in the category C, and whose morphisms A −→ B are the natural
transformations from the functor A to the functor B.

1.4 Kan extensions

An algebraic morphism between algebraic theories

j : L1 −→ L2

is defined as a finite-product preserving functor, such that j(1) = 1. Such an algebraic morphism
induces a functor

Uj : Model(L2, C) −→ Model(L1, C)

called the associated forgetful functor, which transports every L2-model

L2
B
−→ C

to the L1-model

L1
j
−→ L2

B
−→ C

obtained by precomposing with the functor j.
By way of illustration, consider the free category Fop with finite products, generated by the

category with one object: this defines an algebraic theory whose n-ary operations are precisely
the n projection maps π1, . . . , πn : n −→ 1. The category Fop may be defined more explicitly
as the opposite to the category of finite sets [m] = {1, . . . ,m} and functions between them.
This particular algebraic theory Fop is called trivial because a Fop-model is characterized (up to
natural isomorphism) by its underlying object: hence, the category Model(Fop, C) of Fop-models
is equivalent to the category C itself.

Next, consider the algebraic theory M of monoids whose n-ary operations are the finite words
(of arbitrary length) built on an alphabet [n] = {1, . . . , n} of n letters. By construction, the
category Model(M, C) is equivalent to the category of monoids and monoid morphisms in the
category C.

Now, there exists a (unique) algebraic morphism j : Fop −→ M, which transports the i-th
projection πi ∈ Fop(n, 1) to the one-letter word i ∈ M(n, 1). It is not difficult to check that the
associated forgetful functor Uj transports every monoid in the category C to its underlying object.
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This leads to Lawvere’s elegant formulation of “free constructions” in functorial semantics,
using Kan extensions. Recall that the left Kan extension of a functor A : L1 −→ C along a
functor f : L1 −→ L2 is defined as a functor, noted LanjA, and a natural transformation:

C

L1 j
//

A >>~~~~ ⇒

L2

LanjA``@@@@

inducing a bijection:

[LanjA,B]
∼=
−→ [A,B ◦ j] (7)

between sets of natural transformations, for every functor B : L2 −→ C.
Now, suppose that C is the category Ens of sets and functions, or to that purpose, any cartesian

closed category with small colimits. Then, the left Kan extension along j of any functor L1 −→ C
exists, and a miracle happens: when j is an algebraic morphism, the left Kan extension transports
a finite-product preserving functor A to a finite-product preserving functor LanjA. In this way,
every L1-model A is transported to a L2-model LanjA, and the bijection (7) specializes to the
following bijection:

Model(L2, C)(LanjA,B)
∼=
−→ Model(L1, C)(A,UjB)

between sets of morphisms, for every L2-model B. The bijection is natural in B, which shows
that the left Kan extension LanjA is the free L2-model generated by the L1-model A, along the
algebraic morphism j.

The free construction is functorial: the left Kan extension LanjA defines a left adjoint functor
to the forgetful functor:

Lanj ⊣ Uj : Model(L1, C)→ Model(L2, C).

This is precisely what happens when j : Fop −→ M is the algebraic morphism from the trivial
algebraic theory Fop to the algebraic theory M of monoids. In that case, the functor Lanj trans-
ports every set A (identified here to a Fop-model) to the free monoid LanjA whose underlying
set A∗ = (LanjA)[1] is the set of finite words on the alphabet A:

A∗ =
∐

n∈N

A×n. (8)

This well-known equation may be obtained by direct means, or deduced from a general “coend”
formula for computing left Kan extensions in the category Ens — a formula which appears in [10]
and will be deduced in the course of the article from Bénabou’s theory of “distributors”.

1.5 Linear theories (PROs)

Let us compare the two formulas (1) and (8). The analogy is striking: the two formulas appear
to compute in the same way the free monoid object TA or A∗ generated by an object A in their
respective categories k-Mod and Ens. There is a fundamental difference however: the finite
productA×n appearing in the definition of the free monoidA∗ is replaced by a tensor productA⊗n

in the definition of the tensor algebra TA. This motivates to adapt Lawvere’s ideas, and to replace
every “finite product” by a “tensor product” in all the definitions related to algebraic theories.
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So, a linear theory L (also called a PRO) is defined as a monoidal category whose objects are
natural numbers: 0, 1, 2, . . . and in which the tensor product of k objects m1, . . . ,mk is provided
by their arithmetic sum m1 + . . .+mk. An L-model in a monoidal category C is then defined as
a monoidal functor

L −→ C.

By “monoidal functor” one means a functor A equipped with a family of isomorphisms:

A[m1 + . . .+mk] −→ A[m1]⊗ . . .⊗A[mk]

satisfying a series of expected coherence properties.
As for algebraic theories, every linear theory L and monoidal category C induce together a

category Model(L, C) whose objects are the L-models in C, and whose morphisms θ : A −→ B
are the monoidal natural transformations from A to B, seen as monoidal functors. Recall that a
natural transformation θ is monoidal when the expected coherence diagram

A[m1 + . . .+mk] //

θm1+···+mk ��

A[m1]⊗ . . .⊗A[mk]
θm1

⊗···⊗θmk��
B[m1 + . . .+mk] // B[m1]⊗ . . .⊗B[mk]

commutes, for every natural numbers m1, . . . ,mk. It is important to notice at this point that the
category Model(L, C) just defined coincides with the category Model(L, C) defined earlier for
algebraic theories — when the tensor product of the two categories L and C happens to be a finite
product. The reason is that (a) every finite-product preserving functor defines a monoidal functor
equipped with the canonical family of morphisms (5) and (b) every natural transformation θ be-
tween finite-product preserving functors satisfies the coherence properties required of a monoidal

natural transformation.
In order to carry on our running example based on monoids, we introduce here two linear

theories N and ∆ playing the role of the two algebraic theories Fop and M defined earlier. First,
consider the free monoidal category N generated by one object: this defines the trivial linear
theory in which the only morphisms are the identities on each object 0, 1, 2, . . . Then, define
the linear theory of monoids as the category ∆ of augmented simplices in which a morphism
m −→ n is a monotone function from the ordered set [m] = {1, . . . ,m} to the ordered set [n] =
{1, . . . , n}.

Just as for the algebraic theories, the category Model(N, C) is equivalent to the category C, and
the category Model(N, C) is equivalent to the category of monoids and monoid morphisms in C.
The careful reader will notice for instance that the expected notion of “homomorphism” between
monoids is indeed captured by the notion of monoidal natural transformation — and not just of
natural transformation — between ∆-models.

Then, a linear morphism j : L1 −→ L2 between linear theories is defined as a monoidal functor
such that j(1) = 1. Just as in the case of algebraic theories, every linear morphism j : L1 −→ L2

induces a forgetful functor

Uj : Model(L2, C) −→ Model(L1, C)

which transports every L2-model B to the L1-model B ◦ j obtained by precomposing with the
functor j.
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1.6 Monoidal Kan extensions

At this point, we are ready to tell quite the same story as for algebraic theories — at least when
it comes to computing free monoids in the category C = k-Mod of k-modules. By definition of
the category N as a free monoidal category, there exists a unique linear morphism

j : N −→ ∆. (9)

Then, every k-module A : N −→ k-Mod (seen as a model of the trivial theory N) is transported by
left Kan extension along j to a functor defined by the general formula [10] mentioned earlier:

LanjA : p 7→
⊕

n∈N

∆(n, p)⊗A⊗n

where the k-module ∆(n, p)⊗A⊗n means the direct sum of as many copies of the k-moduleA⊗n

as there are elements in the hom-set ∆(n, p). It appears after close inspection that this func-
tor LanjA is monoidal, and thus defines a ∆-model, which coincides with the tensor algebra and
free monoid TA generated by the object A in the category k-Mod. Note that monoidality of the
functor LanjA amounts essentially to an isomorphism

LanjA(p+ q) ∼= LanjA(p)⊗ LanjA(q)

for every pair of natural numbers p and q. The isomorphism itself derives from the bijection

∆(n, p+ q) ∼=

n∐

k=0

∆(k, p)×∆(n− k, q)

between the coefficients of each part, which expresses that every monotone function f : [n] −→
[p + q] decomposes as a pair of monotone functions f1 : [k] −→ [p] and f2 : [n − k] −→ [q] for
some natural number 0 ≤ k ≤ n.

This success with monoids is somewhat miraculous, and should not deceive us. We are facing
a serious difficulty indeed: in contrast to what happens with algebraic theories, the very fact that
a L1-model A defines a left Kan extension along a linear morphism j : L1 −→ L2 does not qualify
the resulting functor LanjA as the free L2-model generated by A. . . There are two reasons for
that defect: first, nothing ensures that the functor LanjA is monoidal, and thus, that it defines a
L2-model; then, even when the functor LanjA happens to be monoidal, nothing ensures that this
functor LanjA defines indeed what we expect: the free L2-model generated by the L1-model A
along the linear morphism j. The reason is that the Kan extension property provides a one-to-one
correspondence between the natural transformations LanjA −→ B and the natural transforma-
tions A −→ UjB, for every L2-model B — whereas a correspondence between monoidal natural
transformations is required.

At this point, it is critical to proceed conceptually, and to remember that the notion of Kan
extension may be defined in any 2-category. Typically, the left Kan extension considered until
now is computed in the 2-category Cat with

• categories as 0-cells,

• functors as 1-cells,

• natural transformations as 2-cells.

8



What our discussion establishes is that we need instead a monoidal left Kan extension, that is: a
left Kan extension computed in the 2-category MonCat with

• monoidal categories as 0-cells,

• monoidal functors as 1-cells,

• monoidal natural transformations as 2-cells.

In this way, all the difficulties are reduced to the single question:

When is the left Kan extension of a monoidal functor A
along a monoidal functor j, a monoidal left Kan extension?

By this, we mean that the left Kan extension exists in MonCat and is transported by the forgetful
2-functor MonCat −→ Cat to the left Kan extension computed in Cat. Everything works nicely
when this lifting property occurs: indeed, the left Kan extension LanjA defines in that case the
free L2-model generated by the L1-model A along the linear morphism j.

Interestingly, this lifting property always occurs with algebraic theories: this is precisely what
makes these particular theories so convenient to compute free constructions. More specifically,
let CartCat denote the 2-category with

• categories with finite products as 0-cells,

• finite-product-preserving functors as 1-cells,

• natural transformations as 2-cells.

It appears that the 2-category CartCat is a full sub-2-category of the 2-category MonCat, in
the expected sense. Moreover, the left Kan extension of a finite-product-preserving functor L1 −→
Ens along a finite-product-preserving functor j : L1 −→ L2 always exists in CartCat (and thus
in MonCat) and coincides with the left Kan extension computed in Cat.

We will see that the lifting property holds when one computes the left Kan extension TA =
LanjA of a k-moduleA along the linear morphism j : N −→ ∆. This explains why the formula (1)
works, and computes indeed the free monoid TA in the category of k-modules.

But the lifting property does not occur in any situation: consider for instance the linear theory
of comonoids, defined as the category ∆op obtained by reversing the maps of the category ∆. It
is well-known that in a category C with finite products (for instance Ens) every object defines a
comonoid in a canonical and unique way; and that every morphism A −→ B is then a comonoid
morphism. From this follows trivially that every object A in the category C, when seen as a
comonoid, defines the free comonoid generated by the object A. This reformulated in categorical
semantics says that the commutative diagram

C

N g
//

A
::uuuuuu

∆op

A
eeKKKKKK

defines a monoidal left Kan extension along the linear morphism g. When C = Ens, this says
that the monoidal left Kan extension of a set A : N −→ Ens (seen as a model of the trivial

9



theory N) is the set A itself. On the other hand, the usual left Kan extension of A : N −→ Ens
along g : N −→ ∆op is defined by the classical formula

LangA : p 7→
∐

n∈N

∆(p, n)×A×n.

Hence, the left Kan extension of A along g computed in Cat does not coincide with its monoidal
left Kan extension computed in MonCat.

1.7 Symmetric theories (PROPs)

This brings us back to the discussion on free k-bialgebras which opened the article. Just like
the notion of algebraic theory was replaced by the notion of linear theory, by shifting from cat-
egories with finite products to monoidal categories, the notion of linear theory may be replaced
by the notion of symmetric theory (also called PROPs), by shifting from monoidal categories to
symmetric monoidal categories.

The trivial symmetric theory S is then defined as the free symmetric monoidal category on
one object, whose only morphisms are the bijections [n] −→ [n]. And the symmetric theory
of bimonoids B is defined as the symmetric monoidal category whose morphisms m −→ n are
(a) the m × n matrices with integer coefficients in Z, or equivalently, (b) the homomorphisms
Z[m] −→ Z[n] between free commutative monoids — where Z[m] is the free commutative monoid
on m elements.

At this point, we are ready to recast Loday’s observation (mentioned earlier) in the language
of categorical semantics. Let SMonCat be the 2-category with the symmetric monoidal cate-
gories as 0-cells, the symmetric monoidal functors as 1-cells, and the monoidal natural functors
as 2-cells. Every k-moduleAmay be seen as a symmetric monoidal functor S −→ k-Mod, induces
a left Kan extension Lanj(A) along the (unique) symmetric monoidal functor j : S −→ B. Un-
fortunately, and this is the whole point, this left Kan extension in Cat is not a left Kan extension
in the 2-category SMonCat; otherwise, it would define a free construction for k-bialgebras,
and a left adjoint to the forgetful functor Uj mentioned in (4): and this would contradict Loday’s
observation.

1.8 T -algebraic theories

In this article, we follow the ideas developed by Lawvere in his work on equational doc-

trines [9] and formulate the notion T -algebraic theory for a pseudomonad T on the 2-category Cat.
The notion describes in a generic way the various kinds of algebraic, linear, symmetric or even
braided theories — each kind of theory described by a particular pseudomonad T . The only prop-
erty required of the pseudomonad T is that it distributes over the presheaf monad, in the sense
of [3, 5], so that it lifts to a pseudomonad on the bicategory of distributors.

• algebraic theories = free category with finite products,

• linear theories = free monoidal category,

• symmetric theories = free symmetric monoidal category,

• braided theories = free braided monoidal category,

• projective sketches = free category with finite limits.

10



Every such pseudomonad T induces a 2-category CatT with T -algebraic categories as 0-cells,
T -algebraic morphisms as 1-cells, and T -algebraic natural transformations as 2-cells — where
we apply the following dictionary:

Definition 1 (T -algebraic theory) Let T be a pseudomonad on Cat. We consider the 2-

category CatT whose 0-cells are T -algebraic categories, 1-cells are T -algebraic functors and

2-cells are T -algebraic natural transformations – where the following dictionary has been used:

• T -algebraic category = pseudoalgebra of the pseudomonad T ,

• T -algebraic functor = pseudomorphism of pseudoalgebras,

• T -algebraic natural transformation = invertible algebraic 2-cell.

A T -algebraic theory is defines as a small T -algebraic category – that is to say whose class of

objects is a set.

Remark that our definition of T -algebraic theory is quite generous, and does not try to char-
acterize which algebraic theories should be accepted or rejected according to the rank of the
pseudomonad T . This has to be opposed to the approach of Kelly and Power on the elaborated
work on enriched Lawvere theories [6, 12].

Definition 2 (model of a T -algebraic theory) A model M of a T -algebraic theory L (L-

model) in a T -algebraic category C is a T -algebraic functor

A : L → C.

We construct a category Model(L, C) of L-models and T -algebraic natural transformations be-

tween them.

We can now reformulate the question raised by the computation of free models by the follow-
ing:

When is a left Kan extension of a T -algebraic functor A
along a T -algebraic functor j, a T -algebraic Kan extension ?

1.9 Algebraic distributors at work

Besides our interest in algebraic theories, this article is motivated by our fascination for the the-
ory of distributors — and the desire to promote this elegant theory to larger circles of algebraists.
The theory of distributors was introduced by Jean Bénabou in the late 1960s, and recast in the
language of enriched categories by the Sydney School, around Max Kelly and Ross Street.

There are at least two different ways to see a distributor:

• as a generalized functor,

• as a module with several objects.
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Depending on the point of view, a distributor is called a profunctor, or a module. Here, we stick to
the terminology introduced by Jean Bénabou, who had in mind the analogy between distributors
and distributions in functional analysis [2].

We have already mentioned the existence of a classical formula which enables to compute the
left Kan extension of a functor f along a functor j in many situations of interest. The formula
appears for instance in Chapter 10 on Kan extensions of the famous monograph devoted to cate-
gories by Saunders Mac Lane [10].

It is folklore among category theorists that the theory of distributors explains this formula in a
beautiful and pleasingly conceptual way. The main idea of the reconstruction is that every functor

f : A −→ B

induces a pair of adjoint distributors f∗ ⊣ f∗ with source and target as below:

f∗ : A→p B f∗ : B→p A.

The left Kan extension of the functor f : A −→ C along the functor j is then computed by
“composing” the two distributors j∗ : B→p A and f∗ : A→p C , then by “taking the representative”
of the resulting distributor – that is a functor Lanj(f) : B → C that satisfies

Dist(f∗ ◦ j
∗, g∗) ∼= Cat(Lanj(f), g)

for every functor g : B → C. The terminology representative comes from the classical situation
of an object representing a functor as described by Barr and Wells [1].

Once understood precisely how left Kan extensions are computed using distributors, there re-
mains to understand when the resulting Kan extensions can be T -algebraic. The aim of this article
is to clarify when this situation holds. We herald briefly the two recipes of our construction :

the adjunction
j∗ ⊣ j

∗

is T -algebraic

the T -algebraic distributor
f∗ ◦ j

∗ : A→p C
is “represented” by a T -algebraic functor

As we want our reasoning to be kept at an algebraic level and as we would like to explain the
enriched case as well, we need to construct our argument by abstracting the properties of the bi-
category Dist of distributors. For that reason, we introduce the formalism of proarrow equipment

that captures the essence of Bénabou’s construction.

2 Proarrow equipments

2.1 Basic definitions

The notion of proarrow equipment is an axiomatization, introduced by Richard Wood [15, 16],
of the homomorphism of bicategories between Cat and Dist. We used here the original notations
of Wood K andM for the two bicategories of concern.

Definition 3 (proarrow equipment) A proarrow equipment is a morphism of bicategories

(−)∗ : K → M

that satisfies the three axioms:

12



1. the object ofM are those of K and (−)∗ is an identity on objects morphism,

2. (−)∗ is locally fully faithful, i.e.

K(f, g) ∼=M(f∗, g∗);

3. for every 1-cell f of K, f∗ has a right adjoint f∗.

Let us mention some examples of proarrow equipments:

• K = V-Cat etM = V-Dist, from the enriched 2-category of enriched categories to the
enriched bicategory of enriched distributors.

• K = Map B andM = B for every bicategory B, where Map B is the full sub-bicategory of
B restricted to the morphisms which have a right adjoint. (−)∗ is then an inclusion functor,

• K = Ens andM = Rel where (−)∗ sends every function f : A→ B to its graph f∗

af∗b ssi fa = b.

In the proarrow equipment Cat → Dist, when a functor f : C → D satisfies “f∗ is a retract
of f∗”, then we have

B(fc, fc′) ∼= A(c, c′),

that is to say f is fully faithful. The property becomes here a definition.

Definition 4 (fully faithful) We say that a morphism f : A → B of K is fully faithful iff f∗ is a

retract of f∗.

The notion of representability in a proarrow equipment comes from the corresponding notion
for a functor. Usually, given a functor R : D → C, we say that an object Lc represents the functor
C(c,R(−)) as soon as

C(c,R(−)) ∼= D(Lc,−).

It is well-known that when the functor C(c,R(−)) is representable for every object c of C, the
functor R has a left adjoint [1]. We extend this notion to the setting of proarrow equipment.

Definition 5 (representative) A morphism g : B → C of K is a representative of a morphism

f : B → C ofM when there is a one-to-one correspondence

M(f, h∗) ∼= K(g, h)

for every h : B → C in K.

The notion of representative allows to find the “closest” morphism in K of a morphism inM.
What we want to do is thus to compute a Kan extension inK by going throwM via the equipment,
and then by going back to K via the representative.

13



2.2 Yoneda situations

We now give a recipe to compute the representative. It is well known that the computation of
the representative of a presheaf on a category C is induced by the existence of some colimits in
this category C.

To provide an abstract point of view on this colimit computation, we introduce the concept
of Yoneda situations in a proarrow equipment. This situation allows to describe abstractly the
morphisms of Cat from a category C to a category C that can be seen as restrictions of the
Yoneda embedding from C to presheaves overt C.

Definition 6 (Yoneda situation) A morphism y : C → C of K is said to be a Yoneda situation
when

• y is fully faithful,

• y∗ is pseudomonic with respect to K, that is to say the functor

y∗ ◦ (−)∗ : K1(A, C) → M1(A, C)

is fully faithful for every object A of K.

This definition of a Yoneda situation allows to give a general notion of C-cocompleteness on a
proarrow equipment.

Definition 7 (C-cocompleteness) An object C of K is said to be C-cocomplete iff there exists a

Yoneda situation y : C → C, that has a left adjoint

colim ⊣ y : C → C.

A famous case of C-cocompleteness for the proarrow equipment Cat → Dist is obtained
when C is the category of presheaves on C and y is the Yoneda embedding. We then say that the
category C is said to be total. In that case, the category is not only cocomplete but also complete.

Let us take a morphism f : B → C in the bicategoryM. Suppose that C is C-cocomplete for
the Yoneda situation y : C → C and that f factories through y∗ in the sense that

B
f
−→ C = B

f∗−→ C
y∗

−→ C.

Proposition 1 The morphism colim ◦f is a representative of f .

Proof : The proof follows from the following cascade of equivalences

M(f, g∗) = M(y∗ ◦ f∗, g∗) f = y∗ ◦ f∗
∼= M(y∗ ◦ f∗, y

∗ ◦ y∗ ◦ g∗) y is fully faithful
∼= K(f, y ◦ g) y∗ is pseudomonic with respect to K
∼= K(colim ◦f, g) colim is the left adjoint of y

14



Let us explain this construction in the paradigmatic equipment Cat → Dist. We use here
factorization system on Cat given by final functors and discrete fibrations [13]. Thus, every
diagram f : J → C can be seen as a presheaf ϕ given by the decomposition

J
f
−→ C = J

f1
−→ Elt(ϕ)

f2
−→ C

where f1 is a final functor and f2 is a discrete fibration. We now follow the notion introduced by
Kelly ofF-cocompleteness, and consider a cocomplete category C cocomplete for a given classF
of categories, called the indices, containing the category 1. This means that there is an adjunction

C

colim

!!
⊥ C

y

aa

between the category C of diagrams whose base is in F and the category C. The functor y sends
every object c of C to the constant diagram y : C → (1→ C). Using the Yoneda lemma, we know
that y is fully faithful and that the functor y∗ ◦ (−)∗ is equal to the identity. We directly deduce
that y∗ is pseudomonic with respect to Cat. Thus, the functor y is a valid Yoneda situation.

We can now show that the notion of representative enables to compute left Kan extension in
the bicategory K.

Proposition 2 Let f : A → C and j : A → B be two morphisms of K. The representative of the

morphism f∗ ◦ j
∗ (if it exists) is the left Kan extension of f along j in K.

Proof : As f∗ ⊢ j∗, the morphism f∗ ◦ j
∗ is the left Kan extension of f∗ along j∗ inM. Note Lanjf

its representative. For every g : B → C in K, we have the following cascade of bijections

K(Lanjf, g) ∼= M(f∗ ◦ j
∗, g∗) Lanjf represents f∗ ◦ j∗

∼= M(f∗, g∗ ◦ j∗) f∗ ◦ j
∗ left Kan extension inM

∼= M(f∗, (g ◦ j)∗) functoriality of (−)∗
∼= K(f, g ◦ j) (−)∗ is fully faithful

which establishes that Lanjf is the left Kan extension of f along j in K.

2.3 Pseudomonads in proarrow equipments

To describe the notion of law algebra in our proarrow equipment, we need to extend the notion
of pseudomonads in that setting. We follow the tradition on distributive laws, and particularly the
work of Nicola Gambino [5] where he defines morphisms of pseudomonads.

Definition 8 (pseudomonad on a proarrow equipment) A pseudomonad on a proarrow
equipment (−)∗ : K →M is given by

• a pseudomonad TK on the bicategory K;

• a pseudomonad TM on the bicategoryM;
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• a pseudo natural transformation h : TM ◦ (−)∗ → (−)∗ ◦ TK noted

TM (−)∗

(−)∗ TK

making ((−)∗, h) a morphism of pseudomonads from TK to TM in the sense that the

following equalities hold

TM TM (−)∗

(−)∗ TK

=

TM TM (−)∗

(−)∗ TK

(−)∗

(−)∗ TK

=

(−)∗

(−)∗ TK

A typical example of pseudomonads on a proarrow equipment is given by the pseudomonad
that distribute with Yoneda. Those pseudomonads induce naturally a pseudomonad on the proar-
row equipment Cat → Dist. This situation has been studied in details by Francisco Mar-
molejo [11], and then by Eugenia Cheng, Martin Hyland and John Power [3]. A similar work can
be done in the enriched setting. All pseudomonads that will be consider bellow, in the setting of
T -algebraic theories, share the property of distributing with Yoneda.

The notion of pseudomonad on a proarrow equipment allows to state that the two pseudomon-
ads TK and TM are compatible with (−)∗ in the following sense.

Proposition 3 The morphism (−)∗ : K → M lifts to a morphism (−)T
∗ : Lax-TK-Alg →

Lax-TM-Alg (that we will abusively still note (−)∗) that restricts, through the inclusion functor

from pseudoalgebras to lax algebras, to a morphism (−)T
∗ : Ps-TK-Alg→ Ps-TM-Alg. Those

morphisms make the following diagram commute

Ps-TK-Alg

��

(−)T
∗ // Ps-TM-Alg

��
Lax-TK-Alg

UK

��

(−)T
∗ // Lax-TM-Alg

UM

��
K

(−)∗ //M
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where UK and UM are the usual forgetful morphisms.

Proof : The diagrams are easy to check and this has been done in the work of Nicola Gambino [5].

3 General setting

As sketched in the introduction, we want to compute free models by Kan extension on algebraic
theories, PROs, PROPS, or even projective sketches. This has lead us to the definition of a com-
mon setting for all those kinds of theories that we call T -algebraic theories for a pseudomonad
T on the proarrow equipment Cat → Dist. In the following, we use the same terminology
for the straightforward generalization of T -algebraic theories to a pseudomonad on any proarrow
equipment.

3.1 Our main result

We will know state the main result of this paper at the level of proarrow equipments, before we
explain in more details all the needed hypotheses. From now on, we work with a pseudomonad
(TK, TM, h) on a proarrow equipment (−)∗ : K → M. As we have seen with Proposition 2,
the left Kan extension of a TK-algebraic morphism f : A → C along a TK-algebraic morphism
j : A → B in K is obtained by precomposing f∗ with the right adjoint j∗ and then by taking the
representative of resulting morphism. It remains to clarify in which situation this Kan extension
is also TK-algebraic. We announce briefly the two ingredients of the construction

the adjunction
j∗ ⊣ j

∗

is TK-algebraic

the morphism TM-algebraic
f∗ ◦ j

∗ : B→p C
is represented by a TK-algebraic morphism.

To capture those two situations, we introduce the following terminology.

Definition 9 (operadicity) A morphism f on the bicategory K is said to be TK-operadic when

it is TK-algebraic and when its right adjoint f∗ inM is TM-algebraic.

As we will see later, whereas the notion of operadicity is purely algebraic, its meaning is
inherently combinatorial. It indicates a kind of tree decomposition property. The second property
is of an algebraic flavor. It must be understood as a way to say, in the monoidal setting, that the
morphism colim – which intuitively computes the colimits of interest – commutes with the tensor
product.

Definition 10 (algebraic cocompleteness) A C-cocomplete object C of the bicategory K is said

to be T -algebraically C-cocomplete when C and C are both T -pseudoalgebras and when the

morphisms y, y∗ and colim involved in the definition of C-cocompleteness are all T -algebraic

morphisms.

Thanks to those to new notions, we can now state and prove the theorem which has motivated
this paper.
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Theorem 1

Let j : A → B be a TK-operadic morphism, C be a T -algebraically C-cocomplete object of

the bicategory K and f : A → C be a T -algebraic morphism. If the morphism f∗ ◦ j
∗ factories

as

B
f∗◦j

∗

−→ C = B
g∗
−→ C

y∗

−→ C

for every f , then the forgetful functor

Uf : Ps-TK-Alg(B, C) → Ps-TK-Alg(A, C)

has a left adjoint computed with a left Kan extension

Lanj : Ps-TK-Alg(A, C) → Ps-TK-Alg(B, C).

Proof : The morphism f∗ ◦ j
∗ is the left Kan extension of f∗ along j∗ inM. According to Proposition

1, the morphism colim ◦g is the representative of f∗ ◦ j∗ in K. But, according to Proposition 2, this
representative is the left Kan extension Lanjf of f along j in K.

It now remains to check that Lanjf is TK-algebraic. As j is operadic, the morphism f∗ ◦ j
∗ is

TM-algebraic. But the morphism y∗ is pseudomonic with respect to K so g is TK-algebraic. As
colim is TK-algebraic, we conclude that Lanjf is TK-algebraic.

The functoriality of the construction is given by th pseudmonicity of y∗.

For the particular case of the proarrow equipment Cat → Dist, we deduce from Theorem 1
that the free L2-model on a L1-model A along a morphism j : L1 → L2 is computed as the coend

LanjA =

∫ m∈L1

L2(fm, n)⊗A(m)

Since we discussed at length the conclusion of the theorem, we will directly comment the two
hypotheses of operadicity and algebraic completeness.

3.2 A combinatorial hypothesis: operadicity

We have claimed that the notion of operadicity is of a combinatorial nature. Let us explain this
intuition by making it more explicit in the proarrow equipment Cat −→ Dist. In that situation, a
T -algebraic morphism j : L1 −→ L2 operadic when the canonical morphism

∫ p∈T (L1)

L1(m, [p])⊗ T (L2)(Tj(p), n) −→ L2(jm, [n]) (10)

is an isomorphism in the category Ens, for every object m of the category L1, and every object n
of the category T (L2).

The definition is purely algebraic, but its meaning is inherently combinatorial:

Operadicity = tree decomposition property.

To understand why, it is worth expanding the definition of operadic functor in the particular case of
linear theories — keeping in mind that an objectm of the linear theory L1 is a natural number, and
an object n of the category T (L2) is a finite sequence (n1, · · · , nk) of natural numbers. Because

18



the underlying category is the category Ens, the canonical morphism (10) is a function, whose
domain is the set

∫ p1∈L1

· · ·

∫ pk∈L1

L1(m, p1 + · · ·+ pk)× L2(p1, n1)× · · · × L2(pk, nk)

of pairs (g, h1, · · · , hk) consisting of a morphism

g : m −→ p1 + · · ·+ pk

in the linear theory L1, and a family of k morphisms

hi : pi −→ ni (1 ≤ i ≤ k)

in the linear theory L2. These pairs are considered modulo the smallest equivalence relation ∼
satisfying:

(g, h1 ◦ j(h
′
1), · · · , hk ◦ j(h

′
k)) ∼ ((h′1 ⊗ · · · ⊗ h

′
k) ◦ g, h1, · · · , hk)

whenever
h′i : pi −→ qi (1 ≤ i ≤ k)

is a family of morphisms in the linear theory L1. Now, the function (10) transports every such
family (g, h1, · · · , hk) to the morphism

(h1 ⊗ · · · ⊗ hk) ◦ j(g) : m −→ p1 + · · ·+ pk −→ n1 + · · ·+ nk

of the linear theory L2. By operadic, we mean that the function (10) is a bijection, for every
natural number m and sequence of natural numbers (n1, · · · , nk). This should be seen as a tree
decomposition property, which states that every morphism

h : m −→ n1 + · · ·+ nk

in the linear theory L2 decomposes uniquely as a morphism

j(g) : m −→ p1 + · · ·+ pk

followed by a morphism

h1 ⊗ · · · ⊗ hk : p1 + · · ·+ pk −→ n1 + · · ·+ nk

modulo the equivalence relation ∼ defined above. The terminology “operadic” is justified by the
fact the property holds for any map of operads j : L1 −→ L2 between operads — that is, linear
theories L1 and L2 generated by an equational theory on operationsm −→ 1 withm inputs and one
output. In that case, the morphism g may be taken the identity, with m = p1 + · · ·+ pk, and each
morphism hi describing a particular “component” with ni roots of the morphism h understood as
“forest” of operations with n1 + · · ·+ nk roots.

=
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In particular, the linear functor N −→ ∆ mentioned in (9) is operadic: this explains why the
formula (1) for the tensor algebra, obtained by taking left Kan extensions along j, computes
indeed the free monoid object in k-Mod, and defines a left adjoint to the forgetful functor U :
k-Alg −→ k-Mod. Another example is provided by the linear functor from the linear theory of
k-algebras to the linear theory of Lie algebras, which induces the notion of enveloping k-algebra.
Another less immediate example is comonoids to bimonoids in PROPs.

To conclude, we give the counter-example of the inclusion functor from the trivial linear theory
N to the theory of bimonoids. This explains the observation mentioned in the introduction that
there exists no free k-bialgebra in general.

The case of algebraic theories and projective sketches. For algebraic theories and projective
sketches, it is known for a long time that the computation of a free L2-model on a L1-model is
always possible. It seems then that the hypothesis of operadicity is always valid. Let us take a look
at the meaning of this condition in the cartesian setting. The canonical morphism 10 becomes

∫ p1∈L1

· · ·

∫ pk∈L1

L1(m, p1 × · · · × pk)× L2(jp1, n1)× · · · × L2(jpk, nk). (11)

We can use the surjective pairing to deduce that

L1(m, p1 × · · · × pk) ∼= L1(m, p1)× · · · × L1(m, pk).

Then, using the Yoneda lemma, we have that the object 11 is isomorphic to

L2(jm, n1)× · · · × L2(jm, nk)

and we conclude by using again surjective pairing. But there is a more abstract reasoning that
explains this property for the two pseudomonads. Those two pseudomonads are KZ-doctrines. It
follows that the T -algebraic structure a : TL1 → L1 of a category L1 is the right adjoint to the
unit ηL1

of the pseudomonad T . This means that there is an isomorphism

L1(m, a(p)) ∼= TL1(ηA(m), p)

We can use this adjunction to show that the operadicity property always holds
∫ p∈T (L1)

L1(m, a(p))⊗ T (L2)(Tj(p), n)
∼=

∫ p∈T (L1)
TL1(ηL1

(m), p)⊗ T (L2)(Tj(p), n) (a ⊢ ηL1
) )

∼= TL2(Tj(ηL1
(m))n) (Yoneda lemma)

∼= TL2(ηL2
(jm), n) (naturality of η)

∼= L2(jm, [n]) (a ⊢ ηL1
)

We deduce a well-known result, which is a corollary of Theorem 1, and which states that the com-
putation of free models on Ens is always possible for algebraic theories and projective sketches.

Corollary 1 Let j be a algebraic morphism between two algebraic theories or two projective

sketches L1 et L2. Every L1-model A induces a free L2-model LanjA, we have a bijection

Model(L2,Ens)(LanjA,B)
∼=
−−→ Model(L1,Ens)(A,UjB)

More precisely, the left Kan extension LanjA defines a left adjoint functor to the forgetful functor:

Lanj ⊣ Uj : Model(L1,Ens)→ Model(L2,Ens).

20



3.3 An algebraic hypothesis: algebraic cocompleteness

A category is called cocomplete when it has all small colimits. When the category is moreover
monoidal, one generally requires that “colimits commute to the tensor product”. Fine... But what
does this mean? We clarify the concept by reformulating it in the language of proarrow equipment,
namely as a property of algebraic cocompleteness. Let us look at what it means in the proarrow
equipment Cat→ Dist. Informally speaking,

C-algebraic cocompleteness = colimits computed on a diagram indexed by an element of C
commute with the T -algebraic structure.

Let us specialize once more and look at the case of linear theories. The category C is T -algebraically
C-cocomplete when the class of indices F is closed under the cartesian product of categories and
when the functor colim is monoidal. Given two functors F : I → C and G : J → C and their
corresponding presheaves ϕ and ψ with I, J ∈ F , one can form the Day’s tensor product of ϕ
and ψ as described by the coend formula

ϕ⊗ ψ : c 7→

∫ c1c2

C(c, c1 ⊗ c2)× ϕ(c1)× ψ(c2).

The factorization system on Cat ensures that the diagram that corresponds to this presheaf is the
functor ⊗ ◦ (F ×G) indexed by I × J as shown by the following diagram

I × J
final //

F×G
))SSSSSSSSSSSSSSSSS Elt(ϕ)× Elt(ψ)

discrete
��
fibration

final // Elt(ϕ⊗ ψ)

discrete
��
fibration

C × C
⊗

// C

We see in that case that if the colimits of F and G exist and commute with the tensor product,
then the colimit of ⊗ ◦ (F × G) exists and commutes with the tensor product. It is then natural
to consider the category C of presheaves having a colimit that commutes with the tensor product.
The only remaining thing to do in concrete cases is to check that the distributor on which we
compute the representative factories through this category.

4 Computing the free monoid

We will now apply our theory to the computation of the free monoid. As depicted in the intro-
duction, this amounts to compute the free ∆-model on a N-model in the linear theories setting.
Those two theories N and ∆ come from operads and the inclusion morphism

jN : N → ∆

is obviously operadic. It just remains to check that the required colimits in the category C exist
and commute with the tensor product (in what follows, we will say monoidal colimit).

4.1 A simplified verification

Let C be an object of a monoidal category C and F : N → C be the associated trivial model.
Recall that Fn is equal to c⊗n for all n of N. We have to check that the distributor F∗◦j

∗
N

factories
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through the category C of presheaves having a monoidal colimit. At first glance, we must check
that the presheaf

F∗ ◦ j
∗
N(−, n) =

∫ k∈N

∆(Jk, n)× C(−, c⊗k)

has a monoidal colimit, and this for all n ∈ ∆. Since the distributor F∗ ◦ j
∗
N

is strong monoidal,
it suffices to study the case n = 1 because then, the isomorphism

F∗ ◦ j
∗
N(−, n) ∼= F∗ ◦ j

∗
N(−, 1)⊗n

ensures that the other presheaves also have a monoidal colimit. But the object 1 is terminal in the
category ∆, so the expression of F∗ ◦ j

∗
N
(−, 1) can be drastically simplified into

F∗ ◦ j
∗
N(−, 1) = colim

k∈N

C(−, c⊗k).

We have already seen that a diagram corresponding to a presheaf of that kind is precisely the
functor F : N→ C. We thus deduce the following proposition.

Proposition 4 Let C be a monoidal category and c be an object of C. If the colimit of diagram

F :
N → C
n 7→ c⊗n

exists and commutes with the tensor product, then it defines the free monoidal on C.

We have just proved, with a detour by proarrow equipments, that Equations (1) and (8) define
respectively the free algebra in k-Mod and the free monoid in Ens. But now that we have the
general theory, we can deal with more complicated and less known cases.

4.2 A diagram as a colimit of diagrams

Various constructions of free monoids [4, 14, 7] shed light on the need to know that the colimit
of a diagram is monoidal, by using general properties of commutation of some kinds of colimits.
For example, a common hypothesis is that the considered category has all coequalizers and that
they commute with the tensor product. We present here a mean to ensure that a diagram has a
monoidal colimit by showing that this is the monoidal colimit of diagrams which have themselves
a monoidal colimit. More formally, we have the following property.

Proposition 5 Let C be a monoidal category and C be the category of diagram on C having a

monoidal colimit. Suppose that all diagrams, whose base is the category J , have a monoidal

colimit. Then the category C is closed for diagrams indexed on J .

Proof : Consider a diagram F : J → C indexed on J . We have to show that the colimit of this diagram
exists in C.

Let colim : C → C be a functor that associates to every diagram of C its colimit in C and ι : C → Ĉ
the injection from C to the category of presheaves on C. By hypothesis on J , the diagram colim ◦F
has a monoidal colimit in C, noted c. Since Ĉ is the free completion by colimit of C, the diagram ι◦F
has a colimit ϕ in Ĉ. It thus suffices then to show that the presheaf ϕ is represented by c. Let d be an
object C, tJ : J → 1 and y : C → C be the Yoneda embedding restricted to C. The following chain
of equivalences

Ĉ(ϕ, ι ◦ y(d)) ∼= [J, Ĉ](ι ◦ F, ι ◦ y(d) ◦ tJ) ϕ is the colimit of ι ◦ F
∼= [J, C](F, y(d) ◦ tJ) ι is pseudomonic
∼= [J, C](colim ◦F, d ◦ tJ) colim ⊢ y
∼= C(c, d) c is the colimit of colim ◦F
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shows that c is a representative of ϕ. We then deduce that the colimit of ϕ exists and is monoidal,
that is to say ϕ ∈ C.

This proposition sheds a new light on the constructions of Eduardo Dubuc and of Bruno Vallette
(refined by Steve Lack).

4.3 Th Dubuc’s construction

In a 1974’s paper, Eduardo Dubuc [4] gives a construction of the free monoid on a pointed
object in a monoidal category C. This construction involves a transfinite process that is not of our
concern. Nevertheless, we can give here an interpretation of the ideas developed by Dubuc.

First, we have to introduce the linear theory of pointed object. This is nothing but the category
∆face of augmented simplicial sets and injective maps. This is a sub-category of ∆ in which we
only keep non-degenerate morphisms. We note dn

i : n− 1→ n the face morphism corresponding
to

dn
i : {1, . . . , n− 1} 7→ {1, . . . , i− 1, i+ 1, . . . , n}.

Thus, on can see every pointed object p : 1 → A of C as a strict functor A : ∆face → C which
associate to n the object A⊗n and

A(dn
i ) = idA ⊗ . . .⊗ p⊗ . . . idA.

Again, this linear theory is described by an operad and the morphism

j∆ : ∆face → ∆

is a map of operad. As for Proposition 4, to obtain the free monoid on a pointed object A :
∆face → C, it is enough to check that the colimit of A exists and commutes with the tensor
product. This is the case in the following general case.

Proposition 6 Let C be a monoidal category such that

• all coequalizers exist and commute with the tensor product,

• all sequential colimits (in the sense of colimits of a diagram indexed on the category N)

exist and commute with the tensor product,

Then, the free monoid on a pointed object A : ∆face → C exists and is computed by the image in

1 of the left Kan extension of A along j∆:

Lanj∆A(1) = colim
n∈∆face

A(n)

Proof : It is enough to check that the diagram A lives in C. Let ∆face(n) be the full sub-category of
∆face of integers below n. First, we establish that the colimit of the restriction of the diagram A to
∆face(n)

An : 1 // A
A(d2

1
) //

A(d2

2
)

// A⊗2

A(d3

1
) ////

A(d3

3
)

// · · ·
//////

A(dn

1
) //

A(dn

n
)

// A
⊗n

lives in C. Remark that this diagram has the same colimit than the diagram:

Dn : A⊗n−1 //////

A(dn

1
) //

A(dn

n
)

// A
⊗n
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Remark also that this diagram is computed by coequalizing the morphisms two-by-two. Indeed,
because the coequalizers are monoidal, the colimit of the two arrows on the top is given by the
coequalizer e1 : A⊗2 → A2 of the two faces d2

1 and d2
2, tensored with A⊗n−2

A⊗n−1
A(dn

1
) //

A(dn

2
)

// A⊗n
e1⊗A⊗n−2

// A2 ⊗A
⊗n−2

Then, we compute the coequalizer of the morphism m1 = (e1 ⊗ A
⊗n−2)dn

1 = (e1 ⊗ A
⊗n−2) ◦ dn

2

with the morphism m3 = (e1 ⊗A
⊗n−2)dn

3

A⊗n−1
m1 //
m3

// A2 ⊗A
⊗n−2

e2⊗A⊗n−3

// A3 ⊗A
⊗n−3 .

And we start again until we obtain the monoidal colimit of the diagram Dn, or equivalently of the
diagram An. Thus, An lives in C for all n. We conclude by noticing that A is the sequential colimit
of the functor

N→ C : n 7→ An.

and by using Proposition 5.

We can refine the theorem when the category C is equipped with finite coproducts. It is then
possible to compute the free pointed object on an object. This pointed object is simply defined by

A⊕ 1.

Proposition 7 Let C be a monoidal category equipped with finite coproducts and such that

• all coequalizers exist and commute with the tensor product,

• all sequential colimits (in the sense of colimits of a diagram indexed on the category N)

exist and commute with the tensor product,

Then, the free monoid on an object A : N→ C exists and is computed by the image in 1 of the left

Kan extension of the pointed object A⊕ 1 along j∆.

Proof : There exists an inclusion functor j′
N

: N → ∆face which factories jN through j∆. Since Kan
extensions do compose, we can deduce that the free monoid on the free pointed object on an object
A is also the free monoid on this object. According to Proposition 6, it is enough to check that A⊕ 1
is the free pointed object on A.

Let f : A→ P be a morphism of C to a pointed object (P, p). We define the morphism of pointed
object f⊕p : (A⊕1, i2)→ (P, p). This morphism fits and is unique by universality of the coproduct.

Remark that when the category C has finite coproducts which do not commute with the tensor
product, the construction of the free pointed object is not obtained by left Kan extension in Cat.
Indeed, using the left Kan extension, we get a functor LanjN

A which is not monoidal as indicated
by the diagram bellow,

LanjN
A(2) = 1⊕A⊕A⊕A2 ≇ (A⊕ 1)⊗ (A⊕ 1) = LanjN

A(1)⊗ LanjN
A(1).

Thus, Proposition 7 combines a “pedestrian construction” of the monoidal left Kan extension on
j′
N

: N→ ∆face with the computation of the left Kan extension on j∆ : ∆face → ∆ that is known,
for abstract reasons, to be monoidal.
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4.4 The Vallette/Lack’s construction

Bruno Vallette notices in his paper [14] that the hypothesis that coequalizers commute with
the tensor product is often too strong. He points out various situations where only reflexive co-
equalizers commute with the tensor product. Let us recall briefly what is a reflexive coequalizer.

Definition 11 (reflexive coequalizer) A pair of morphisms f, g : A→ B is said to be reflexive
when their exists a morphism i : B → A that makes the following diagram commute

A
f //
g

// B

i

��

A reflexive coequalizer is a coequalizer computed on a reflexive pair.

When the category of consideration is equipped with finite coproducts, it is well-known that
every pair of morphisms can be replaced by a reflexive pair computing the same equalizer.

Proposition 8 Let C be a category equipped with finite coproducts (noted ⊕) and let f, g : A →
B be a pair of morphisms of C. The coequalizer of f and g exists if and only if the reflexive

coequalizer of the reflexive pair

A⊕B
f⊕idB //

g⊕idB

// B

i2

~~

exists (i2 is the second injection).

We see appearing a variation on Proposition 6, where the computation of An using coequalizers
is replaced by a computation using reflexive coequalizers. This is precisely the result stated by
Bruno Vallette and then reformulated by Steve Lack.

Proposition 9 Let C be a monoidal category equipped with finite coproducts and such that

• all reflexive coequalizers exist and commute with the tensor product,

• all sequential colimits (in the sense of colimits of a diagram indexed on the category N)

exist and commute with the tensor product,

Then, the free monoid on an object A : N→ C exists and is computed by the image in 1 of the left

Kan extension of the pointed object A⊕ 1 along j∆.

Proof : We go back to the proof of Propositions 6 and 7 with the same notations. The only difference is
that we can not use general coequalizers to compute the colimit of the diagram An and equivalently
of the diagram Dn. Anyway, we will use Proposition 8 to compute the colimit of Dn using reflexive
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coequalizers. The first computed coequalizer can be replaced by the monoidal reflexive coequalizer
as follows

An−1
i1 // (A⊕A2)⊗An−2

(A(d2

1
)⊕id

A2 )⊗id
An−2 //

(A(d2

2
)⊕id

A2 )⊗id
An−2

// A2 ⊗An−2

i2⊗id
An−2

xx
e1⊗An−2

// A2 ⊗A
n−2

And so on. . . The rest of the proof is unchanged.

4.5 Computing free commutative comonoid

We are also interested in computing free commutative comonoid, that correspond to free ex-
ponential modality in linear logic. But we first have to solve a problem: since the beginning,
we deal with monoids but never with comonoids. This difficulty is not deep as a comonoid in
the monoidal category C is nothing but a monoid in the opposite category Cop equipped with the
induced tensor product.

One can thus recycle what has been done for the computation of the free monoid by just dual-
izing every diagram and computing limits instead of colimits. Let us state, for example, a direct
corollary of Proposition 6.

Corollary 2 Let C be a monoidal category such that

• the equalizers exist and commute with the tensor product,

• the sequential limits (in the sense of limits of diagrams indexed on the category N) exist and

commute with the tensor product.

Then the free comonoid on the copointed object A : ∆face
op → C exists and is computed by the

image on 1 of the right Kan extension of A on j∆
op :

Ranj∆
opA(1) = lim

n∈∆face
op
A(n).

As we are interested in the commutative case, we have to move from PROs to PROPs. We have
already mentioned that the category Bij of finite sets and bijections is the trivial symmetric theory.
In the same way, the category FinSet of finite sets and set theoretic functions is the symmetric
theory for commutative monoids.

The injection of Bij into FinSet is operadic, so we directly obtain the following proposition.

Proposition 10 Let C be an algebraically cocomplete symmetric monoidal category. The free

commutative comonoid !•eA on an object A of C seen as a symmetric monoidal functor from Bij to

C is computed by the following formula

!•eA = lim
n∈Bij

An

For example, this construction applies to the category Rel of sets and relations. We get, as
expected, the construction of the set of finite multisets on a set

!•eA =
∐

n∈Bij

An/ ∼Bij .

We find back the usual exponential of the relational model of linear logic.
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5 Extension to the enriched case

6 Conclusion and future works

We have presented a framework to compute free models of various kind of theories, from al-
gebraic, linear, symmetric theories to projective sketches. This construction, which is based on
proarrow equipment, lies on two fundamental properties: operadicity and algebraic cocomplete-
ness.

In future work, we will see how our formulation of algebraic cocompleteness enables to com-
pute the free commutative comonoid in very poorly equipped categories such as coherence spaces
or the category of Conway games.
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