Bayesian Models for Multimodal Perception of 3D Structure and Motion

Abstract : In this text we will formalise a novel solution, the Bayesian Volumetric Map (BVM), as a framework for a metric, short-term, egocentric spatial memory for multimodal perception of 3D structure and motion. This solution will enable the implementation of top-down mechanisms of attention guidance of perception towards areas of high entropy/uncertainty, so as to promote active exploration of the environment by the robotic perceptual system. In the process, we will to try address the inherent challenges of visual, auditory and vestibular sensor fusion through the BVM. In fact, it is our belief that perceptual systems are unable to yield truly useful descriptions of their environment without resorting to a temporal series of sensory fusion processed on a short-term memory such as the BVM.
Type de document :
Communication dans un congrès
International Conference on Cognitive Systems (CogSys 2008), 2008, Karlsruhe, Germany
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00338800
Contributeur : Pierre Bessière <>
Soumis le : vendredi 14 novembre 2008 - 14:17:13
Dernière modification le : vendredi 4 janvier 2019 - 01:23:32
Document(s) archivé(s) le : lundi 7 juin 2010 - 21:27:43

Fichier

FinalPaperMultimodalCogSys2008...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00338800, version 1

Collections

Citation

J.F. Ferreira, Pierre Bessière, Kamel Mekhnacha, J. Lobo, J. Dias, et al.. Bayesian Models for Multimodal Perception of 3D Structure and Motion. International Conference on Cognitive Systems (CogSys 2008), 2008, Karlsruhe, Germany. 〈hal-00338800〉

Partager

Métriques

Consultations de la notice

567

Téléchargements de fichiers

470