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SUMMARY

The analysis of seismic wave propagation and amplification in complex geological structures raises

the need for efficient and accurate numerical methods. The solution of the elastodynamic equations

using traditional boundary element methods (BEMs) is greatly hindered by the fully-populated

nature of the matrix equations arising from the discretization. In a previous study limited to homo-

geneous media, the present authors have established that the Fast Multipole (FM) method reduces

the complexity of a 3-D elastodynamic BEM to N log N per GMRES iteration and demonstrated

its effectiveness on 3-D canyon configurations. In this article, the frequency-domain FM-BEM

methodology is extented to 3-D elastic wave propagation in piecewise-homogeneous domains in the

form of a FM-accelerated multi-region BE-BE coupling approach. This new method considerably

enhances the capability of the BEM for studying the propagation of seismic waves in 3-D alluvial

basins of arbitrary geometry embedded in semi-infinite media. Several fully 3-D examples (oblique

SV-waves) representative of such configurations validate and demonstrate the capabilities of the

multi-domain fast multipole approach. They include comparisons with available (low-frequency)

results for various types of incident wavefields, and time-domain results obtained by means of

Fourier synthesis.

Key words: Site effects; Computational seismology; Wave propagation

1 INTRODUCTION

Seismic wave propagation in complex geological structures often results in large local amplifi-
cations of the ground motion. Seismic wave amplification may be analyzed using either modal
approaches (Paolucci 1999; Semblat et al. 2003; Pecker 2005) or direct simulations of wave
propagation (Bard & Bouchon 1985; Sánchez-Sesma & Luzón 1995; Bielak et al. 2003; Ko-
matitsch et al. 2004; Semblat et al. 2005). The importance of 2D and 3D realistic simulations
is well recognized in the literature (Frankel & Vidale 1992; Paolucci 2002; Makra et al. 2005).
Due to rapid and steady increase of available computational capabilities, the simulation of
waves in 3D configurations is becoming a very active area of research. Numerical methods pro-
posed so far for the computation of seismic wave propagation in alluvial basins exploit series
expansions (Lee 1984), multipolar expansions of wave functions (Sánchez-Sesma 1983), finite
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elements (Bielak et al. 2005), finite differences (Saenger et al. 2000; Moczo et al. 2007), spectral
elements (Faccioli et al. 1997; Komatitch & Vilotte 1998), or boundary elements (e.g. Guzina
& Pak 2001; Dangla et al. 2005), with specific advantages and limitations for each approach.
The main advantage of the boundary element method (BEM) is that only the domain bound-
aries (and possibly interfaces) are discretized, leading to a reduction of the number of degrees
of freedom (DOFs), and avoiding cumulative effects of grid dispersion (Ihlenburg & Babus̆ka
1995; Hughes et al. 2008). The BEM is well suited to dealing with unbounded-domain ide-
alizations commonly used in seismology, as exact satisfaction of radiation conditions is built
into the formulation (Kupradze 1963; Bonnet 1999). However, the standard BEM leads to
fully-populated matrices, which results in high computational costs in CPU time (O(N2) per
iteration using an iterative solver such as GMRES) and memory requirements (O(N2)), where
N denotes the number of DOFs of the BEM model. In an effort to overcome such limitations,
Bouchon et al. (1995) have proposed, and applied to 2-D layered media, an approach whereby
a sparse approximation of the governing matrix is obtained by retaining only the entries with
sufficiently high magnitude, later extended to 3-D topographies by Ortiz-Alemán et al. (1998).
More generally, the appearance of accelerated boundary element (BE) methodologies, allow-
ing complexities far lower than those of traditional BEMs, has dramatically improved the
capabilities of BEMs for many areas of application, largely owing to the rapid development
of the Fast Multipole Method (FMM) over the last 10-15 years (see the review article by
Nishimura 2002). Such approaches have resulted in considerable solution speedup, memory
requirement reduction, and model size increase. The FMM is inherently associated with iter-
ative solvers (usually GMRES), and is known to require O(N log N) CPU time per iteration
for Helmholtz-type equations (Darve 2000; Sylvand 2002; Darve & Havé 2004). To date, only
few studies have been devoted to the FMM in elastodynamics (including Fujiwara 2000 for
the frequency-domain case, Takahashi et al. 2003 for the time-domain case and Çakir 2006 for
a formulation specialized to surface waves), whereas FMMs for the Maxwell equations have
been more extensively investigated, see e.g. Lu & Chew (1994); Darve (2000); Sylvand (2002);
Gumerov & Duraiswami (2005). In Chaillat et al. (2008), the methodology of Fujiwara (2000)
is improved for homogeneous semi-infinite elastic propagation domains by incorporating re-
cent advances of FMM implementations for Maxwell equations (e.g. Darve 2000), allowing to
run BEM models of size up to N = O(106) on a single-processor PC. The present article aims
at extending the formulation of Chaillat et al. (2008) to multi-domain situations, with empha-
sis on alluvial-basin configurations, by developing a FMM-based BE-BE coupling approach
suitable for 3-D piecewise-homogeneous media.

The paper is organized as follows. Classical concepts pertaining the elastodynamic BEM
and FMM are reviewed in Section 2. Then, Section 3 presents the BEM formulation for
seismic wave propagation in semi-infinite, piecewise-homogeneous media. Next, the FM-based
BE-BE coupling strategy is presented in Section 4 together with a detailed discussion of several
crucial implementation issues. Several examples representative of seismic wave propagation
in 3-D alluvial basins are then presented in Section 5, including comparisons with available
(low-frequency) results for various types of incident wavefields, and also time-domain results
obtained by means of Fourier synthesis.

2 STANDARD AND FAST MULTIPOLE ACCELERATED BOUNDARY

ELEMENT METHOD

This section summarizes existing concepts for single-region elastodynamic BEM and FMM,
which will thus provide a foundation for developing a multi-region FM-BEM for modelling
complex geological structures such as alluvial basins and other topographical irregularities.
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2.1 Single-region boundary element method

Let Ω denote a region of space occupied by an isotropic elastic solid characterized by µ (shear
modulus), ν (Poisson’s ratio) and ρ (mass density). A time-harmonic motion with circular
frequency ω is assumed, and the implicit factor e−iωt will be systematically omitted. Assuming
the absence of body forces, the displacement u is given at an interior point x ∈ Ω by the
well-known integral representation formula:

uk(x) =

∫

∂Ω
[ti(y)Uk

i (x,y;ω) − ui(y)T k
i (x,y;ω)] dSy (1)

where t is the traction vector on the boundary ∂Ω, and Uk
i (x,y;ω) and T k

i (x,y;ω) denote
the i-th components of the elastodynamic fundamental solution, i.e. of the displacement and
traction, respectively, generated at y ∈ R

3 by a unit point force applied at x ∈ R
3 along the

direction k (Eringen & Suhubi 1975):

Uk
i (x,y;ω) =

1

4πk2
Sµ

(

(δqsδik − δqkδis)
∂

∂xq

∂

∂ys
G(|y − x|; kS) +

∂

∂xi

∂

∂yk
G(|y − x|; kP )

)

,

T k
i (x,y;ω) = µ

[ 2ν

1 − 2ν
δijδkℓ + δikδjℓ + δjkδiℓ

] ∂

∂yℓ

Uk
h (x,y;ω)nj(y),

k2
S =

ρω2

µ
, k2

P =
1 − 2ν

2(1 − ν)
k2

S (2)

in which G(r; k), defined by

G(r; k) =
exp(ikr)

4πr
(3)

is the free-space Green’s function for the Helmholtz equation with wavenumber k correspond-
ing to either P or S elastic waves, and n(y) is the unit normal to ∂Ω directed outwards of
Ω.

When x ∈ ∂Ω, a singularity occurs at y = x. With the help of a well-documented limiting
process (e.g. Guiggiani & Gigante 1990), the integral representation (1) yields the integral
equation, for x ∈ ∂Ω :

cik(x)ui(x) + (P.V.)

∫

∂Ω
ui(y)T k

i (x,y;ω)dSy −
∫

∂Ω
ti(y)Uk

i (x,y;ω)dSy = 0 (4)

where (P.V.) indicates a Cauchy principal value (CPV) singular integral and the free-term
cik(x) is equal to 0.5δik in the usual case where ∂Ω is smooth at x. Equation (4) may be recast
into alternative, equivalent regularized forms which are free of CPV integrals (Bui et al. 1985;
Krishnasamy et al. 1992; Pak & Guzina 1999; Dangla et al. 2005).

The numerical solution of boundary integral equation (4) is based on a boundary element
(BE) discretization of the surface ∂Ω and boundary traces (u, t), leading to the system (Bonnet
1999):

[H]{u} + [G]{t} = 0, (5)

where [H] and [G] are fully populated, nonsymmetric, matrices and vectors {u}, {t} gather
the displacement and traction degrees of freedom (DOFs). In this work, linear three-noded tri-
angular boundary elements are used, together with a piecewise-linear continuous (i.e. isopara-
metric) interpolation for the displacements and a piecewise-constant interpolation of tractions.
Upon introduction of boundary conditions, the matrix equation (5) is recast in the form:

[K]{v} = {f}, (6)

where the N -vector {v} collects the unknown degrees of freedom (DOFs), while the N × N
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Figure 1. Decomposition of the position vector: notations.

matrix of influence coefficients [K] contains the columns of [H] and [G] associated with the
unknown components.

BEM matrix equations such as (6) are here solved iteratively using the GMRES algo-
rithm (Saad & Schultz 1986). The influence matrix [K] is fully-populated. With reference
to (6), each GMRES iteration requires one evaluation of [K]{v} for given {v}, a task re-
quiring a computing time of order O(N2) regardless of whether [K] is stored or [K]{v} is
evaluated by means of standard BEM numerical integration procedures. To lower this O(N2)
complexity, which is unacceptable for large BEM models, fast BEM solutions techniques such
as the Fast Multipole Method (FMM) must be employed.

2.2 Fast Multipole Method: principle

The goal of the FMM is to speed up the matrix-vector product computation required for
each iteration of the iterative solver applied to the BEM-discretized equations. Moreover, the
governing BEM matrix is never explicitly formed, which leads to a storage requirement well
below the O(N2) memory required for holding it. Substantial savings in both CPU time and
memory are thus achieved.

In general terms, the FMM exploits a reformulation of the fundamental solutions in terms
of products of functions of x and of y, so that (unlike in the traditional BEM) integrations
with respect to y can be reused when the collocation point x is changed. On decomposing the
position vector r = y −x into r = (y − y0) + r0 − (x − x0), where x0 and y0 are two poles
and r0 = y0 − x0 (Fig. 1) and invoking the Gegenbauer addition theorem, the Helmholtz
Green’s function is written as (Epton & Dembart 1995; Darve 2000):

G(|r|, k) = lim
L→+∞

∫

ŝ∈S

eikŝ.(y−y0)GL(ŝ; r0; k)e−ikŝ.(x−x0)dŝ, (7)

where S is the unit sphere of R
3 and the transfer function GL(ŝ; r0; k) is defined in terms of

the Legendre polynomials Pp and the spherical Hankel functions of the first kind h
(1)
p by:

GL(ŝ; r0; k) =
ik

16π2

∑

0≤p≤L

(2p + 1)iph(1)
p (k|r0|)Pp

(

cos(ŝ, r0)
)

(8)

Then, the elastodynamic fundamental solution (2) is easily seen to admit representations of
the form (7) with GL replaced with suitably-defined (tensor) transfer functions (Chaillat et al.
2008).

A 3D cubic grid of linear spacing d embedding the whole boundary ∂Ω is then introduced.
The FMM basically consists in using decomposition (7), with the poles x0 and y0 being chosen
as the cell centers, whenever x and y belong to non-adjacent cubic cells. The treatment of
such ”FM” contributions exploits the multipole expansions of the fundamental solutions (2),
truncated at a finite L and in a manner suggested by their multiplicative form. When x

and y belong to adjacent cells, traditional BEM evaluation methods based on expressions (2)
and (3) are used. To improve further the computational efficiency of the FM-BEM, standard
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Figure 2. Propagation of seismic waves in complex geological structures (alluvial deposits, basins):
various geometries and related notations.

(i.e. non-FMM) calculations must be confined to the smallest possible spatial regions while
retaining the advantage of clustering the computation of influence terms into non-adjacent
large groups whenever possible. This is achieved by recursively subdividing cubic cells into
eight smaller cubic cells. New pairs of non-adjacent smaller cells, to which multipole expansions
are applicable, are thus obtained from the subdivision of pairs of adjacent cells. The cell-
subdivision approach is systematized by means of an oct-tree structure of cells. At each level
ℓ, the linear cell size is denoted dℓ. The level ℓ = 0, composed of only one cubic cell containing
the whole surface ∂Ω, is the tree root. The subdivision process is further repeated until the

finest level ℓ = ℓ̄, implicitly defined by a preset subdivision-stopping criterion (dℓ̄ ≥ dmin), is
reached. Level-ℓ̄ cells are usually termed leaf cells. This is the essence of the multi-level FMM,
whose theoretical complexity is O(N log N) per GMRES iteration both for CPU time and
memory (see Chaillat et al. 2008 for further details on the method and its implementation for
single-domain elastodynamic problems).

3 CONTINUOUS BEM FORMULATIONS FOR SEISMIC WAVE

PROPAGATION

In this section, the continuous BIE formulations for the propagation of seismic waves in com-
plex geological structures (topographic irregularities, alluvial basins, . . .) are presented. Such
formulations, and their present implementation based on the multi-domain FM-accelerated
BEM (Section 4), are geared towards geometrical configurations involving a semi-infinite ho-
mogeneous reference medium with topographic irregularities and alluvial deposits (henceforth
generically referred to as irregularities, Fig. 2). Although integral equation formulations for
elastic-wave scattering in such configurations are not novel in their principle, they are rarely
expounded in detail, hence our choice to devote this section to their comprehensive presenta-
tion for general geological configurations.

In the following, ΩF denotes the free half-space {x = (x1, x2, x3) | x3 < 0} bounded by
the infinite traction-free surface ΓF = {x | x3 = 0}. Configurations treated in this article are
perturbations of the free half-space ΩF , where irregularities occur only in a region of finite
size. For such configurations, the displacement vector u is split into:

u = uF + uS (9)

where uF characterizes the free-field, a known seismic wave in the reference free half-space ΩF

composed of the incident waves and those reflected from the planar free surface ΓF , so that
tF = 0 on ΓF . The scattered displacement uS then arises due to the presence of irregularities.
On any non-planar part of the free surface, one has tS + tF = 0.

In the following, shorthand notations Uk
i and T k

i are used instead of Uk
i (x,y;ω) and

T k
i (x,y;ω) for expository convenience.
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Figure 3. Definition of the complementary domain Ωc = Ω+
c ∪ Ω−

c for the determination of the total
field in Ω1.

3.1 Diffraction of incident waves by a topographic irregularity

The diffraction of an incident wave by topographic irregularities (e.g. a canyon), defined as
deviations of the free surface from the infinite plane ΓF , is first considered. Such configurations
consist of a homogeneous semi-infinite medium occupying the domain Ω1 situated below the
infinite traction-free surface ∂Ω1 = Γ ∪ Γ1, where the bounded (and possibly non-connected)
surface Γ1 defines the topographic irregularities and Γ = ∂Ω1 ∩ΓF is the (unbounded) planar
component of the free surface (Fig. 2). Because uS and tS satisfy the radiation condition
at infinity (Eringen & Suhubi 1975; Madyarov & Guzina 2006), it follows from (4) that the
scattered field satisfies:

cik(x)uS
i (x)+

∫

∂Ω1

(

uS
i (y)T k

i − tSi (y)Uk
i

)

dSy = 0, ∀x ∈ ∂Ω1 (10)

Incorporating the free-surface conditions tS = 0 (on Γ) and tS +tF = 0 (on Γ1), equation (10)
becomes:

cik(x)uS
i (x) +

∫

∂Ω1

uS
i (y)T k

i dSy= −
∫

Γ1

tFi (y)Uk
i dSy, ∀x ∈ ∂Ω1 (11)

The problem may thus be solved in terms of scattered wavefield only. To recover the
total displacement, one may simply invoke the decomposition (9) in a post-processing step.
However, for dealing next with the multi-domain problems arising when irregularities include
deposits, the transmission conditions at the subdomain interfaces are best formulated in terms
of total fields u, t. Anticipating this need, it is therefore useful to establish the counterpart of
integral equation (11) formulated in terms of total fields.

To obtain the equation satisfied in Ω1 by the total field, we consider the (bounded) comple-
mentary domain Ωc = Ω+

c ∪Ω−
c of Ω1 relative to the half-space ΩF , where Ω−

c = ΩF\(Ω∪∂Ω)
and Ω+

c = Ω\(ΩF ∪ΓF ) are the parts of Ωc situated below and above ΓF , respectively (Fig. 3).
In Ω+

c , the displacements uF (x) and tractions tF (x) associated with the free-field satisfy the
following equation:

cc+
ik (x)uF

i (x)+

∫

Γ+
c1∪Γ+

c

uF
i (y)T k

i dSy−
∫

Γ+
c1

tFi (y)Uk
i dSy = 0, ∀x ∈ ∂Ω1 (12)

where cc+
ik denotes the free-term relative to Ω+

c , having set Γ+
c = ∂Ω+

c ∩ ΓF and Γ+
c1 =

∂Ω+
c ∩Γ1, and in which the free-surface condition is incorporated. Using similar notation, the

corresponding integral equation associated with the free field in Ω−
c reads:

cc−
ik (x)uF

i (x)+

∫

Γ−
c1∪Γ−

c

uF
i (y)T k

i dSy−
∫

Γ−
c1

tFi (y)Uk
i dSy = 0, ∀x ∈ ∂Ω1 (13)

where cc−
ik denotes the free-term relative to Ω−

c .
On setting Γ1 = Γ+

1c ∪ Γ−
c1 in (10), performing the combination (10) + (12) - (13) and



A new fast multi-domain BEM to model 3D seismic wave propagation 7

1 2 4

3

6

5

x3

Figure 4. Diffraction of a wave by a canyon: various cases for the location of x ∈ ∂Ω1 considered for
the computation of the free term.

noting that pairs Γ−
c1, Γ−

1c and Γ+
c , Γc define identical surfaces with opposite normals, one

obtains:

cik(x)uS
i (x) − cc−

ik (x)uF
i (x) + cc+

ik (x)uF
i (x)+

∫

Γ+
1c∪Γ−

1c

(

uS
i (y) + uF

i (y)
)

T k
i dSy

+

∫

Γ
uS

i (y)T k
i dSy−

∫

Γ+
c ∪Γ−

c

uF
i (y)T k

i dSy −
∫

Γ+
1c∪Γ−

1c

(

tSi (y) + tFi (y)
)

Uk
i dSy = 0, ∀x ∈ ∂Ω1

(14)
which is reformulated in terms of the total field by invoking decomposition (9):

cik(x)ui(x) +

∫

Γ+
1c∪Γ−

1c

ui(y)T k
i dSy +

∫

Γ
uS

i (y)T k
i dSy−

∫

Γ+
1c∪Γ−

1c

ti(y)Uk
i dSy

= cF
ik(x)uF

i (x)+

∫

Γ+
c ∪Γ−

c

uF
i (y)T k

i dSy, ∀x ∈ ∂Ω1

(15)

having set cF
ik(x) = cc−

ik (x)−cc+
ik (x)+cik(x). To evaluate cF

ik(x), six cases need to be considered
for the location of x on ∂Ω1, as indicated on Fig. 4:

case 1: cik(x) = 1
2δik, cc−

ik (x) = cc+
ik (x) = 0,

case 2: −cc+
ik (x) + cik(x) = 1

2δik, cc−
ik (x) = 0,

case 3: −cc+
ik (x) + cik(x) = 0, cc−

ik (x) = 0,
case 4: cc−

ik (x) − cc+
ik (x) + cik(x) = 1

2δik,
case 5: cc−

ik (x) + cik(x) = δik, cc+
ik (x) = 0,

case 6: cc−
ik (x) + cik(x) = 1

2δik, cc+
ik (x) = 0,

It follows that the combination cF
ik(x) has just three possible values, depending on the position

of x relative to ΓF :

cF
ik(x) = 0 (x3 > 0), cF

ik(x) =
1

2
δik (x3 = 0), cF

ik(x) = δik (x3 < 0), (16)

i.e. cF
ik(x) is identical to the usual free-term relative to the half-space ΩF without irregularity.

Finally, it is necessary for practical implementation purposes to introduce a truncated version
Γ(D) of the free surface Γ, here bounded by a circle of radius D, which will support the BE
discretization. The integral in the left-hand side of eq. (17) below is known to be convergent
in the limit Γ(D) → Γ, hence so is the right-hand side:

∫

Γ(D)
uS

i (y)T k
i dSy =

∫

Γ(D)
ui(y)T k

i dSy −
∫

Γ(D)
uF

i (y)T k
i dSy (17)
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Incorporing (17) into (15), it follows:

cik(x)ui(x) +

∫

Γ1∪Γ(D)
ui(y)T k

i dSy −
∫

Γ1

ti(y)Uk
i dSy = cF

ik(x)uF
i (x) +

∫

ΓF (D)
uF

i (y)T k
i dSy,

∀x ∈ ∂Ω1 (18)

where cF
ik(x) is defined by eq. (16), ΓF (D) is the truncated version of ΓF , and strict equality

occurs only in the limiting case D → +∞.

3.2 Propagation of incident waves in alluvial basins

Of primary interest in this article is, the propagation of an incident wave in an alluvial
basin, leading to a multi-domain BEM formulation. Accordingly, let Ω1 denote a semi-infinite
homogeneous medium possibly featuring a topographic irregularity of finite spatial extension.
Other materials (e.g. sediments) occupy (n − 1) bounded regions Ωi (2 ≤ i ≤ n) such that
Ω1 ∩ Ωi = ∅ (Fig. 2).

In the following, Γ = ∂Ω1 ∩ ΓF denotes the (unbounded) portion of planar free surface
intercepted by Ω1, Γi (i = 1, . . . , n) denotes the (bounded) portion of ∂Ωi situated on the
free surface but not included in Γ (so that the disjoint union Γ ∪ Γ1 ∪ . . . ∪ Γn constitutes
the free surface) and Γij denotes the interface between Ωi and Ωj so that one has ∂Ω1 =
Γ ∪ Γ1 ∪ Γ12 ∪ . . . ∪ Γ1n and ∂Ωi = Γi ∪ Γi1 ∪ . . . ∪ Γin (i ≥ 2). For subregions Ωi, Ωj that
do not share interfaces, one has of course Γij = ∅. tij denotes the traction vector on Γij ,
conventionally defined in terms of the normal nij oriented from Ωi to Ωj (Fig. 5); hence
tij = −tji with this convention. The governing equation for the total field in Ω1 is (18) where
Γ1 is replaced with Γ1 ∪ Γ12 ∪ . . . ∪ Γ1n, i.e.:

cik(x)ui(x) +

∫

Γ1∪Γ(D)
u1

i (y)T
k(1)
i dSy +

n
∑

m=2

(

∫

Γ1m

u1m
i (y)T

k(1)
i dSy

)

−
∫

Γ1

t1i (y)U
k(1)
i dSy

−
n

∑

m=2

(

∫

Γ1m

t1m
i (y)U

k(1)
i dSy

)

= cF
ik(x)uF

i (x) +

∫

ΓF (D)
uF

i (y)T
k(1)
i dSy, ∀x ∈ ∂Ω1 (19)

where U
k(1)
i and T

k(1)
i are the fundamental solutions defined in terms of the material param-

eters of Ω1. In the free-term of (19), ui(x) stands for either u1
i (x) or u1m

i (x), according to
whether the collocation point x lies on Γ1 or Γ1m.

The total field in subdomain Ωℓ (ℓ > 1) is governed by the integral equation:

cik(x)ui(x) +

∫

Γℓ

uℓ
i(y)T

k(ℓ)
i +

∑

m≥1
m6=ℓ

∫

Γℓm

(

uℓm
i (y)T

k(ℓ)
i −tℓmi (y)U

k(ℓ)
i

)

dSy = 0,

∀x ∈ ∂Ωℓ (2 ≤ ℓ ≤ n)

(20)

where U
k(ℓ)
i and T

k(ℓ)
i denote the fundamental solutions defined in terms of the constitutive

parameters of Ωℓ, the free surface condition on Γℓ has been taken into account, and ui(x)
stands for either uℓ

i(x) or uℓm
i (x) according to whether x ∈ Γℓ or x ∈ Γℓm. In addition,

invoking transmission conditions

uℓm = umℓ; tℓm = −tmℓ, (21)

which express perfect bonding at interfaces, allows to eliminate umℓ, tmℓ and retain uℓm, tℓm
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Ωj

Ωi

Ωj

Ωi

nij

nji

Figure 5. Definition of the traction unknowns.

(ℓ < m) as the interfacial unknowns. Equations (20) thus become:

cik(x)ui(x) +

∫

Γℓ

uℓ
i(y)T

k(ℓ)
i dSy+

ℓ−1
∑

m=2

∫

Γℓm

(

umℓ
i (y)T

k(ℓ)
i + tmℓ

i (y)U
k(ℓ)
i

)

dSy

+

n
∑

m=ℓ+1

∫

Γℓm

(

uℓm
i (y)T

k(ℓ)
i − tℓmi (y)U

k(ℓ)
i

)

dSy = 0, ∀x ∈ ∂Ωℓ, (2 ≤ ℓ ≤ n)

(22)

The coupled BE-BE formulation to be presented next will then be based on combining
discrete versions of equation (19) and equations (22) written for each subregion Ωℓ (ℓ ≥ 2). It
is similar to the one used for two subdomains in Fujiwara (2000), but more general as (i) it is
applicable to an arbitrary number of subdomains and (ii) it accomodates irregularities going
above or through the free surface (Fig. 4).

4 NUMERICAL IMPLEMENTATION OF FM-ACCELERATED BE-BE

COUPLING

4.1 BE-BE coupling strategy

The present discrete coupled BE-BE formulation is based on three-noded triangular boundary
elements, piecewise-linear interpolation of displacements, and piecewise-constant interpolation
of tractions. Since only Neumann or transmission boundary conditions are considered here, the
displacement is unknown at all mesh nodes, while the traction is unknown on each interfacial
element. The chosen ”element-based” traction interpolation permits traction discontinuities
across edges. This is particularly convenient when the latter are made of ”triple points” shared
by three (or more) subregions, whereas ”node-based” traction modelling would entail cum-
bersome adjustments due to the multiplicity of tractions from adjacent faces at such points.
The proposed BE-BE coupling formulation is designed so as to invoke single-region FM-BEM
computations in ”black-box” fashion (here using the elastodynamic FM-BEM formulation
presented in Chaillat et al. 2008). To this end, a boundary integral equation is formulated
for each subregion Ωi (with material properties assumed homogeneous in each Ωi) following
Sec. 3.2, and discrete BE equations are generated by using (i) all displacement nodes and
(ii) all interfacial element centers as collocation points ((i) and (ii) will subsequently be re-
ferred to as ”nodal collocation” and ”element collocation”, respectively). Each subregion is
treated separately, using a separate octree for FMM computations. The matrix-vector prod-
ucts arising in each of these integral equations can thus be evaluated using the FM-BEM
procedure for homogeneous media presented in Chaillat et al. (2008). The resulting algorithm
is schematically described in Fig. 6.

The BE-BE coupling does not, however, just consist of concatenating all single-region BE
equations into one global system of equations, as the latter would be overdetermined as a
result. One way to ensure that the present BE-BE coupling defines a square global system of
equations consists in judiciously defining linear combinations of BE equations generated at
the subregion level, a treatment that can be done externally to the FM-BEM computations.
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(a) For each domain
octree generation: hierarchically subdivide each cell i nto 8children cells,
until l eaf level ℓ̄ defined bydℓ̄+1 ≤ dmin = 0.3λS ≤ dℓ̄ is reached
Retain only non-empty children cells

end for

(c) For each domain
Initial FMM step: preparatory step
Uses sweep for computingthe “far” contribution{fFM

i
} ; store into {f}

endfor
Linear combination of BE equations(Sec. ??)

(b) For each domain
Near contributions: Compute andstorematrix [Knear

i
] of near interactions in Ωi

(Sec. ??)
Compute “near” contribution{fnear

i
}; store into {f}

endfor

(d) GMRES initialization:
Set restart parameter to 50, initializesolution vector to {u}= {0}

(e) Generic GMRES iteration;
For each domain

Invokesgeneric FMM step
Use sweep for computingthe “far” contribution{Ku}FM

i ;
Evaluate{Ku}i = {Ku}FM

i
+{Ku}near

i

endfor
Linear combination of BE equations(Sec. ??)
Passresult to GMRES

(f) Convergence check for GMRES: ‖{Ku − f}‖ / ‖{f}‖ ≤ 10−3 ?

(g) Post-processing of solution:
Evaluate integral representationsat interior points, creategraphics...

YES

NO

Figure 6. Elastodynamic multi-domain multi-level FM-BEM: schematic description of overall algo-
rithm.

Specifically, linear combinations of BE equations arising from collocation at (a) interfacial
element centers relative to either subregion adjacent to that element, and (b) displacement
nodes shared by more than one subregion, are defined. This approach ensures that the number
of final global BE equations matches the number of unknown BE DOFs, i.e. is square. In



A new fast multi-domain BEM to model 3D seismic wave propagation 11

[t]

triple point
Ω1 Ω3

Ω2

Figure 7. Two-layered basin: definition of triple points.

particular, using this method, multiple displacement nodes are easily handled (see Fig. 7 for
an example of triple points in the case of a two-layered basin).

For the sake of definiteness, the above-outlined procedure is now going to be detailed for
a representative configuration, namely the case of a two-layered basin (Fig. 7). First, integral
equation (19) for the subdomain Ω1 gives rise to the following set of equations:

H1
1u1 + H1

12u
12 + H1

13u
13 + H1

123u
123 − G1

12t
12 − G1

13t
13 − f1 = 0, (23a)

H12
1 u1 + H12

12u12 + H12
13u13 + H12

123u
123 − G12

12t
12 − G12

13t
13 − f12 = 0, (23b)

H13
1 u1 + H13

12u12 + H13
13u13 + H13

123u
123 − G13

12t
12 − G13

13t
13 − f13 = 0, (23c)

H123
1 u1 + H123

12 u12 + H123
13 u13 + H123

123u123 − G123
12 t12 − G123

13 t13 − f123 = 0, (23d)

H̄12
1 u1 + H̄12

12u12 + H̄12
13u13 + H̄12

123u
123 − Ḡ12

12t
12 − Ḡ12

13t
13 − f̄12 = 0, (23e)

H̄13
1 u1 + H̄13

12u12 + H̄13
13u13 + H̄13

123u
123 − Ḡ13

12t
12 − Ḡ13

13t
13 − f̄13 = 0. (23f)

In equations (23a-d), notations Hγ
β (for generic single or multiple indices γ, β, e.g. γ = 12,

β = 123) refer to the submatrices arising from BE discretization of the integral operator

c(x).u(x) +

∫

∂Ωm

T (m)(x,y, ω).u(y)dSy, (24)

upon performing nodal collocation on Γγ and retaining only the columns corresponding to uβ.
Following the same idea, submatrices H̄γ

β are defined in terms of element collocation on Γγ

instead of nodal collocation, and submatrices Gγ
β , Ḡγ

β similarly arise from the integral operator

∫

∂Ωm

U (m)(x,y, ω).t(y)dSy, (25)

Note that the subregion number m is encoded as the first index in γ. For instance, γ = 123
refers to collocation at triple points and relative to subregion Ω1, and β = 23 refers to DOFs
shared by ∂Ω2 and ∂Ω3. Finally, the right-hand sides fγ, f̄γ are obtained via (nodal or
element) collocation of

c(x).uF (x) +

∫

ΓF (D)
T (m)(x,y, ω).uF (y)dSy, (26)

Equations (23a,b,c,d) stem from nodal collocation on Γ1, Γ12, Γ12 and Γ123, respectively, while
equations (23e,f) stem from element collocation on Γ12 and Γ13. Then, integral equation (22)
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for the subdomain Ω2 gives rise to the block matrix equations:

H21
12u12 + H21

123u
123 + G21

12t
12 + H21

23u23 − G21
23t

23 = 0, (27a)

H213
12 u12 + H213

123u123 + G213
12 t12 + H213

23 u23 − G213
23 t23 = 0, (27b)

H23
12u12 + H23

123u
123 + G23

12t
12 + H23

23u23 − G23
23t

23 = 0, (27c)

H̄21
12u12 + H̄21

123u
123 + Ḡ21

12t
12 + H̄21

23u23 − Ḡ21
23t

23 = 0, (27d)

H̄23
12u12 + H̄23

123u
123 + Ḡ23

12t
12 + H̄23

23u23 − Ḡ23
23t

23 = 0, (27e)

with (27a,b,c) produced by nodal collocation on Γ21, Γ213 and Γ23, respectively, and (27d,e)
by element collocation on Γ21 and Γ23. In the subdomain Ω3, sets of linear matrix equations
may be defined as:

H31
13u13 + H31

123u
123 + G31

13t
13 + H31

23u23 + G31
23t

23 + H31
3 u3 = 0, (28a)

H321
13 u13 + H321

123u123 + G321
13 t13 + H321

23 u23 + G321
23 t23 + H321

3 u3 = 0, (28b)

H32
13u13 + H32

123u
123 + G32

13t
13 + H32

23u23 + G32
23t

23 + H32
3 u3 = 0, (28c)

H3
13u

13 + H3
123u

123 + G3
13t

13 + H3
23u

23 + G3
23t

23 + H3
3u3 = 0, (28d)

H̄31
13u13 + H̄31

123u
123 + Ḡ31

13t
13 + H̄31

23u23 + Ḡ31
23t

23 + H̄31
3 u3 = 0, (28e)

H̄32
13u13 + H̄32

123u
123 + Ḡ32

13t
13 + H̄32

23u23 + Ḡ32
23t

23 + H̄32
3 u3 = 0, (28f)

where equations (28a,b,c,d) stem from nodal collocation on Γ31, Γ321, Γ32 and Γ3, respectively,
while equations (28e,f) stem from element collocation on Γ31 and Γ32. As previously pointed
out, the set of equations (23a-f), (27a-e), (28a-f) is overdetermined. A square linear system of
equations is obtained by setting up linear combinations of equations associated with the same
collocation points and arising from different subdomains. For the present example, the square
coupled BE-BE system consists of the following (combinations of) equations: (23a), (28d),
α12

u (23b)+α21
u (27a), α13

u (23c) +α31
u (28a), α23

u (27c)+α32
u (28c), α123

u (23d)+α213
u (27b)+α321

u (28b),

α12
t (23e)+α21

t (27d), α13
t (23f)+α31

t (28e) and α23
t (27e)+α32

t (28f), where αij
u and αij

t are the
weighting coefficients of the equations related to nodal collocations and element collocations
respectively. This example thus involves weighted combinations of two equations and also,
due to the presence of triple points, of three equations.

4.2 Implementation issues

This section aims at studying the choice of weighting coefficients, and other implementation
issues such as scaling and unknowns ordering which also strongly affect the numerical efficiency
and accuracy of the multi-domain FMM, with the help of a test problem having a known
exact solution. All examples have been run on the same single-processor PC (RAM: 3GB,
CPU frequency: 3.40 GHz).

4.2.1 Definition of the test problem

The test problem configuration is a spherical cavity subjected to an internal time-harmonic
uniform pressure P, surrounded by two spherical shells embedded in an unbounded elas-
tic medium (Fig. 8). The cavity surface and the two surrounding interfaces are concentric
spheres with respective radii a1, a2 = 2a1 and a3 = 3a1. Four sets (labelled a, b, c, d) of
material properties, defined in Table 1, are used. Variations on this testing setup T will then
be referred to using the following convention. Notation T (a, b, c) refers to the ”standard” two-
shell, three-region configuration with materials a, b, c arranged in order of increasing radii.
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Table 1. Definition of the mechanical properties for the test problem.

ρ µ ν

a 3 4 0.25
b 6 5 0.25
c 2 1 1/3
d 2 1 0.25

Ω3

Ω2

Ω1

P

a1

a2

a3

Figure 8. Definition of the test problem: spherical cavity under uniform pressure.

Testing configuration T (a, b, b) then consists of three regions with the outermost two made
of the same material, while T (a, b) refers to just two regions defined by spheres of radii a1,
a2 (i.e. T (a, b, b) and T (a, b) are physically identical but numerically treated as three-region
and two-region configurations, respectively). This test problem has a closed-form analytical
solution (see Appendix A).

4.2.2 Determination of optimal weightings

To determine suitable values for weighting coefficients αij
u and αij

t , some numerical experiments

on two-region test configurations T (d, d) (homogeneous) with k
(1)
S a1 = 7.64 and T (a, b) with

k
(1)
S a1 = 4.68 have been performed. In this case, the following set of equations are obtained

using the linear combination procedure of Sec. 4.1:

H1
1u1 + H1

12u
12 − G1

12t
12 − G1

1t
1
D = 0,

α12
u

[

H12
1 u1 + H12

12u12 − G12
12t

12 − G12
1 t1

D

]

+ α21
u

[

H21
12u12 + G21

12t
12

]

= 0,

α12
t

[

H̄12
1 u1 + H̄12

12u12 − Ḡ12
12t

12 − Ḡ12
1 t1

D

]

+ α21
t

[

H̄21
12u12 + Ḡ21

12t
12

]

= 0,

(29)

where t1
D = Per is the traction applied on the inner sphere r = a1. The mesh size is N =

122, 892 (ℓ̄1 = 4, ℓ̄2 = 4, dmin = 0.30λS). After having tried all 16 possible combinations where
each weighting coefficient has value ±1/2, six of these combinations (defined in Table 2) were
chosen to illustrate the effect of this choice on accuracy and convergence rate, the other ten
being discarded as they all produced unsatisfactory results in terms of accuracy or convergence.

Table 3 shows the relative root mean square (RMS) errors E(u1), E(u12) and E(t12)
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Table 2. Definition of the various set of coefficients used for determine the optimal one.

1 2 3 4 5 6

α12
u 0.5 0.5 0.5 −0.5 −0.5 −0.5

α12
t 0.5 −0.5 −0.5 0.5 −0.5 −0.5

α21
u 0.5 0.5 0.5 −0.5 0.5 −0.5

α21
t −0.5 0.5 −0.5 −0.5 0.5 0.5

Table 3. Solution error for the test problems T (d, d) and T (a, b), for the sets of coefficients listed in
Table 2.

test problem coefficient set E(u1) E(u12) E(t12) nb iter.

T (d, d) 1 / / / > 300
2 3.2 × 10−3 2.5 × 10−3 1.6 × 10−2 64
3 8.8 × 10−1 8.8 × 10−1 1.6 × 100 90
4 / / / > 300
5 / / / > 300
6 / / / > 300

T (a, b) 1 2.4 × 10−2 1.7 × 10−2 3.5 × 10−2 94
2 2.4 × 10−2 1.8 × 10−2 3.5 × 10−2 22
3 6.3 × 10−1 4.7 × 10−1 8.9 × 10−1 2
4 2.4 × 10−2 1.7 × 10−2 3.5 × 10−2 122
5 / / / > 300
6 2.4 × 10−2 1.7 × 10−2 3.5 × 10−2 182

between the respective solutions u1,u12, t12 computed with the FMM and the corresponding
analytical solution. On noting that H12

12 = −H21
12 , G12

12 = G21
12, H̄12

12 = −H̄21
12 and Ḡ12

12 = Ḡ21
12

when subdomains 1 and 2 have the same material properties, sets 3 and 5 are seen to yield
for T (d, d) a singular and almost-singular matrix system, respectively. The poor results (in
terms of either accuracy or convergence) achieved by sets 3 and 5 are not surprising in this
light. Sets 1, 2, 4, 6 yield matrix systems that are made of rows of blocks that are identical
except for their signs. The latter feature clearly has an effect on convergence properties, with
set 2 exhibiting the best convergence rate. Hence, in the remainder of this article, integral
equations collocated on all interfaces Γij will be weighted according to αij

u = αji
u = +0.5 and

αij
t = −αji

t = −0.5 (i < j), as suggested by this test. Linear combinations of p > 2 block
equations, which arise from collocation at nodes shared by p subregions (e.g. the triple points
of the two-layered basin example of Sec. 4.1), are handled by assigning equal weight 1/p to
each contributing block equation, an approach which has been successfully subjected to the
test problem in its three-region form T (a, b, c).

This approach, insofar as it exploits (combinations of) an initially overdetermined set of
BEM matrix equations, may appear as computationally expensive. But, in fact, within a FMM
framework, the additional number of collocation points only occurs on the interfacial surfaces
Γij. Moreover, only the CPU time of the last step of the FMM, namely the local expansion
step which has been shown in Chaillat et al. (2008) to be of O(N) complexity, is increased.

4.2.3 Equation scaling

Another simple but important detail of the present BE-BE coupling formulation is that con-
vergence rates are improved by scaling equations. For multi-domain problems, the system
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matrix is populated with various blocks whose magnitude depend on the material properties.
Disparities in these magnitudes may lead to bad convergence rates. The introduction of scaling
factors alleviates such problems. The following scaling factors are defined:

g̃ =
1

n

n
∑

i=1

4µi(1 + νi)

(1 − 2νi)
(30)

h̃ =
1

n

n
∑

i=2

d
(0)
i (31)

where (µi, νi) are the elastic properties of Ωi and d
(0)
i is the level-0 cell size in the octree

introduced for Ωi. We note that, due to the fact that Ω1 is always the infinite medium, the
domain size of Ω1 is not taken into account in h̃. This scaling, a modified version of that used
in Araújo et al. (2001) which includes the effect of the domain size, is equivalent to introducing

new, non-dimensional, unknowns ũij and t̃
ij
:

uij = h̃ ũij

tij = g̃ t̃
ij (32)

and replacing the block matrices H and G with H̃ = h̃ H and G̃ = g̃ G. Using this scaling,
all coefficients of the resulting coupled system have similar magnitudes. Some results on the
efficiency of the introduction of this scaling are presented in Section 5.1 on seismological
problems involving an infinite medium Ω1.

4.2.4 Other implementation issues

In keeping with the modular approach previously outlined, where FMM is applied separately
for each subregion, separate BE meshes are defined for each subdomain, with meshes for
two adjacent subdomains being compatible over the shared interface. Each adjacent mesh is
oriented relative to its subdomain. This method ensures that normals to all elements of a
given subdomain have a consistent (outward) orientation.

Another important issue is the iterative solver convergence rate. For multi-domain prob-
lems, both displacements and tractions are unknown at the interfaces. Optimal ordering of
the matrix blocks for a multi-zone boundary element analysis is very important when using
an iterative solver (GMRES for example). Here, one may order the unknown DOF subvectors
(i.e. block columns) arbitrarily, but should then use the same order for the sets of colloca-
tion points (i.e. block rows), so as to define the global matrix closest to a symmetric matrix.

For example, for the test problem T (a, b) (N = 122, 892; k
(1)
S a1 = 4.68), a suitably ordered

governing matrix is






H1
1 H1

12 −G1
12

0.5H12
1 0.5H12

12 + 0.5H21
12 −0.5G12

12 + 0.5G21
12

−0.5H̄12
1 −0.5H̄12

12 + 0.5H̄21
12 0.5Ḡ12

12 + 0.5Ḡ21
12






(33)

so that collocation points (lines) and unknowns (columns) are ordered similarly (displacements
on external surfaces, then displacements on interfaces, then tractions on interfaces). With this
ordering, GMRES converges (with relative tolerance 10−3) after only 22 iterations. Swapping
the second and first lines in (33) results in a failure of GMRES to converge within 1, 000
iterations, whereas swapping also the second and third columns in (33) restores satisfactory
convergence within 22 iterations.
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Table 4. Homogeneous test problems: relative RMS error.

Test pb. N d
min
λ
(1)
S

k
(1)
S

a1 ℓ̄i E(u1) E(u12) E(t12) E(u23) E(t23) nb iter.

T (d, d) 30, 732 0.30 3.54 3; 3 1.3 × 10−2 4.7 × 10−3 1.7 × 10−2 / / 6
T (d, d) 122, 892 0.30 7.64 4; 4 3.0 × 10−3 2.5 × 10−3 1.6 × 10−2 / / 64

T (d, d, d) 57, 778 0.21 3.54 3; 3; 3 8.3 × 10−3 9.4 × 10−3 4.5 × 10−2 1.2 × 10−2 3.4 × 10−2 31
T (d, d, d) 215, 058 0.30 7.64 3; 4; 4 6.1 × 10−3 7.7 × 10−3 2.2 × 10−2 6.6 × 10−3 2.0 × 10−2 864

Table 5. Heterogeneous test problems: relative RMS error.

Test pb. N d
min
λ
(1)
S

k
(1)
S

a1 ℓ̄i E(u1) E(u12) E(t12) E(u23) E(t23) nb iter.

T (a, b) 30, 732 0.17 2.17 3; 3 5.0 × 10−3 5.1 × 10−3 1.6 × 10−2 / / 21
T (a, b) 122, 892 0.30 4.93 3; 4 2.4 × 10−2 1.8 × 10−2 3.5 × 10−2 / / 22

T (a, b, c) 57, 778 0.13 2.17 3; 3; 3 3.0 × 10−2 1.4 × 10−2 2.2 × 10−2 1.3 × 10−2 2.8 × 10−2 59
T (a, b, c) 215, 058 0.30 4.93 3; 3; 4 1.0 × 10−2 1.3 × 10−2 1.0 × 10−2 1.4 × 10−2 1.4 × 10−2 43

4.3 Accuracy and computational efficiency of multi-domain FM-BEM

Our implementation of elastodynamic FMM was validated for single-region problems in Chail-
lat et al. (2008), in terms of accuracy and computational efficiency on the simple test case of
a pressurized spherical cavity, with observed computing times consistent with the theoretical
complexity O(N log N) and accuracy similar to that of the standard (i.e. non-FMM) BEM.

To validate the present BE-BE coupling, the test problem of Section 4.2.1 is again consid-
ered. The frequency is adjusted so that the mesh features at least 10 points per S-wavelength
in all cases.

Considering first homogeneous cases T (d, d) and T (d, d, d), Table 4 shows the number

of degrees of freedom, the leaf-cell size parameter dmin, the normalized frequency of the
problem, the leaf level ℓ̄ and the relative root mean square (RMS) error E(u1), E(u12), E(t12),
E(u23) and E(t23). In this example, we observe that the precision of the FM-accelerated

BEM is acceptable for dmin ≥ 0.30λS , consistently with earlier findings in Chaillat et al.
(2008). The bad conditioning of the matrix, and the fact that the number of iterations rapidly
increases with the problem size, are also manifest, which emphasizes the desirability of a good
preconditioning strategy (not yet implemented). The same data is next given in Table 5 for
heterogeneous test problems T (a, b) and T (a, b, c), which exhibit much better convergence
properties.

5 PROPAGATION AND AMPLIFICATION OF SEISMIC WAVES IN

ALLUVIAL BASINS

In Chaillat et al. (2008), the single-domain elastodynamic FMM has been compared to the
results of Sánchez-Sesma (1983) for the scattering by an irregular homogeneous half-space
of a plane vertical P-wave at normalized frequency kP a/π = 0.25 (with ν = 0.25), and
then applied to the same configuration at a higher frequency (kP a/π = 5). In this section, the
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Figure 9. Propagation of an incident plane P-wave in a semi-spherical alluvial basin: notations.
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Figure 10. Propagation of an incident plane P-wave in a semi-spherical alluvial basin: surface dis-

placement at k
(1)
P

a/π = 0.5 and comparisons with Sánchez-Sesma (1983) and Delavaud (2007).

present multi-domain implementation is applied to the propagation of seismic waves in alluvial
basins. Unless indicated otherwise, all examples have been run on the same single-processor
PC (RAM: 3GB, CPU frequency: 3.40 GHz).

5.1 Seismic wave propagation in canonical basins

5.1.1 Validation on a simple example

This first example is concerned with the propagation in a semi-spherical alluvial basin (i.e. soft
elastic inclusion) of a plane P-wave of unit amplitude traveling vertically in an elastic homo-
geneous irregular half-space (Fig. 9). Such a configuration may lead to a strong amplification
of the seismic motion in soft alluvial deposits.

As in Sánchez-Sesma (1983), we investigate the motion at the surface of the alluvial
basin Ω2, for the following values of the material parameters: µ(2) = 0.3µ(1), ρ(2) = 0.6ρ(1),

ν(1) = 0.25 and ν(2) = 0.3. The normalized frequency is defined by k
(1)
P a/π in terms of the

properties of the elastic semi-infinite medium Ω1. The radius of the discretized free surface is
set to D = 5a.

The surface displacements computed with the present multi-domain FMM are presented,
along with corresponding results from Sánchez-Sesma (1983) (using series expansion method)
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Figure 11. Propagation of an incident plane P-wave in a semi-spherical alluvial basin: surface dis-

placement at k
(1)
P

a/π = 0.7 and comparisons with Sánchez-Sesma (1983) and Delavaud (2007).
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Figure 12. Propagation of an incident plane P-wave in a semi-spherical alluvial basin: surface dis-

placement at k
(1)
P

a/π = 1.

Table 6. Propagation of an incident plane P-wave in a semi-spherical alluvial basin: data and compu-
tational results.

k
(1)
P

a/π N dmin/λS l̄1; l̄2 CPU (s) / iter nb iter. (a) nb iter. (b) nb iter. (c)

0.5 17, 502 0.15 3; 3 8 28 44 86
0.7 17, 502 0.21 4; 3 10 34 60 111
1 90, 057 0.30 4; 3 49 52 192 519
2 190, 299 0.30 5; 4 79 325 3, 006 > 5, 000
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Figure 13. Propagation of an incident plane P-wave in a semi-spherical alluvial basin: surface dis-

placement at k
(1)
P

a/π = 2.

and Delavaud (2007) (using spectral element method), for k
(1)
P a/π = 0.5 (Fig. 10) and

k
(1)
P a/π = 0.7 (Fig. 11). All results are seen to be in good agreement. For those examples, a

leaf-cell size dmin lower than the threshold dmin = 0.30λS recommended in Chaillat et al.
(2008) had to be used as a consequence of the chosen truncation radius D = 5a, allowing
to compare our results to the previously-published ones. Additionally, the FMM allowed to

perform computations at higher frequencies k
(1)
P a/π = 1 (Fig. 12) and k

(1)
P a/π = 2 (Fig. 13),

for which no published results are available for comparison purposes. For such higher frequen-
cies, the maximum amplification level is seen to range from 2 to 3 (free surface effects being
removed). In Table 6, the number of DOFs, the size of the leaf cells and the leaf level ℓ̄i in
each subdomain Ωi are given for the meshes used, together with the CPU time per iteration
recorded. Those examples are also used to illustrate the efficiency of the scaling factors intro-
duced in Section 4.2.3. Iteration counts using three different scalings are given in Table 6: (a)
using the scaling factor introduced in Section 4.2.3; (b) using a modified version of (a):

h̃ =
1

n

n
∑

i=1

d
(0)
i

and (c) without any scaling. Scaling (a) is seen to perform best. It can be easily understood
that scaling (b) is less efficient since it incorporates a characteristic size for the (truncated)
infinite medium Ω1. The equation scaling (a) is very efficient and drastically reduces (by up to
90%) the iteration counts. However, the last example also indicates that the iteration count
significantly impacts the computational efficiency for problem sizes for which the CPU time
per iteration and the memory requirements are still moderate. An efficient preconditioning
strategy is clearly needed, and will be addressed in future investigations.

5.1.2 Influence of the truncation radius D

In Sánchez-Sesma (1983), the size of the discretized free surface is set to D = 5a. A natural
issue concerns the selection of the best value of the truncation radius D for the model, i.e.
the smallest value of D for which the solution is practically insensitive to the free-surface
truncation. Taking advantage of the larger problem sizes allowed by the present FMM, this
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Figure 14. Propagation of an incident plane P-wave in a semi-spherical basin: discrepancy between
the reference solution (D = 20a) and solutions obtained for various truncation radii D at the basin
center.

Table 7. Propagation of an incident plane P-wave in a semi-spherical basin: discrepancy between the
reference solution (D = 20a) and solutions obtained for various truncation radii D, at three surface
points (in % of the reference solution).

D/a 2 4 6 8 10 12 14 16 18

r = 0 −2.97 0.93 −3.35 2.05 −4.09 0.74 −1.30 0.37 −0.19
r = a/2 −1.85 −0.31 −2.33 −0.02 −2.46 0.38 −1.30 −0.20 −0.35

r = 3a/2 0.68 0.19 0.23 −0.22 0.59 −0.27 0.24 −0.01 0.41

issue is now investigated by means of a parametric study. The choice of D obviously depends
on the size of the region for which a truncation-insensitive numerical solution is sought. Here,
the latter is chosen such that r/a ≤ 3. A similar study, restricted to D ≤ 5a, has been done
in Niu & Dravinski (2003) in the case of the diffraction of a plane P wave by a semi-spherical
canyon.

Figure 14 shows the relative difference between the solution computed at the center of
the basin for several truncation radii D and a reference solution obtained for D = 20a, at

normalized frequency k
(1)
P a/π = 0.5. These results suggest that the convergence is achieved for

D ≥ 13a (= 13λ
(1)
P /4 > 3λ

(1)
P ) and that, for D < 13a, the error with respect to the reference

solution oscillates within a range ±4%. Here, it can be seen that the value D = 5a used
in Sánchez-Sesma (1983) yields reasonably, but not optimally, accurate results at the basin
center. This parametric study is conducted for the displacement at the center of the basin
because errors caused by truncation are observed to be largest there. In fact, for r/a ≥ 0.5,
the sensitivity of the results to the choice of D was found to be low (see Table 7).

5.2 Propagation of an incident plane P-wave in a two-layered semi-spherical

basin

The results of section 5.1 are limited to a single-layered basin, whereas the present implemen-
tation is applicable to more general configurations featuring piecewise-homogeneous basins.
To demonstrate this capability, the propagation of an incident plane P-wave in a heteroge-
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Figure 15. Propagation of an incident plane P-wave in a two-layered semi-spherical basin: notation.
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Figure 16. Propagation of an incident plane P-wave in a two-layered semi-spherical basin (with the

same material in Ω2 and Ω3 and k
(1)
P

a/π = 1): comparison with the result for a one-layered semi-
spherical basin (Fig. 12).

neous semi-spherical basin is now considered for an alluvial deposit composed of two layers
(Fig. 15).

5.2.1 Validation: two layers involving identical materials

First, to check our implementation in the multi-domain case, identical mechanical properties
are assumed for Ω2 and Ω3:

µ(2) = µ(3) = 0.3µ(1), ρ(2) = ρ(3) = 0.6ρ(1), ν(1) = 0.25, ν(2) = ν(3) = 0.3.

The study is performed at normalized frequency k
(1)
P a/π = 1, using a truncation radius

D = 5a. The mesh features N = 91, 893 DOFs. The results of this computation, which took
81 iterations and 48s per iteration (ℓ̄1 = 4; ℓ̄2 = 3; ℓ̄3 = 3), are seen in Figure 16 to coincide
(as they should) with those computed with a single-layered basin (Fig. 12).
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Figure 17. Propagation of an incident plane P-wave in a two-layered semi-spherical basin (with

mechanical properties (34) and (35) , k
(1)
P

a/π = 1).

5.2.2 Two-layered heterogeneous basin

Now, the two layers Ω2 and Ω3 are made of different materials. Symbols χ
(ij)
P and χ

(ij)
S will

be used to denote the P-wave and S-wave velocity contrasts:

χ
(ij)
P = c

(j)
P /c

(i)
P ; χ

(ij)
S = c

(j)
S /c

(i)
S

Two examples are considered. In example (a), mechanical properties are defined so that χ
(12)
S

is the same as in section 5.1 and as in Sánchez-Sesma (1983), and that χ
(12)
S = χ

(23)
S :

ρ(2)

ρ(1)
=

ρ(3)

ρ(2)
= 0.6;

µ(2)

µ(1)
=

µ(3)

µ(2)
= 0.3; ν(1) = 0.25; ν(2) = ν(3) = 0.30 (34)

In example (b), the velocity contrasts between Ω1,Ω2 and Ω2,Ω3 are the same for P- and

S-waves, χ
(12)
S = χ

(23)
S and χ

(12)
P = χ

(23)
P :

ρ(2)

ρ(1)
=

ρ(3)

ρ(2)
= 0.6;

µ(2)

µ(1)
=

µ(3)

µ(2)
= 0.3; ν(1) = 0.25; ν(2) = 0.30; ν(3) = 0.34 (35)

The thickness, h(2) and h(3) of the layers Ω2 and Ω3 are adjusted to the wavelengths:

h(2)/λ
(2)
S = h(3)/λ

(3)
S ⇒ h(2) =

√
2h(3) = (2 −

√
2)a (36)

The mesh and normalized frequency (k
(1)
P a/π = 1) are the same as in the homogeneous case

of Sec. 5.2.1. The computations required 255 and 272 iterations for example (a) and (b),
respectively, and 48s per iteration (ℓ̄1 = 4; ℓ̄2 = 3; ℓ̄3 = 3).

On Figure 17, the results of the computations (a) and (b) for the two-layered semi-spherical
basin are compared to those for a single-layered basin (Fig. 12). The introduction of the layer
Ω3 leads to stronger amplification (up to 7 for (a) or 6.5 for (b) instead of 3 for the single-
layered basin, the free-surface effects being removed), with shorter wavelengths in the basin.
We also see on this example the effect of the value of ν(3): a higher value of ν(3) leads to a
smaller increase of the maximum amplification.
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Figure 18. Propagation of an oblique incident plane SV-wave in a semi-spherical basin: notation.

5.3 SV-wave amplification in a semi-spherical basin

All examples presented so far in this section involve incident P-waves. However, a fully 3D
validation requires considering other types of incident fields such as plane SV-waves with
oblique incidence. Such configurations have been studied by Mossessian & Dravinski (1990a,b)
using standard indirect BEM. In this section, the propagation of a plane SV-wave in a semi-
spherical basin is considered in both the frequency domain and the time domain. As the Fourier
synthesis of the time domain solution requires many FMM analyses at various frequencies,
the results presented in this section have been obtained on a 8-processor PC (RAM: 32GB,
CPU frequency: 2.33 GHz), each FMM analysis being performed independently on a single
processor.

5.3.1 Problem definition

This example is concerned with the propagation in a semi-spherical basin of an oblique incident
plane SV-wave of unit amplitude traveling in an elastic half space (see Fig. 18). A right-
handed Cartesian frame (x, y, z) is defined so that the elastic half-space occupies the region
{(x, y, z) | z ≥ 0}. The truncation radius is D = 5a. This configuration has been studied in the
time domain in Mossessian & Dravinski (1990a) and in the frequency domain in Mossessian &
Dravinski (1990b) using a standard indirect BEM (with the half-space Green’s functions). The

mechanical parameters are defined as follows: c
(1)
S = 1m.s−1, c

(1)
P = 2m.s−1, µ(2)/µ(1) = 1/6,

ρ(2)/ρ(1) = 2/3 and ν(1) = ν(2) = 1/3. In Mossessian & Dravinski (1990a,b), a weakly inelastic
formulation (with P-wave and S-wave quality factors equal to 100) is used whereas our FMM
implementation is purely elastic.

5.3.2 Synthesis of the time domain solution

The time domain response u(x, t) can be computed using an inverse Fourier transform:

u(x, t) = F−1
(

ũ(x, ω)s(ω)
)

, (37)

where ũ(x, ω) is the frequency domain solution and s(ω) is the source spectrum. In practice,
a Fast Fourier Transform is used to synthetize the time domain results. In the following, the
source spectrum is a second-order Ricker wavelet:

s(t) =
(

2π2 (t − ts)
2

t2p
− 1

)

exp
[

− π2 (t − ts)
2

t2p

]

⇒ s(ω) = −
√

πω2t3p
2π3

exp
[

− ω2

4π2
t2p

]

exp
[

− iωts

]

(38)
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Figure 19. Propagation of a vertical (θ = 0◦) incident plane SV-wave in a semi-spherical basin:
Comparison of the FMM computed displacements (x-component) with the results of Mossessian &
Dravinski (1990b).

where ts is the time related to the maximum amplitude of the wavelet and tp is the fundamental
period of the signal. The fundamental frequency of such a wavelet is f0 = 1/tp.

An important numerical issue in the present approach lies with the meshes used. Usually,
the mesh size is adjusted so that, for the frequency f = 2f0, the mesh contains about ten
points per S-wavelength. However, when using the FMM, this approach is not the most ef-
ficient as if the same mesh is used for all computations, the mesh density for low frequency
computations is high relative to wavelength, increasing the computational burden for the near
contributions, multipole moments and local expansions. Moreover, memory requirements are
also increased. On the other hand, to perform the synthesis, the solutions for each frequency
need to be eventually defined on the same mesh. A simple improvement, used here, exploits
a hierarchical sequence of meshes M0,M1, . . . where the coarser mesh M0 is adjusted (using
the 10-points-per-S-wavelength criterion) to the lowest frequency and Mk+1 is obtained by
splitting each triangle of Mk into four subtriangles. Then, the solutions obtained on coarser
meshes M0, . . . ,Mn−1 are linearly interpolated on the finest mesh Mn.

5.3.3 Validation in frequency domain

The example depicted in Fig. 18 has been treated, for a normalized frequency k
(1)
S a/π = 0.5

and for θ = 0◦, 30◦. The mesh features N = 17, 502 DOFs. The computations take 5s per
iteration, 32 iterations for the case θ = 0◦ and 34 iterations for the case θ = 30◦ (ℓ̄1 = 3,
ℓ̄2 = 3, dmin = 0.25λS).

For the case θ = 0◦ (resp. θ = 30◦), the x-components (resp. x-, y- and z-components) of
the computed displacements on the surface are displayed in Fig. 19 (resp. Fig. 20). They are
in good agreement with the results of Mossessian & Dravinski (1990b) even though, in our
implementation, no attenuation is considered.

5.3.4 Time-domain response

Once the implementation validated in the frequency domain, the time domain response is
considered for θ = 30◦. To allow comparisons, the fundamental frequency of the source is set
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Figure 20. Propagation of an oblique (θ = 30◦) incident plane SV-wave in a semi-spherical basin: Com-
parison of the FMM computed displacements (x-, y- and z-components) with the results of Mossessian
& Dravinski (1990b).

to a relatively low value: f0 = 0.25 Hz (tp = 4s and ts = 5s). In this example, only one mesh
is used, featuring N = 36, 033 DOFs.

Frequency parametrization. Results are computed for frequencies ranging between 0
and 0.85 Hz (32 sample frequencies). Figure 21 displays the x- and z-components of spectral
displacement along the Ox and Oy axes for the sample frequencies. The fundamental frequency

is found about 0.30 Hz (k
(2)
p a/π = 0.60) in all four shown cases. The maximum amplification

against the Ox axis and for the x-component is seen to be about 13.15 (free-surface effect being
removed) and located at a higher frequency (f=0.735Hz) at the left of the basin center (x/a =
−0.4) while for the z-component, this maximum is also located at the left of the basin center
(x/a = −0.2) but with about half amplification (about 6.15). A unique maximum is obtained
for the x-component while for the z-component, several local maxima of amplification are
obtained. The maximum amplification (about 13.3) for the x-component of the displacement
against the Oy axis is obtained at the basin center for a high frequency (f=0.74Hz) while
for the z-component this maximum (about 5.2) is obtained for a frequency of about 0.685Hz.
Once again, the maximum amplification for the x-component is about twice the maximum
amplification for the z-component. If we consider a 1D layer (having the same properties) on a

half-space, the fundamental frequency is reduced to f0 = c
(2)
S /4a = 0.125Hz (k

(2)
p a/π = 0.25)

and the maximum amplification is also reduced to ρ(1)c
(1)
S / ρ(2)c

(2)
S = 3. This simple example

illustrates the usefulness of 3D models to study seismic wave amplification in alluvial basins.
Displacements against time. The time domain results obtained from spectral responses

are now presented. The x- and z- components of the displacement for t ∈ [0, 30] are plotted
against the Ox and Oy axes in Figs. 22 and 23, respectively.

These results, visually compared with those previously published by Mossessian & Dravin-
ski (1990b), validate our implementation. We note on these figures that the time domain am-
plification is lower than the spectral amplification. It is due to the fact that in time domain,
the propagation process also influences the signal duration. To investigate this parameter,
we use the definition proposed in Trifunac & Brady (1975). In Fig. 24, the integrals

∫

u2
xdt

and
∫

u2
zdt are displayed against time. The duration of displacement at the basin center is

estimated on that basis as about 5.9s (for the x-component) and 8.4s (for the z-component)
while the duration of the input signal is estimated as about 3.7s.
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Figure 21. Propagation of an oblique (θ = 30◦) incident plane SV-wave in a semi-spherical alluvial
basin: x- (top) and z-component (bottom) of the FMM computed displacement against the x (left)
and y (right) coordinate for the sample frequencies.

5.3.5 Higher fundamental frequency

The use of the FM-BEM allows us to consider higher fundamental frequency, for which no
published results are available for comparison purposes. The following results are concerned
with the same problem of an oblique incident plane SV-wave propagating in a semi-spherical
basin but for a fundamental frequency twice higher: f0 = 0.50Hz (tp = 2s and ts = 5s). In
this example, two meshes are used: M0, featuring N = 36, 033 DOFs and M1 (created using
the subdivision procedure explained in Section 5.3.2), featuring N = 143, 451 DOFs. For this
computation, 64 sample frequencies have been used, for frequencies ranging between 0 and
1.70Hz. The x- and z- components of the displacement for t ∈ [0, 30] are plotted against the
Ox and oy axes in Figs. 25 and 26, respectively.

We note on those figures that doubling the fundamental frequency led to an increase of the
maximum amplification for all the components (see scales in Figs 25 and 26). Once again, the
duration of the displacement is estimated. In Figure 27, the integrals

∫

u2
xdt and

∫

u2
zdt are

respectively displayed against time, leading to estimated values of about 11.5s (x-component)
and 10s (z-component) for the duration of displacement. Doubling the fundamental frequency
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Figure 22. Propagation of an oblique (θ = 30◦) incident plane SV-wave in a semi-spherical alluvial
basin, f0 = 0.25Hz: x- (top) and z-components (bottom) of FMM computed displacement along the
Ox axis against time.

thus induces a double duration of the x-component but only a small increase of the duration
of the z-component.

5.3.6 Conclusions on the use of the present FMM for time domain problems

Using standard BEM, the resolution of time domain responses was limited in terms of sam-
pling frequency range. Introducing the FMM enlarges the capabilities of the BEM in this
respect, and time domain responses with higher fundamental frequencies are now possible. In
section 5.3.5, a computation for a fundamental frequency twice higher that in Mossessian &
Dravinski (1990b) was run, even though our FM-BEM formulation is based on the full-space
fundamental solutions whereas Mossessian & Dravinski (1990b) use the half-space fundamen-
tal solutions. The mesh sizes used in Sec. 5.3.5 remain relatively modest for the FMM, the
main computational limitation being currently caused by large GMRES iteration counts at
the higher sampling frequencies (up to O(104) for this example). Clearly, the current lack of
a preconditioning strategy in the present formulation must be addressed in the near future
(see e.g. Alléon et al. 1997 or Carpentieri et al. 2005 for various preconditioning approaches
for Maxwell FM-BEMs).
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Figure 23. Propagation of an oblique (θ = 30◦) incident plane SV-wave in a semi-spherical alluvial
basin, f0 = 0.25Hz: x- (top) and z-components (bottom) of FMM computed displacement along the
Oy axis against time.

6 CONCLUSIONS

In this article, a multi-level multi-domain fast multipole formulation has been proposed, based
on previous works on single-region FMM (Chaillat et al. 2008). A BE-BE coupling strategy
has been presented. Comparisons with the analytical or previously published numerical results
show the efficiency and accuracy of the present implementation.

The analysis of seismic wave propagation in canonical basins, for higher frequencies than
in previously published results, show the numerical efficiency of the method and suggest that
it is suitable to deal with realistic seismological applications. The transient response of 3-D
basins has also been investigated to illustrate the large domain of application of the method.

We have seen that the method is now limited by the iteration counts and so that a
preconditioning strategy needs to be introduced. Moreover, for time domain response, the
code is already competitive with time domain methods but will be more efficient when the
half-space fundamental solutions will be used. Ongoing work deals with the formulation of
multipole expansions of the half-space fundamental solutions.

Moreover, because the hypothesis of a linear elastic medium is often not sufficient, ongoing
work also deals with the FMM formulation in attenuating media.
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APPENDIX A: ANALYTICAL SOLUTION OF THE TEST PROBLEM OF A

PRESSURIZED CAVITY ENCLOSED IN A SPHERE

The analytical solution of the test problem (Section 4.2.1) can be easily computed. The po-
tentials φi, defined such that ui = ∂φi/∂r, can be written:

φ1 =
A1

r
eik

(1)
P

r +
B1

r
e−ik

(1)
P

r

φ2 =
A2

r
eik

(2)
P

r

(A.1)

where k
(i)
P denote the P wavenumber in the subdomain i and the coefficients A1, B1 and A2

are the solutions of the linear system:
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
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


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with α1 = ik
(1)
P a2, α2 = ik

(2)
P a2, α3 = ik

(1)
P a1 and θi =

α2
i

γ2
i

+ 4(1 − αi).
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Figure 25. Propagation of an oblique (θ = 30◦) incident plane SV-wave in a semi-spherical alluvial
basin, f0 = 0.5Hz: x- (top) and z-components (bottom) of the FMM computed displacement on the
Ox axis against time.
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applications , Ph.D. thesis, ENPC, in French, http://pastel.paristech.org/308/.

Takahashi, T., Nishimura, N., & Kobayashi, S., 2003. A fast BIEM for three-dimensional elastody-
namics in time domain, Eng. Analysis with Boundary Elements , 27, 491–506.

Trifunac, M. D. & Brady, A. G., 1975. A study on the duration of strong earthquake ground motion,
Bull. seism. Soc. Am., 65, 581–625.


