Skip to Main content Skip to Navigation
Journal articles

Pincement sur le spectre et le volume en courbure de Ricci positive

Abstract : We show that a complete Riemannian manifold of dimension $n$ with $\Ric\geq n{-}1$ and its $n$-st eigenvalue close to $n$ is both Gromov-Hausdorff close and diffeomorphic to the standard sphere. This extends, in an optimal way, a result of P. Petersen. We also show that a manifold with $\Ric\geq n{-}1$ and volume close to $\frac{\Vol\sn}{#\pi_1(M)}$ is both Gromov-Hausdorff close and diffeomorphic to the space form $\frac{\sn}{\pi_1(M)}$. This extends results of T. Colding and T. Yamaguchi.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-00338163
Contributor : Erwann Aubry Connect in order to contact the contributor
Submitted on : Tuesday, November 11, 2008 - 6:31:04 PM
Last modification on : Thursday, April 29, 2021 - 12:06:08 PM

Links full text

Identifiers

Collections

Citation

Erwann Aubry. Pincement sur le spectre et le volume en courbure de Ricci positive. Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, 2005, 38, p 387--405. ⟨hal-00338163⟩

Share

Metrics

Record views

171