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Abstract. This paper presents a topologically-based animation system aiming at representing the

topological evolution of structured objects over time. Robustness and versatility both relie on the n-

dimensional generalised map formalism. The animation is modelled as a series of maps ordered in time

and represent each topological modification of the structure. We define several dedicated topological

operations that are translated into a script defining the animation. We finally show the usefulness of the

approach by means of a specific application in geology, namely the representation of a subsoil evolution

in 2D.
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1. Introduction

The goal of animation systems is to produce consecutive images representing moving
objects. Much work in the litterature has focused on the generation of animation by
providing several approaches to create and control motion. Such systems do not intend
to represent the history of animated objects, and no time link is established between
generated images. However, some applications of animation, mainly in the simulation
field, may want to follow the evolution of structured objects. Since usual animation sys-
tems fail at providing enough information about the object modifications, these kind of
applications require the use of a specific structure allowing a temporal description of re-
lationships between the animation compounds. To our knowledge, there is no animation
model based on elementary topological operations in dimension n.

This paper, proposes an animation model based on topological structure. More pre-
cisely, we use a boundary representation, where topology is given by the n-dimensional
generalised map (“n-G-map”) model whereas the temporal embedding is provided by
the user. The n-dimensional model is particularly useful since it allows to define both
2D and 3D animations. The temporal structure is represented by successive maps cor-
responding to the object topological modifications. We therefore define a set of atomic
topological operations combined in high-level operations. A script is used to describe the
succession of operations. Since these high-level operations are specific to some particular
applications, we have investigated the use of our system to describe the history of the
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2 Topologically-based animation for describing geological evolution

section of subsoil, that is, the 2D evolution of various geological layers.

The remainder of the paper is organised as follows: we first present our animation
model based on n-G-map and keyframing. We then define some useful low-level opera-
tions. Next, we apply our system to the geological field and define some specific high-level
operations. Finally, we detail the script creation before concluding and discussing on
future work.

2. Animation model

We have chosen a robust topological model for defining our animation system. The
n-dimensional generalised map model is defined as [6]:

Def. 2.1. Let n ≥ 0; a n-G-map is defined by a (n+2)-tuple G = (B, α0, α1, . . . , αn), such
that:

- B is a finite, non-empty set of darts;
- α0, α1, . . . , αn are involutions on B (i.e. ∀i, 0 ≤ i ≤ n, ∀b ∈ B, bα2

i = b);
- ∀i ∈ {0, . . . , n − 2}, ∀j ∈ {i + 2, . . . , n}, αiαj is an involution.

αi represents the adjacency and incidence relationships between the i-cells (vertices,
edges, surfaces, and so on) of the object.

The main idea of our model is to represent the animation of a structured object as a
succession of instantaneous topological changes. We therefore rely on an adaptation of
the keyframing approach, where each frame is associated with a map. It also represents
all the topological changes of a given time. Between two consecutive frames fi and
fi+1, no topology variation appears and the animation is obtained by interpolating the
embedding of the edges.

More precisely, a keyframe is a closed n-G-map that representing a state of the
animation at in. For all the topological modifications occurring at time ik+1, we search
for the last frame ik. This frame is duplicated and the new frame time is set at ik+1, then
this new frame is altered by a set of topological operations (see Fig. 1). This construction
methodology implies to have a temporally-sorted collection of topological modifications.

i0 i1 i2 i0 i1 i2 Final
Fig. 1. A keyframing sample. The 2-G-map representation of objects is on the left and their geometrical

representation is on the right. The animation steps show an half-circle (time i1) cut by a segment
(time i2) and the sliding of one part (time i3). The last image of the animation has the same
topology than i2.
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3. Definition of the topological operations

The potentialities of our animation model heavily rely on the topological operations that
we can offer. Well-known operations such as edge removing or edge contraction [3] are
undoubtedly relevant for our purpose. However some ”new” operations are necessary.
In particular, Vertex split [5], edge path split and vertex identification must be redefined
in our context. Note that other operations could be required for specific animations.
Nevertheless, when applying our system to the 2D description of subsoil layer evolution
in geology, the previously cited operations have shown themselves sufficient.

The definition of these operations must rely on the G-map formalism. Our method-
ology consists in building a map in terms of modifications applied to the original map.
The historical links must then be established between the darts of the two maps. This
process is general and could be applied to all the required new topological operations.

3.1. Vertex split

A vertex split separates a set of edges incident to a vertex into two distinct subsets of
edges (see Fig. 2(a)). We consider two specific edges in the set, called a1 and a2. They
delimit one subset (shown in dark), while the other subset contains all the other edges
(shown in gray). Splitting the vertex results in two vertices incident to each subset
(see Fig. 2(b)).

Def. 3.1. Let G = (B, α0, α1, α2) be a 2-G-map. Let b1
1, b2

1, b3
1 and b4

1 be darts in B such
as:

- ∃p > 0, b1
1 = b2

1(α2α1)
pα2; (3.1a) - b3

1 = b2
1α1, b4

1 = b1
1α1.

In dimension 2, a vertex split generates a 2-G-map G′ = (B′, α′

0, α
′

1, α
′

2) such as:

- B′ = B ∪ {b1
2, b

2
2, b

3
2, b

4
2}; (3.1b) - ∀b ∈ B, bα′

0 = bα0, bα′

2 = bα2;
- ∀b ∈ B − {b1

1, b
2
1, b

3
1, b

4
1}, bα′

1 = bα1; - b1
2α

′

0 = b4
2, b2

2α
′

0 = b3
2, b1

2α
′

2 = b2
2, b3

2α
′

2 = b4
2;

- ∀i ∈ 1, . . . 4, bi
2α

′

1 = bi
1.

In definition (3.1a), darts b1
1 and b2

1 are bounding one subset of edges. In definition
(3.1b), darts b1

2, b
2
2, b

3
2 and b4

2 are created by the vertex split operation.

a1

a2

(a) Before the
vertex split.

a′
2

a′
1

(b) After the vertex
split.

a2

a1

b3

1 b2

1

b1

1b4

1

(c) Before the ver-
tex split (topolog-
ical view).

b1

2
b1

1

b3

2

b3

1

a′1

a′
2

b2

1

b2

2

b4

1

b4

2

(d) After the vertex
split (topological view).

Fig. 2. A vertex split (2D).
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3.2. Edge path split

An edge path split creates a new face inserted between several faces (see Fig. 3). It
corresponds to a face-adding operator. An edge path is a sequence of edges selected
along the boundary separating several faces.

b6

1
b7

1
b8

1
b9

1
b10

1
b11

1

b6

1
b7

1
b8

1
b9

1
b10

1
b11

1

b3

1
b4

1
b5

1
b0

1
b1

1
b2

1
b0

1
b1

1
b2

1
b3

1
b4

1
b5

1

b1

2
b2

2 b5

2
b4

2
b3

2b0

2

Fig. 3. An edge path between darts b01 and b51 is split to give the gray face.

Def. 3.2. In dimension 2, an edge path C is a sequence of darts (b0, b1, . . . , b2k+1) such as
b2p+1 = b2pα0 and b2q = b2q−1(α1α2)

mα1 with 1 ≤ q ≤ k and m ≥ 0.

Def. 3.3. Let G = (B, α0, α1, α2) be a 2-G-map. Let C = {b0
1, . . . , b

2k+1
1 } be an edge path

and C′ = {b2k+2
1 , . . . , b4k+3

1 } its image by α2 such as:

- C ⊂ B, C′ ⊂ B and C ∩ C′ = ∅; - ∀i ∈ [2k + 2 . . . 4k + 3], bi
1 = b

i−(2k+2)
1 α2.

In dimension 2, the edge path split generates a 2-G-map G′ = (B′, α′

0, α
′

1, α
′

2) such as:

- B′ = B ∪ {b0
2, . . . , b

4k+3
2 }; (3.1a) - ∀b ∈ B, bα′

0 = bα0 and bα′

1 = bα1;
- ∀b ∈ B − (C ∪ C′), bα′

2 = bα2; - b2a
2 α′

0 = b2a+1
2 with 0 ≤ a < 2k + 1;

- bi
2α

′

2 = bi
1 with 0 ≤ i ≤ 4k + 3; - b2a+1

2 α′

1 = b
(2a+2)mod(4k+4)
2 with 0 ≤ a ≤ 2k + 1.

In definition (3.3a), darts b0
2, . . . , b

4
4k+3 represent the created face.

3.3. Vertex identification

A vertex identification collapses two distinct non-linked vertices into one.

d3 d3 d4
d4

d1 d2 d1 d2
Orientable Non orientable

d3

d1 d2

d4

or
d4d3

d1 d2

f1 f2 f1 f1

Fig. 4. Vertex identification.

Def. 3.4. Let G = (B, α0, α1, α2) be a 2-G-map and D ⊂ B a set of darts forming a
polyline, let d3, d4 ∈ D and d1, d2 ∈ B − D such as:

- ∀d ∈ D, dα2 6= d ∧ dα0 6= d ∧ (d(α1α2)
2 = d ∨ dα1α2 = d ∨ dα1 = d); (a)

- d1α1 = d2 ∧ d3α2 = d4 ∧ (d3α1 = d3 ∨ d3α1α2 = d3). (b)
In dimension 2, identifying d1 and d3 generates a 2-G-map G′ = (B, α0, α

′

1, α2) such as:

- ∀d ∈ B − {d1, d2, d3, d4}, dα′

1 = dα1; - d1α
′

1 = d3, d2α
′

1 = d4.
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Definition (3.4a) defines a polyline. In definition (3.4b), d3 and d4 respectively rep-
resent one free polyline extremity. Figure 4(b) shows that vertex identification can
generate a non-oriented object after the last identification step. To ensure that the re-
sulting object is well-oriented, the propriety d3 ∈< β1 > (d1α0) with β1 = α0α1 has to
be true.

4. Application to geology

In order to use the previously defined topological operations in a pratical way, we have
chosen the field of geological modelling. Several approches in the litterature currently
aim at creating an accurate representation of the geological layers of the underground,
but all these models are static: None of them defines the temporal evolution of these
layers.

To our knowledge, geometric models describing geological Earth subsoil are built
from raw data via dedicated softwares like GOCAD [7] and RML [4], but they do not
intend to describe the evolution of the geological layers.

Besides, some 3D topological models derived from G-maps are currently used to
model geological layers. For example, Schneider [1] describes the layers by a set of
parametric surfaces which intersect each other and represent the boundary of geological
volumes (called “blocks”). These blocks may have been fragmented during some geo-
logical events. After processing, Schneider uses its extended 3-G-map model not only
to represent the blocks, but also to link some disconnected blocks belonging to a for-
mer single layer before fragmentation. Schneider’s works have been extended in [2] with
subdivided surfaces. Both models are static (i.e. don’t describe any temporal evolution).

In the late nineties, Perrin has defined a geological syntax to describe causes and
effects of geological phenomena and their succession ([8]). Those rules ensure geological
consistency of the layer geological model. The rules are part of the Geological Evolution
Scheme (GES). A GES is an acyclic oriented tree: Nodes represent surfaces or sub-GESs
(for level of detail), arcs represent chronological (for example, “surface B is older than
surface A”) or topological relationships (e.g. “surface B cuts surface A”). Geological
rules give some information about node interactions. In short, GES provides topological
and anteriority information, but this information is not complete enough to create an
animation, since we need temporal data and durations to describe any evolution.

4.1. Modelling geological phenomena with topological operations

There are several kinds of geological phenomena. We have identified four of them:
Sedimentation, erosion, fault creation and sliding.
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(c)(b)(a)

a1

a2
a3

s1
s2l3

l4
l1

l2

a1

a2 a3
s1

s2l3

l1

l2

l4

l3

l1

l2

Fig. 5. Exaggerated sedimentation (for explanation purpose). We see the new layer l4 creation between
l1 and l3, then l4 is deformed.

4.1.1. Sedimentation

The sedimentation process consists of two parts. First, a new layer is created, as shown
in figure 5. This layer (Fig. 5(b)) generates the creation of new vertices (s1, s2) and new
edges (a1, a2, a3). This phenomenon uses the edge path split operation. The second
step consists in increasing or decreasing the shape of l4 (Fig. 5(c)). This last operation
does not modify the topology.

The sedimentation process can make several layers merge, as shown in figure 6. In
this case, topology modification is made up of one contraction (edge a on Fig. 6(a))
followed by a vertex split (the gray vertex on Fig. 6(b)), resulting into a pair of new
vertices (s3 and s4 in Fig. 6(c)).

(a) (b) (c)

l5

l3

l4
l1

l2

l5 l4

l3
l′
4

l1

l2

a
s1 s2

l3

l1

l2

s4

s3

Fig. 6. A sedimentation with layer merging (l4 and l5 in l′4).

4.1.2. Erosion

Erosion is the symmetrical case of sedimentation. Erosion removes sediments and can
lead to layer destruction.

(a) (b) (c)

l3
l4

l1

l2 l2

l1
l4

l3 l3

l1

l2

Fig. 7. l4 layer erosion.

Figure 7 shows an erosion sample. The shrinking of layer l4 is modelled by a simple
deformation of the interface (l3, l4) (Fig. 7(a)) and 7(b)). There is no topological modi-
fication. But the process can lead to a layer destruction as shown in figure 7(c). Instead
of removing the face corresponding to l4 layer (which is a complex and not well-defined
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process [3]), we equivalently remove the edge path representing the interface between l3
and l4 and thus merge the two faces l3 and l4.

4.1.3. Fault

A fault is a (partial or complete) breaking of a layer. It is modelled by a polyline which
extends during its evolution. The starting vertex of a fault either belongs to the upper
layer interface (faults F1 and F2 in Fig. 8(b)), or is inside a layer (fault F1 in Fig. 8(c)).
In the second case, a fictive edge1 is used for linking the starting vertex and some vertex
of the upper layer interface.

The fault evolution ends when its pending extremity stops on another interface and
breaks the layer in two parts (F1 in Fig. 8(b)) or inside the bottom layer (F2 in Fig. 8(b)).

We then use vertex identification each time a fault extremity is linked with a layer
interface vertex.

(a)(b) (c)

l3

l1

l2

F1

F2 l2

l′
1

l3

l′′
1

F1

l3

l1

l2

Fig. 8. A fault creation. (a-b) F1 splits the layer, F2 is inside a block. (c) Another fault creation: F1 is
not linked with the boundary of l2 so we use a fictive edge between F1 and interface (l1, l2).

4.1.4. Sliding

Sliding describes the movement of one or several geological blocks along a fault. For
example, Figure 9 shows the evolution of interface (l1, l4). Two vertices and two edges
are created (shown in gray in Fig. 9(b)). At last, removing the contact edge between l1
and l4 leads to the disappearance of interface (l1, l4).

(a) (b) (c)

l3

l1 l4

l2

l3

l1
l4

l2

l3

l1
l4

l2

Fig. 9. A sliding of layer l4 along the fault between l1 and l4.

Figure 10 describes the sliding steps in geometrical terms.

1A fictive edge is a topological edge with no geometrical embedding.
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a1 a2 a1 a2

(a) Vertex splitting. (b) Gray vertex translation.

a2

a2

a3 a3

(c) Gray edge contraction.

Fig. 10. Sliding steps.

5. Sample script and results

Real geological events often result from combinations of specific geological phenomena,
such as those we have presented in this article. In order to control those combinations,
we use an animation script.

There are at least two degrees of control for a script: High (end-user) level and low
(developer) user. High level control is application dependent: For geological application,
each line in the script should be like ”layer sedimentation”, “layer erosion”, and so on.
However we want our work to be as independent on the application as possible, so we
currently work at low level.

5.1. Writing the animation script

The animation script is a sequence of topological operations and frame duplications. The
edge embedding is defined by a function f(p, t), where p is a set of linear coordinates
and t is a time. Since we manipulate 2D objects, all operations are defined on edges
designated by a name. A vertex can be named as well by an extremity of an edge
(“begin” or “end”) which implies that we use oriented objects. An edge is incident to
two faces (the orientation permits us to define left and right sides, as shown later) and
incident to two vertices at most.

Figure 11(a) shows an empty frame in the topological view and its associated names.
This frame is made of four edges named “border left”, “border top”, “border right” and
“border bottom”.

border_bottom

border_top

border_left

border_right

(a) An empty frame.

left side

right sideb
eg

in
 s

id
e

en
d

 s
id

e

(b) The orientation is
deducted from the tag.

new_interface

border_bottom

border_top

border_left_0

border_left_1

border_right_1

border_right_0

(c) Sample construction.

Fig. 11. Tags, orientation and an example.
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The example below, describes the steps for building a new interface inside a frame
with a sinusoidal embedding.

First, we create a new animation and the first frame (Fig. 11(a)):

animation = CAnimation :new(gmv , width , he ight )
f i r s tFrame = animation : addFirstDiscretePlane2d (0 )

Next, we split left and right frame borders to identify new vertices with the extremities
of a new line named “new line” (Fig. 11(c)):

f i r s tFrame : createInterface ( ” new l ine ” )
f i r s tFrame : spl itInterface ({50} , ” b o r d e r l e f t ” ) −− Split at the middle (50%)
f i r s tFrame : spl itInterface ({50} , ” bo rd e r r i gh t ” ) −− Split at the middle (50%)
f i r s tFrame : identi f ication ( ” b o r d e r l e f t 1 ” , true , ” new l ine ” , true , true )
f i r s tFrame : identi f ication ( ” bo rd e r r i g h t 1 ” , true , ” new l ine ” , false , true )

The two first boolean parameters of the identification function refer to edge extremities
(true = begin, false = end). The third boolean parameter is the left side parameter as
shown in figure 11(b).

Next, we add embedding to “new line”:

f i r s tFrame : setSymboleEdgeEmbedding( ” new l ine ” , function (p , t )
return width ∗ p , sin (p ∗ pi ∗ 4) ∗ cos ( t / 3 . 5 ) ∗ 4 + he ight / 2 end)

With combinations of topological operations, we can produce more sophisticated
subsoil animation. Figure 12 shows images taken from a script-built animation. At
the beginning, a sedimentation layer appears between two “hills”. Next, a set of faults
appears inside the lowest geological layer. Those faults grow up, and meet to form a
single fault, until the fault top extremity comes into contact with the sedimentation layer
bottom. This leads to the sliding of the bottom layers.

(a) Sedimentation begins. (b) Separate faults appear
and extend.

(c) Faults merge into a single
one and a sliding occurs.

Fig. 12. Some animation steps of simultaneous geological phenomena.

6. Conclusion and future work

In this paper, we have shown a topologically-based animation system. We have defined
some low-level topological operations for subsoil evolution modelling. We have presented
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a methodology to use those operations for animation creation inside scripts. Those
scripts allow us to control the animation at each time steps.

Our system need several improvements. First, we have to complete the set of topo-
logical operations. We are looking for applications in order to identify other phenomena
and analyse them in terms of low-level operations.

We also want to increase animation control by providing a user level depending on
the application. It will be necessary to know how to analyse a set of operations defined
by the user.

Finally, we want to extend the animation model to 3D. The n-G-map model should
make the extension of 2D operations easy but we think there will be new 3D-specific
operations to define.
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