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1 - Université de Pau et des Pays de l’Adour, UMR-CNRS 5142
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Abstract

We prove continuity properties for Riesz and Oseen potentials. As a consequence,

we show some new properties on solutions of Poisson’s and Oseen equations. The

study relies on weighted Sobolev spaces in order to control the behavior of functions

at infinity.
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1 Introduction and Notations

The purpose of this paper is to establish some new continuity properties in weighted

Sobolev spaces for the Riesz potentials of order one or two and for the convolution with the

fundamental solution of Oseen. We focus on those operators when they act on Lp-functions

and on distributions that belong to a weighted Sobolev space that will be specified latter.

We then use the continuity properties we obtained to find a representation of solutions,

respectively, to the Poisson’s equation and to the Oseen equations in R
3. It is well known

that in unbounded domains, it is important to control the behavior of functions at infinity.
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This is the mathematical reason for dealing with weighted spaces. In previous papers (see

for instance [15], [16], [18], [19] and [20]), some weighted inequalities for the Riesz poten-

tials are proved under suitable assumptions on the weights. In [5] and [1], it is proved,

among other results, that those inequalities still hold for a larger class of weighted Sobolev

spaces. The aim of this work was to improve those results by eventually a modification of

the Riesz potentials. We then follow the ideas developed for the Riesz potential to prove

some continuity properties for the Oseen potential. In this paper, we only consider the

three-dimensional case. Note that the two-dimensional case is studied in [3]. The paper

is organized as follow. In the next section, we introduce the weighted Sobolev spaces and

their main properties for this work. In Section 3, we prove the continuity properties for

the Riesz potentials of order one or two and we show the consequences for the Laplace’s

equation. Finally in Section 4, we deal with the fundamental solution of Oseen.

We end this section with the Notation that we will use all long this work. We denote by

N the set of all positive integer and Z the set of all integers. In what follows, p is a real

number in the interval ]1,+∞[. The dual exponent of p denoted by p′ is defined by the

relation 1
p + 1

p′ = 1. We will use bold characters for vector or matrix fields. A point in R
3

is denoted by x = (x1, x2, x3) and its distance to the origin by

r = |x| = (x1 + x2 + x3)
1/2.

We denote by [k] the integer part of k. For any ` ∈ Z, P` stands for the space of polynomials

of degree less than or equal to ` and P
∆
` the harmonic polynomials of P`. If ` is a negative

integer, we set by convention P` = {0}. We denote by D(R3) the space of C∞ functions

with compact support in R
3. We recall that D′(R3) is the well known space of distributions

and Lp(R3) is the usual Lebesgue space on R
3. For m ≥ 1, we recall that W m,p(R3) is the

well-known classical Sobolev spaces. For any 0 < α < 1 and for m ≥ 0, we introduce the

space

Cm,α(R3) =

{

f ∈ Cm(R3), sup
x,y∈R3, x6=y

|∂mf(x) − ∂mf(y)|

|x− y|α
< +∞

}

.

Given a Banach space B with its dual space B′ and a closed subspace X of B, we denote

by B′⊥X the subspace of B′ orthogonal to X, i.e.,

B′⊥X = {f ∈ B′, ∀v ∈ X, 〈f, v〉 = 0} = (B/X)′.

Finally, we will use the symbol C for generic positive constant whose value may change at

each occurrence even at the same line.
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2 Weighted Sobolev spaces

We introduce the weight function ρ(x) = (1 + r2)1/2. For a nonnegative integer m and

α ∈ R, set

k = k(m, p, α) =







−1 if 3/p + α /∈ {1, ...,m}

m − 3/p − α if 3/p + α ∈ {1, ...,m}

and we define the weighted Sobolev space

W m,p
α (R3) ={u ∈ D′(R3);∀λ ∈ N

3, 0 ≤ |λ| ≤ k, ρα−m+|λ|(ln(1 + ρ2))−1∂λu ∈ Lp(R3),

k + 1 ≤ |λ| ≤ m, ρα−m+|λ|∂λu ∈ Lp(R3)},

which is a Banach space equipped with its natural norm given by

‖u‖W m,p
α (R3) =





∑

0≤|λ|≤k

‖ρα−m+|λ|(ln(1 + ρ2))−1∂λu‖p
Lp(R3)

+
∑

k+1≤|λ|≤m

‖ρα−m+|λ|∂λu‖p
Lp(R3)





1/p

.

We define the semi-norm

|u|W m,p
α (R3) =





∑

|λ|=m

‖ρα∂λu‖p
Lp(R3)





1/p

.

We shall now point out some properties of those spaces that will be used all long this

paper. For a detailed study we refer to [4] and references therein. All the local properties

of the space W m,p
α (R3) coincide with those of the Sobolev space W m,p(R3). The space

D(R3) is dense in W m,p
α (R3). As a consequence, its dual space, denoted by W−m,p′

−α (R3) is

a space of distributions. Let q be defined as follow:

q = [m − 3/p − α] , if n/p + α /∈ Z
−

q = m − 1 − 3/p − α, otherwise. (2.1)

Then Pq is the space of all polynomials included in W m,p
α (R3). Moreover, the following

Poincaré-type inequality holds:

∀u ∈ W m,p
α (R3), inf

λ∈Pq′

‖u + λ‖W m,p
α (R3) ≤ C|u|W m,p

α (R3), (2.2)

where q′ = min(q, 0). From (2.2) and the Sobolev’s embedding theorems, we have the

algebraic and topological identities

W 1,p
0 (R3) = {v ∈ L

3p
3−p (R3), ∇v ∈ Lp(R3)}, if 1 < p < 3 (2.3)
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and

W 2,p
0 (R3) =

{

v ∈ L
3p

3−2p (R3), ∇v ∈ L
3p

3−p (R3),
∂2v

∂xi∂xj
∈ Lp(R3)

}

, if 1 < p < 3/2.

(2.4)

We introduce the space H p = {v ∈ Lp(R3), div v = 0}. It follows from (2.2), that the

operator

div : Lp(R3)/H p 7→ W−1,p
0 (R3)⊥P[1−3/p′] (2.5)

is an isomorphism.

We recall that the space BMO(R3) stands for the space of functions locally integrable

satisfying

‖f‖BMO(R3) = sup
Q

1

|Q|

∫

Q
|f(x) − fQ|dx < ∞,

where the supremum is taken all over the cubes Q and fQ = 1
|Q|

∫

Q f(x)dx.

3 Riesz potentials and Poisson’s equation

For any real α ∈ ]0, 3[, the Riesz potentials of order α are defined by (cf. [21])

Iαf = Fα ∗ f = (−∆)α/2f, where Fα(x) =
1

γ(α)
|x|α−3,

with γ(α) = π3/22αΓ(α/2)/Γ(3/2 − α/2) and Γ is the Gamma function. Let us recall the

following embedding results.

Theorem 3.1. We have:

i) W 1,p
0 (R3) ↪→ L

3p
3−p (R3), if 1 < p < 3,

ii) W 1,3
0 (R3) ↪→ BMO(R3),

iii) W 1,p
0 (R3) ↪→ C0,1−3/p(R3), if p > 3.

We also recall that the Riesz operator I1 : Lp(R3) 7→ W 1,p
0 (R3) is continuous if 1 < p < 3

(see for instance [1]) and we have

∂

∂xj
I1f = −Rjf, (3.6)

where Rj is the Riesz transform. Observe now that if f ∈ Lp(R3) with p ≥ 3, then I1f

does not belong to D′(R3). Moreover, let f be a function defined by

f(x) = 0 if |x| < 1 and f(x) =
1

|x|
if |x| > 1.
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Then clearly f ∈ Lp(R3) if p > 3 and, for any |x| < 1
2 , we have

I1f(x) =
1

γ(1)

∫

|y|>1

1

|x − y|2
1

|y|
dy ≥

C

γ(1)

∫

|y|>1

1

|y|3
dy = +∞.

This is the reason of introducing the operator J1 defined by

J1f(x) =
1

γ(1)

∫

R3

(

1

|x − y|2
−

1

|y|2

)

f(y)dy. (3.7)

Theorem 3.2. The following operators are continuous:

i) J1 : Lp(R3) 7→ C0,1−3/p(R3), if p > 3.

ii) J1 : Lp(R3) 7→ W 1,p
0 (R3), if p ≥ 3.

Moreover, in both cases we have

∂

∂xj
J1f = −Rjf. (3.8)

Proof. We set

K1(x,y) =
1

γ(1)

(

1

|x − y|2
−

1

|y|2

)

.

i) Let us first show that

(∫

R3

|K1(x,y)|p
′

dy

)1/p′

≤ C|x|1−3/p. (3.9)

We can easily write

(
∫

R3

|K1(x,y)|p
′

dy

)1/p′

≤

(

∫

|y|>2|x|
|K1(x,y)|p

′

dy

)1/p′

+

(

∫

|y|<2|x|
|K1(x,y)|p

′

dy

)1/p′

= K11 + K12.

For any y ∈ R
3 such that |y| > 2|x|, we have the inequalities

1

|x− y|2
−

1

|y|2
≤ C

|x|

|y|3
≤ C

1

|y|2
. (3.10)

It follows that

K11 ≤ C

(

∫

|y|>2|x|

dy

|y|2p′

)1/p′

≤ C|x|1−3/p. (3.11)

For K12, we can write

K12 ≤

(

∫

|y|<2|x|

dy

|x − y|2p′

)1/p′

+

(

∫

|y|<2|x|

dy

|y|2p′

)1/p′

.
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Now using the fact |y| < 2|x| implies that |y − x| < 3|x|, we have

K12 ≤ 2

(

∫

|y|<3|x|

dy

|y|2p′

)1/p′

≤ C|x|1−3/p. (3.12)

From (3.11) and (3.12), we obtain (3.9). Next, from (3.9) and the Hölder’s inequality, we

get

|J1 f(x)| =

∫

R3

K1(x,y) f(y) dy ≤ C|x|1−3/p‖f‖Lp(R3). (3.13)

By similar arguments, we can prove that

|J1 f(x) − J1 f(y)| ≤ C|x− y|1−3/p‖f‖Lp(R3),

which shows that J1 ∈ C0,1−3/p(R3) if p > 3.

ii) We first assume p > 3. Let f ∈ Lp(R3) and (fk)k∈N ⊂ D(R3) be a sequence that tends

to f in Lp(R3). For any k ∈ N, we have

J1 fk(x) = I1 fk(x) −
1

γ(1)

∫

supp fk

1

|y|2
fk(y) dy.

This implies that ∂
∂xj

J1fk = ∂
∂xj

I1fk = −Rjfk. Thanks to the continuity of the Riesz

transform Rj : Lp(R3) 7→ Lp(R3) (see [21]), −Rjfk tends to −Rjf as k tends to infinity.

On the other hand, from (3.13), as k tends to infinity, J1fk tends J1f in W 0,p
−1−ε(R

3), for

any ε > 0. Hence, we obtain ∂
∂xj

J1f = −Rjf and

‖∇J1f‖Lp(R3) ≤ C‖f‖Lp(R3).

Besides, since J1f(0) = 0, we have (see [4] Lemma 3.2)

‖J1f‖W 0,p
−1 (R3)

≤ C‖∇J1f‖Lp(R3) ≤ C‖f‖Lp(R3),

which implies that the operator J1 : Lp(R3) 7→ W 1,p
0 (R3) is continuous if p > 3.

We assume now p = 3. Then the following inequality holds
∫

R3

|K1(x,y)|3/2 dy ≤ C(1 + ln(2 + |x|)). (3.14)

It follows that

|J1f(x) − J1f(y)| ≤ C(1 + ln(2 + |x− y|)),

which shows that the operator J1 : L3(R3) 7→ W 1,3
0 (R3) is continuous. �

The definition below extends the Riesz potential I1 for a distribution f ∈ W−1,p
0 (R3).

Definition 3.3. Let f ∈ W−1,p
0 (R3). For any ϕ ∈ Lp′(R3), we set

〈I1f, ϕ〉 =: 〈f, I1ϕ〉W−1,p
0 (R3)×W 1,p′

0 (R3)
, when p > 3/2.
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Note that the above relation is well defined since the operator I1 : Lp′(R3) 7→ W 1,p′

0 (R3)

is continuous if 1 < p′ < 3 and, by duality,

I1 : W−1,p
0 (R3) 7→ Lp(R3) is continuous if 3/2 < p < ∞. (3.15)

By the same way, we have the following definition for the operator J1 acting on a distri-

bution f ∈ W−1,p
0 (R3).

Definition 3.4. Let f ∈ W−1,p
0 (R3). For any ϕ ∈ Lp′(R3), we set

〈J1f, ϕ〉 =: 〈f, J1ϕ〉W−1,p
0 (R3)×W 1,p′

0 (R3)
.

Thanks to Theorem 3.2 (ii), we have the following result.

Proposition 3.5. The operator J1 : W−1,p
0 (R3) 7→ Lp(R3), is continuous if 1 < p ≤ 3/2.

Remark 3.6. Let 1 < p ≤ 3/2 and f ∈ W−1,p
0 (R3) satisfies

〈f, 1〉
W−1,p

0 (R3)×W 1,p′

0 (R3)
= 0.

Then we have J1f = I1f. In other words, the operator I1 : W−1,p
0 (R3)⊥R 7→ Lp(R3) is

continuous if 1 < p ≤ 3/2.

For any interval I ⊂ R, let 1I , be the function defined by

1I(t) = 1 if t ∈ I and 1I(t) = 0 if t /∈ I.

We now introduce

E(x) = −
1

4π

1

|x|

the fundamental solution of the Poisson’s equation in R
3. Next, if f ∈ Lp(R3), we set

Pif(x) =















∫

R3

∂

∂xi
E(x− y)f(y)dy, if 1 < p < 3,

∫

R3

(

∂

∂xi
E(x− y) −

∂

∂xi
E(−y)

)

f(y)dy if p ≥ 3.

The previous definition will be summarised by the following one:

Pif (x) =

∫

R3

(

∂

∂xi
E(x − y) − 1[3,∞[(p)

∂

∂xi
E(−y)

)

f(y) dy. (3.16)

We will also introduce the operator:

f ∈ Lp(R3), Pf(x) = Pifi(x) (3.17)

where the pair of identical indices implies implicit summation.

Proceeding as for Theorem 3.2, we prove the following
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Theorem 3.7. The operators

Pi : Lp(R3) 7→ W 1,p
0 (R3) and P : Lp(R3) 7→ W 1,p

0 (R3)

are contiuous for any 1 < p < ∞.

Definition 3.8. Let 1 < p < ∞ and f ∈ W−1,p
0 (R3). For any ϕ ∈ Lp′(R3), we set

〈Pif, ϕ〉 =: 〈f,Piϕ〉W−1,p
0 (R3)×W 1,p′

0 (R3)
.

Consequently, from the previous, we have the following result.

Corollary 3.9. The operator Pi : W−1,p
0 (R3) 7→ Lp(R3) is continuous for any 1 < p < ∞.

Remark 3.10. Due to the density of D(R3) in Lp(R3), if f ∈ Lp(R3), 1 < p < ∞, then

∆Pf = div f in R
3.

Moreover,

(i) If 1 < p < 3, then we have

Pf = −E ∗ div f.

(ii) If p ≥ 3, then, for any i = 1, 2, 3 we get

∂

∂xi
Pf = −E ∗

∂

∂xi
div f.

As a consequence of the previous remark we have the following lemma which gives an

explicit form for the solution of the Poisson’s equation.

Lemma 3.11. Let f ∈ Lp(R3). Then the Poisson’s equation

∆u = div f in R
3,

has a solution u ∈ W 1,p
0 (R3), unique up to an element of P[1−3/p], satisfying

‖∇u‖Lp(R3) ≤ C‖f ‖Lp(R3).

Moreover,

(i) If 1 < p < 3, then u = −E ∗ div f = Pf.

(ii) If p ≥ 3, then u = Pf + λ, λ ∈ R and ∂u
∂xi

= −E ∗ ∂
∂xi

div f.

We now consider the Riesz potential of order 2 and, for f ∈ Lp(R3), we introduce the

operator

J2f(x) =

∫

R3

(E(x − y) − 1[ 3
2
,∞[(p) E(−y) − 1[3,∞[(p)x.∇E(−y))f(y)dy, (3.18)

where we observe that the operator J2 coincides with I2 when 1 < p < 3/2. Below we

recall further embedding results in weighted Sobolev spaces.
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Theorem 3.12. We have

i) W 2,p
0 (R3) ↪→ W

3p
3−p

0 (R3) ↪→ L
3p

3−2p (R3), if 1 < p < 3/2,

ii) W
2,3/2
0 (R3) ↪→ W 1,3

0 (R3) ↪→ BMO(R3),

iii) W 2,p
0 (R3) ↪→ W

1, 3p
3−p

0 (R3) ↪→ C0,2−3/p(R3), if 3/2 < p < 3.

iv) W 2,p
0 (R3) ↪→ C1,1−3/p(R3) if p > 3.

Proceeding again as for Theorem 3.2, we prove the following result.

Theorem 3.13. The operator J2 : Lp(R3) 7→ W 2,p
0 (R3) is continuous for any 1 < p < ∞.

Moreover, if f ∈ Lp(R3), then the solutions of the Poisson’s equation

−∆u = f in R
3

are in the form

u = J2f + λ, λ ∈ P[2−3/p].

We are now interested in the operator I2 when acting on distributions of W−1,p
0 (R3).

Definition 3.14. Let f ∈ W−1,p
0 (R3). For any ϕ ∈ W 1,p′

0 (R3), we set

〈I2f, ϕ〉 =: 〈f, I2ϕ〉W−1,p′

0 (R3)×W 1,p′

0 (R3)
.

We easily verify that if ϕ → 0 in D(R3), then I2ϕ → 0 in W 1,p′

0 (R3) if and only if p′ > 3/2

(and I2ϕ → 0 in a space of the type W
1,3/2
0 (R3) if p′ = 3/2, where L3/2(R3) is replaced

by L3/2,∞(R3)). Hence, we have I2f ∈ D′(R3) if and only if 1 < p ≤ 3 and in this case,

−∆(I2f) = f .

Proposition 3.15. The following operators are continuous

(i) I2 : W−1,p
0 (R3) → W 1,p

0 (R3) if 3/2 < p < 3,

(ii) I2 : W−1,p
0 (R3)⊥R → W 1,p

0 (R3) if 1 < p ≤ 3/2.

Proof. Assume 1 < p < 3 and let f ∈ W−1,p
0 (R3) satisfying 〈f, 1〉 = 0 if 1 < p ≤ 3/2.

Then f = div F with F ∈ Lp(R3) and

‖F‖Lp(R3) ≤ C‖f‖
W−1,p

0 (R3)
.

Hence for any ϕ ∈ D(R3), we have

〈
∂

∂xj
I2f, ϕ〉D′(R3)×D(R3) = 〈f, I2

∂ϕ

∂xj
〉
W−1,p

0 (R3)×W 1,p′

0 (R3)

= −〈Fk,
∂2

∂xj∂xk
I2ϕ〉Lp(R3)×Lp′ (R3),

9



i.e.
∥

∥

∥

∥

∂

∂xj
I2f

∥

∥

∥

∥

Lp(R3)

≤ C‖f‖
W−1,p

0 (R3)
.

By the Calderón-Zygmund inequality, we get
∣

∣

∣

∣

〈
∂

∂xj
I2f, ϕ〉

∣

∣

∣

∣

≤ ‖Fk‖Lp(R3)

∥

∥

∥

∥

∂2

∂xj∂xk
I2ϕ

∥

∥

∥

∥

Lp′ (R3)

≤ C‖f‖W−1,p
0 (R3)‖ϕ‖Lp′ (R3). (3.19)

Next, we can write

〈I2f, ϕ〉 = −〈Fk,
∂

∂xk
I2ϕ〉Lp(R3)×Lp′ (R3) = 〈Fk, I1Rkϕ〉Lp(R3)×Lp′ (R3).

But, since the operator I1 : L(p∗)′(R3) → Lp′(R3) is continuous if 1
p′ = 1

(p∗)′ −
1
3 , where

p∗ = 3p
3−p , we have

|〈Fk, I1Rkϕ〉Lp(R3)×Lp′ (R3)| ≤ ‖Fk‖Lp(R3)‖I1Rkϕ‖Lp′ (R3)

≤ C‖Fk‖Lp(R3)‖Rkϕ‖L(p∗)′ (R3).

≤ C‖Fk‖Lp(R3)‖ϕ‖L(p∗)′ . (3.20)

We thus have the following inequality

‖I2f‖Lp∗(R3) ≤ C‖f‖W−1,p
0 (R3). �

Remark 3.16. If 1 < p ≤ 3/2, the continuity of I2 on the space W−1,p
0 (R3) does not hold.

On the other hand, the mapping f 7→ I2f − 〈f, 1〉F2 is continuous from W−1,p
0 (R3) onto

W 1,p
0 (R3) if 1 < p < 3/2 and the mapping f 7→ I2f − 〈f, 1〉 is continuous from W−1,p

0 (R3)

onto W 1,p
0 (R3). if 1 < p ≤ 3/2, with ϕ ∈ D(R3) such that

∫

R3 ϕ = 1.

Remark 3.17. If p > 3 and f ∈ W−1,p
0 (R3), it is clear that I2f does not belong to D′(R3).

But, from (2.5), there exists F ∈ Lp(R3) such that f = div F and

‖F‖Lp(R3) ≤ C‖f‖W−1,p
0 (R3).

Therefore we introduce the operators

I1F(x) = −
1

γ(2)

∫

R3

xj − yj

|x− y|3
Fj(y)dy

and

J1F(x) = −
1

γ(2)

∫

R3

(

xj − yj

|x− y|3
+

yj

|y|3

)

Fj(y)dy.

Observe first that for any F ∈ D(R3), we have:

I1F =
∂E

∂xj
∗ Fj = E ∗ div F
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and

J1F(x) =
∂E

∂xj
∗ Fj −

∫

R3

∂E(x)

∂xj
Fj(x)dx = E ∗ div F −

∫

R3

E(x) div F(x)dx.

Now, for any f ∈ W
−1,p
0 (R3), we have the following properties:

• If 1 < p < 3/2, then there exists F ∈ Lp(R3) such that

f− 〈f, 1〉δ = div F,

in other words f = div (F + 〈f, 1〉∇E) where ∇E ∈ L3/2,∞(R3) i.e.

sup
µ>0

µ3/2 mes{x ∈ R
3, |∇E(x)| > µ} < ∞.

In this case we have I1F ∈ W 1,p
0 (R3) and

−∆(I1F + 〈f, 1〉E) = f in R
3.

Note that I1F + 〈f, 1〉E does not belong to W 1,p
0 (R3).

• if p > 3/2, then f = div F with F ∈ Lp(R3). Moreover, I1F ∈ W 1,p
0 (R3) if

3/2 < p < 3, J1F ∈ W 1,p
0 (R3) if p ≥ 3 and we have

−∆(I1F) = div F and − ∆(J1F) = div F.

Finally, we have the following last result.

Theorem 3.18. Let f ∈ W−1,p
0 (R3) such that 〈f, 1〉 = 0 if p ≤ 3/2 and consider the

Laplace’s equation

−∆u = f in R
3.

i) if 1 < p < 3, then the previous equation has a unique solution u = F2 ∗ f = Pw, with

div w = f .

ii) if p ≥ 3, then u = Pw is the unique solution, up to a constant of the previous equation

and we have

‖∇u‖Lp(R3) ≤ C‖f‖W−1,p
0 (R3).

4 The three dimensional Oseen potential

In this section, we consider the Oseen problem in R
3:

−ν∆u + k
∂u

∂x1
+ ∇π = f in R

3,

div u = g in R
3.

(4.21)
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For the investigation of (4.21) in weighted Sobolev spaces, we refer to [10], [12],[11], [7], [9]

and [17]. Further works can be found in [8], [13] and [14]. We recall that the fundamental

solution of Oseen (O, e) can be written in the form (see [14]):

Oij(x) =

(

δij∆ −
∂

∂xi

∂

∂xj

)

Φ(x), ej =
1

4π

xj

|x|3
, i, j = 1, 2, 3,

where

Φ(x) =
1

4πk

∫ ks(x)/2ν

0

1 − e−t

t
dt, s(x) = |x| − x1.

It is well known that Oij ∈ Lp(R3) if 2 < p < 3 and ∇Oij ∈ Lp(R3) if 4/3 < p < 3/2

(see for instance [14], [9] and [2]). Moreover, if the data (f, g) ∈ D(R3)×D(R3), then the

Oseen problem (4.21) has an explicit solution (u∗, π∗) ∈ C
∞(R3) × C∞(R3) defined by

u∗
i = Oij ∗ fj +

∂E

∂xi
∗ g

π∗ =
∂E

∂xj
∗ fj + g −

∂E

∂x1
∗ g.

(4.22)

It is now natural to inquire about the validity of (4.22) if f ∈ Lp(R3) and if g belongs to a

subspace of W 1,p
0 (R3) that will be specified in the remaining of the paper. For convenience,

we introduce the notation O∗f which denotes the vector field defined by Oij∗fj, i = 1, 2, 3.

We first have the following properties that extend the results obtained in [2] for the scalar

Oseen potential and can be obtained from [9]:

Proposition 4.1. Let f ∈ Lp(R3). Then, for any 1 < p < ∞, ∂2O

∂xi∂xj
∗ f ∈ Lp(R3) and

∂O

∂x1
∗ f ∈ Lp(R3), in the sense of principal value, and we have the estimate

∥

∥

∥

∥

∂2O

∂xi∂xj
∗ f

∥

∥

∥

∥

Lp(R3)

+

∥

∥

∥

∥

∂O

∂x1
∗ f

∥

∥

∥

∥

Lp(R3)

≤ C‖f ‖Lp(R3).

Morever,

(i) O ∗ f ∈ L
3p

3−2p (R3) if 1 < p < 3/2 and O ∗ f ∈ L
2p

2−p (R3) if 1 < p < 2,

(ii) ∇O ∗ f ∈ L
3p

3−p (R3) if 1 < p < 3 and ∇O ∗ f ∈ L
4p

4−p (R3) if 1 < p < 4.

In both cases, we have the corresponding estimates.

Let us now introduce the following anisotropic weighted spaces

Xp(R
3) =

{

v ∈ Lp(R3),
∂v

∂x1
∈ W−2,p

0 (R3)

}

,

Y 1,p
0 (R3) =

{

v ∈ W 1,p
0 (R3),

∂v

∂x1
∈ W−1,p

0 (R3)

}
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and

Z2,p
0 (R3) =

{

v ∈ W 2,p
0 (R3),

∂v

∂x1
∈ Lp(R3)

}

.

These are Banach spaces when endowed respectively with the norms

‖v‖Xp(R3) = ‖v‖Lp(R3) +

∥

∥

∥

∥

∂v

∂x1

∥

∥

∥

∥

W−2,p
0 (R3)

,

‖v‖
Y 1,p
0 (R3)

= ‖v‖
W 1,p

0 (R3)
+

∥

∥

∥

∥

∂v

∂x1

∥

∥

∥

∥

W−1,p
0 (R3)

and

‖v‖Z2,p
0 (R3) = ‖v‖W 2,p

0 (R3) +

∥

∥

∥

∥

∂v

∂x1

∥

∥

∥

∥

Lp(R3)

.

Observe that from Proposition 4.1, the operators f 7→ O ∗ f from Lp(R3) into L
2p

2−p (R3)

and f 7→ ∇O ∗ f from Lp(R3) into L
4p

4−p (R3) are continuous if 1 < p < 2. This shows that,

if f ∈ Lp(R3), then the explicit forms (4.22) are not necessarily defined for any 1 < p < ∞.

Therefore, following the ideas developed in Section 3, we define the operator O defined by

(Of(x))i = Oijfj(x) =

∫

R3

(

Oij(x − y) − 1[2,∞[ Oij(−y) − 1[4,∞[ x
′.∇′Oij(−y)

)

fj(y) dy,

where x′ = (0, x2, x3) and ∇′ = (0, ∂
∂x2

, ∂
∂x3

). Proceeding now as in Section 3, we have the

following result.

Theorem 4.2. The operator

O : Lp(R3) 7→ Z
2,p
0 (R3)

is continuous for 1 < p < ∞.

In order to give an explicit form for the solutions of the Oseen problem (4.21), when the

data (f, g) do not belong to D(R3) ×D(R3) but in the space Lp(R3) × Y 1,p
0 (R3), we need

this preliminary lemma.

Lemma 4.3. Assume g ∈ Y 1,p
0 (R3) and let Pj be defined by (3.16).

(i) If 1 < p < 3, then ∇Pjg ∈ Y
1,p
0 (R3) ∩ W

1, 3p
3−p

0 (R3), Pjg ∈ Z2,p
0 (R3) and we have the

estimate

‖∇Pjg‖Y1,p
0 (R3) + ‖∇Pjg‖

Y
1,

3p
3−p

0 (R3)
+ ‖Pjg‖Z2,p

0 (R3) ≤ C‖g‖Y 1,p
0 (R3). (4.23)

Additionally, if 1 < p < 3/2, then Pjg ∈ L
3p

3−2p (R3) and the following estimate holds

‖Pjg‖
L

3p
3−2p (R3)

≤ C‖g‖Y 1,p
0 (R3). (4.24)
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(ii) If p ≥ 3, then J2
∂g
∂xj

∈ Z2,p
0 (R3), where the operator J2 is defined by (3.18), and we

have
∥

∥

∥

∥

I2
∂g

∂xj

∥

∥

∥

∥

Z2,p
0 (R3)

≤ C‖g‖Y 1,p
0 (R3).

Proof. (i) If 1 < p < 3, then g ∈ Y 1,p
0 (R3) implies that g ∈ L

3p
3−p (R3) (see (2.3)). Thanks

to Proposition 3.7, Pjg ∈ W
1, 3p

3−p

0 (R3) and we have

‖Pjg‖
W

1,
3p

3−p
0 (R3)

≤ C‖g‖
Y 1,p
0 (R3)

.

Besides, due to the fact that ∇g ∈ Lp(R3), we also have Pj∇g ∈ W 1,p
0 (R3). Now, let

(gk)k∈N ∈ D(R3) be a sequence that tends to g in Y 1,p
0 (R3). We know that we have

∂

∂x1
Pjgk = Pj

∂gk

∂x1
.

Moreover, since 1 < p < 3, then gk tends to g in L
3p

3−p (R3) which implies that Pjgk tends

to Pjg in W
1, 3p

3−p

0 (R3), in particular ∂
∂x1

Pjgk tends to ∂
∂x1

Pjg in L
3p

3−p (R3). Besides, since
∂gk
∂x1

tends to ∂g
∂x1

in W−1,p
0 (R3), then Pj

∂gk
∂x1

tends to Pj
∂g
∂x1

in Lp(R3). This implies that
∂

∂x1
Pjg = Pj

∂g
∂x1

. By the same way, we prove that ∇Pjg = Pj∇g. Thus, we deduce

that ∇Pjg ∈ W 1,p
0 (R3) and ∂

∂x1
Pjg ∈ Lp(R3) which implies that Pjg ∈ L

3p
3−2p (R3) if

1 < p < 3/2 (see [8]). Moreover, Pjg ∈ Z2,p
0 (R3) and ∇Pjg ∈ Y 1,p

0 (R3) and the estimates

(4.23) and (4.24) hold.

(ii) Since ∂g
∂xj

∈ Lp(R3), from Theorem 3.13, we have J2
∂g
∂xj

∈ W 2,p
0 (R3). Proceeding as in

the first part (i), we prove that

∂

∂x1
J2

(

∂g

∂xj

)

=
∂

∂xj
J2

(

∂g

∂x1

)

.

Since ∂g
∂x1

∈ W−1,p
0 (R3) with p ≥ 3, then we have J2(

∂g
∂x1

) ∈ W 1,p
0 (R3) and ∂

∂xj
J2

(

∂g
∂x1

)

∈

Lp(R3). �

We now introduce the pair (u∗, π∗) defined by

u∗
i = Oijfj + Pig, π∗ = Pjfj + g − E ∗

∂g

∂x1
if 1 < p < 3,

u∗
i = Oijfj − I2

∂g

∂xi
, π∗ = Pj(fj + Gj) + g if p ≥ 3,

(4.25)

where G ∈ Lp(R3) is a (non unique) vector field such that div G = ∂g
∂x1

. Next, we

introduce the notations used in [7] (see also [6]) for the resolution of the Oseen problem

(4.21). let γ, δ ∈ R be such that γ ∈ [3, 4], γ > p, δ ∈ [32 , 2], δ > p. we define two real

numbers r = r(p, γ), s = s(p, δ) as follow:

1

r
=

1

p
−

1

γ
and

1

s
=

1

p
−

1

δ
.
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Finally, we also introduce the space of polynomials

Nk =

{

(λ, µ) ∈ Pk × P
∆
k−1, −∆λ +

∂λ

∂x1
+ ∇µ = 0, div λ = 0

}

.

Combining Theorem 2.6 of [7], Proposition 4.1, Theorem 4.2 and Lemma 4.3, we easily

prove the following result which gives an explicit form for the solutions of the Oseen

equations for f ∈ Lp(R3).

Theorem 4.4. Let (f, g) ∈ Lp(R3) × Y 1,p
0 (R3). Then the Oseen problem (4.21) has at

least one solution (u, p) ∈ Z2,p
0 (R3) × W 1,p

0 (R3) defined by

u = u∗ + λ, p = p∗ + µ,

where (u∗, p∗) is given by (4.25), (λ, µ) ∈ N[2−3/p] and we have the estimate

∥

∥

∥

∥

∂2u

∂xi∂xj

∥

∥

∥

∥

Lp(R3)

+

∥

∥

∥

∥

∂u

∂x1

∥

∥

∥

∥

Lp(R3)

+ ‖∇p‖Lp(R3) ≤ C
(

‖f ‖Lp(R3) + ‖g‖Y 1,p
0 (R3)

)

.

Additionally,

(i) If 1 < p < 3
2 , then u∗ ∈ Ls(R3) and

‖u∗‖Ls(R3) ≤ C
(

‖f ‖Lp(R3) + ‖g‖Y 1,p
0 (R3)

)

.

(ii) If 3
2 < p < 3, then ∇u∗ ∈ Lr(R3) and satisfies

‖∇u∗‖Lr(R3) ≤ C
(

‖f ‖Lp(R3) + ‖g‖Y 1,p
0 (R3)

)

.

We now extend the definition of O ∗ f in the case where f ∈ W−1,p
0 (R3) by setting

∀ϕ ∈ D(R3), 〈O ∗ f, ϕ〉 =: 〈f, Ǒ ∗ ϕ〉
W−1,p

0 (R3)×W 1,p′

0 (R3)

where Ǒ(x) = O(−x).

Lemma 4.5. Assume 1 < p < 4 and f ∈ W−1,p
0 (R3)⊥P[1−3/p′]. Then O ∗ f ∈ L

4p
4−p (R3),

∇O ∈ Lp(R3) and we have

‖O ∗ f ‖
L

4p
4−p (R3)

+ ‖∇O ∗ f ‖Lp(R3) ≤ C‖f ‖W−1,p
0 (R3).

Moreover, the following assertions hold.

(i) If 1 < p < 3, then O ∗ f ∈ L
3p

3−p (R3) and

‖O ∗ f ‖
L

3p
3−p (R3)

≤ C‖f ‖W−1,p
0 (R3).

(ii) If p = 3, then O ∗ f ∈ Lq(R3), for any q ≥ 12.

(iii) If 3 < p < 4, then O ∗ f ∈ L∞(R3).
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Proof. The above properties are proved for the fundamental solution O (see [2], Theorem

4.9) and the proof is similar for the Oseen fundamental solution O. �

For p ≥ 4 and f ∈ W−1,p
0 (R3), we now define the following operator O such for any

i, j = 1, 2, 3,

Oijf(x) =

∫

R3

(

∂

∂xk
Oij(x− y) −

∂

∂xk
Oij(−y)

)

Fk(y) dy, (4.26)

where F ∈ Lp(R3) is a vector field such that f = div F. Thanks to Theorem 4.2, we have

the following result.

Theorem 4.6. The operator

O : W−1,p
0 (R3) 7→ W 1,p

0 (R3)

is continuous if p ≥ 4.

Before stating our last result, we need two preliminary lemmas that take into account the

second equation of (4.21)

Lemma 4.7. Assume g ∈ W−2,p
0 (R3)⊥P[2−3/p′]. Then E ∗ g ∈ Lp(R3) and we have

‖E ∗ g‖Lp(R3) ≤ C‖g‖
W−2,p

0 (R3)
.

Proof. For any ϕ ∈ D(R3), we have

〈E ∗ g, ϕ〉D′(R3)×D(R3) = 〈g, E ∗ ϕ〉
W−2,p

0 (R3)×W 2,p′

0 (R3)
.

Next, since g ∈ W−2,p
0 (R3)⊥P[2−3/p′], for any λ ∈ P[2−3/p′], we have

〈g, E ∗ ϕ〉
W−2,p

0 (R3)×W 2,p′

0 (R3)
= 〈g, E ∗ ϕ + λ〉W−2,p

0 (R3).

It follows that

∣

∣

∣
〈g, E ∗ ϕ〉

W−2,p
0 (R3)×W 2,p′

0 (R3)

∣

∣

∣
≤ C‖g‖W−2,p

0 (R3) inf
λ∈P[2−3/p′]

‖E ∗ ϕ + λ‖
W 2,p′

0 (R3)
.

Using now (2.2) and the Calderón-Zygmund inequality we can write

∣

∣〈g, E ∗ ϕ〉D′(R3)×D(R3)

∣

∣ ≤ C‖g‖
W−2,p

0 (R3)

∥

∥

∥

∥

∂2(E ∗ ϕ)

∂xi∂xj

∥

∥

∥

∥

Lp′(R3)

≤ C‖g‖W−2,p
0 (R3)‖∆(E ∗ ϕ)‖Lp′ (R3)

≤ C‖g‖W−2,p
0 (R3)‖‖ϕ‖Lp′ (R3),

which ends the proof. �
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Lemma 4.8. Assume 1 < p < ∞ and g ∈ Xp(R
3) such that

∀λ ∈ P[2−3/p′], 〈
∂g

∂x1
, λ〉

W−2,p
0 (R3)×W 2,p′

0 (R3)
= 0.

Then Pjg ∈ Y 1,p
0 (R3) and there exists C > 0 such that

‖Pjg‖Y 1,p
0 (R3) ≤ C‖g‖Xp(R3).

Proof. Since g ∈ Xp(R
3), then from Theorem 3.7, Pjg ∈ W 1,p

0 (R3) and we have

‖Pjg‖W 1,p
0 (R3)

≤ C‖g‖Lp(R3).

It remains to prove that ∂
∂x1

Pjg ∈ W−1,p
0 (R3). For any ϕ ∈ D(R3), we have

∣

∣

∣

∣

∣

〈

∂

∂x1
Pjg, ϕ

〉

D′(R3)×D(R3)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

〈

g,
∂

∂x1
(P̌j ∗ ϕ)

〉

Lp(R3),Lp′ (R3)

∣

∣

∣

∣

∣

,

where P̌j(x) = Pj(−x). It follows that

∣

∣

∣

∣

∣

〈

∂

∂x1
Pjg, ϕ

〉

D′(R3)×D(R3)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

〈

∂g

∂x1
, E ∗

∂ϕ

∂xj

〉

W−2,p
0 (R3)×W 2,p′

0 (R3)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

〈

∂g

∂x1
∗ E ,

∂ϕ

∂xj

〉

Lp(R3)×Lp′ (R3)

∣

∣

∣

∣

∣

From Lemma 4.7, we get

∣

∣

∣

∣

∣

〈

∂

∂x1
Pjg, ϕ

〉

D′(R3)×D(R3)

∣

∣

∣

∣

∣

≤ C

∥

∥

∥

∥

∂g

∂x1

∥

∥

∥

∥

W−2,p
0 (R3)

‖ϕ‖
W 1,p′

0 (R3)
. (4.27)

Thus we deduce that ∂
∂x1

Pjg ∈ W−1,p
0 (R3) and

∥

∥

∥

∥

∂

∂x1
Pjg

∥

∥

∥

∥

W−1,p
0 (R3)

≤ C

∥

∥

∥

∥

∂g

∂x1

∥

∥

∥

∥

W−2,p
0 (R3)

. �

For f ∈ W−1,p
0 ⊥P[1−3/p′] and g ∈ Xp(R

3), we now define the pair (u∗, p∗)

u∗
i = Oij ∗ fj + Pjg if 1 < p < 3, u∗

i = Oijfj + Pjg if p ≥ 3,

p∗ = −E ∗

(

div f +
∂g

∂x1

)

+ g.
(4.28)

Combining Theorem 2.2 of [7], Lemma 4.5, Theorem 4.6 and the previous lemmas, we

easily prove the following result.
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Theorem 4.9. Let (f, g) ∈ W−1,p
0 (R3)×Xp(R

3) satisfy the following compatibility condi-

tions

∀λ ∈ P[1−3/p′], 〈f,λ〉
W−1,p

0 (R3)×W 1,p′

0 (R3)
= 0

and

∀λ ∈ P[2−3/p′],

〈

∂g

∂x1
, λ

〉

W−2,p
0 (R3)×W 2,p′

0 (R3)

= 0.

Then the Oseen problem (4.21) has at least a solution (u, p) ∈ Y 1,p
0 (R3) × Lp(R3) defined

by

u = u∗ + λ, p = p∗,

where the pair (u∗, p∗) is given by (4.28) and λ ∈ P[1−3/p]. The following estimate holds

inf
λ∈P[1−3/p]

‖u + λ‖Y 1,p
0 (R3) + ‖p∗‖Lp(R3) ≤ C

(

‖f ‖W−1,p
0 (R3) + ‖g‖Xp(R3)

)

.

Moreover, if 1 < p < 3, then u∗ ∈ Lr(R3) and we have

‖u∗‖Lr(R3) ≤ C
(

‖f ‖W−1,p
0 (R3) + ‖g‖Xp(R3)

)

.
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