The project ChArMEx - Chemistry Aerosol Mediterranean Experiment.

To cite this version:
François Dulac, Marc Mallet, J-L. Attié, G. Athier, Gilles Bergametti, et al.. The project ChArMEx - Chemistry Aerosol Mediterranean Experiment.. IGAC 2008 : 10ème conférence internationale sur la chimie de l'atmosphère, Sep 2008, Annecy, France. <hal-00337152>

HAL Id: hal-00337152
https://hal.archives-ouvertes.fr/hal-00337152
Submitted on 7 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
The project ChArMEx - Chemistry Aerosol Mediterranean Experiment


1. Abstract.

ChArMEx is a new regional project on tropospheric chemistry and aerosols in the Mediterranean proposed by the French community, calling for international cooperation. ChArMEx proposes an integrated modelling and observational approach to study budgets of species, chemical and dynamical processes, intense events, trends, and impacts. The objectives include an assessment of the recent past, present and future states of the atmospheric chemistry and related impacts on air quality, regional climate and marine biogeochemistry.

The experimental strategy includes long-term monitoring. 2 years of enhanced surface observations, and summer intensive campaigns with research aircrafts and drifting balloons to study the aging of continental air masses over the basin when pollutants and desert dusts are at their maximum and likely impact the regional climate. Focus is presently put on the western basin. Synergies are built with other Mediterranean projects on the hydrological cycle (HyMEx) and marine ecosystems (MERMEX).

2. Some facts

A. All types of continental (soil dust, soot, anthropogenic and biogenic organics, pollution sulfates/nitrates) and marine particles (seasalt, biogenic sulfates) are present at high concentrations. Trends are uncertain.

B. Strong seasonal maxima in aerosol and gaseous pollutants are found in the Mediterranean in summer

C. Strong gradients in aerosol load

D. African dust significantly impacts air quality in rural and even urban sites of southern Europe

E. In summer, in addition to dust transport, forest fires contribute to the maximum load of absorbing aerosols (e.g., down to 0.70 μm, ~250 μg/m3) which decrease surface evaporation and modify the thermal vertical gradients

3. ChArMEx proposed work packages

- Air quality and dynamic processes: import-export budgets
- Chemical processes: secondary matter formation
- Lagrangian experiments
- Seasonal and long-term trends
- Radiative budget and Impacts
- Deposition: Fe, P, Hg inputs
- Emission inventories and source inversion
- Model intercomparison and future scenarios

4. Proposed strategy

A 4-yr large scale integrated programme in the Mediterranean basin (2010-2013) with a multistage experimental strategy:

- LOP from 2009 on: set-up of a long-term monitoring observatory in Corsica and collaboration with Mediterranean countries for establishing a network of stations covering N-S and E-W gradients with standardized automated low frequency routine measurements (e.g. sunphotometer, lidar, deposition, PM, O₃...).
- Main objectives: satellite and model validation, inter-annual variability and trends.

- 2-yr EOP from mid 2010 to mid 2012: enhanced observation period with high temporal resolution optical and chemical measurements (e.g. COVs, size distributed aerosol composition, ...) at selected stations throughout the basin.
- Main objectives: seasonal variability and budgets.

- IOPs in summer 2012 and summer 2012: intensive observation periods in 2011 and 2012 with aircrafts, balloons and additional surface measurements, based on real time spaceborne observations and model forecasts.
- Main objectives: aging of continental plumes, column closure and radiative impacts of ozone and aerosols, chemical and dynamical processes.

5. Examples of new tools available in the French community

- Updated aerosol-climate and transport models
- Improved parameterization of the aerosol direct and indirect effects on climate
- Aerosol radiative forcing is strong

Due to the variability of aerosol properties, aerosol-climate interactions are addressed through extensive regional programs and campaigns. The western Mediterranean is still missing a large scale experiment!