Left-Garside categories, self-distributivity, and braids
Patrick Dehornoy

To cite this version:
Patrick Dehornoy. Left-Garside categories, self-distributivity, and braids. 2008. <hal-00334436>

HAL Id: hal-00334436
https://hal.archives-ouvertes.fr/hal-00334436
Submitted on 26 Oct 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
LEFT-GARSIDE CATEGORIES, SELF-DISTRIBUTIVITY, AND BRAIDS

PATRICK DEHORNOY

Abstract. In connection with the emerging theory of Garside categories, we develop the notions of a left-Garside category and of a locally left-Garside monoid. In this framework, the connection between the self-distributivity law LD and braids amounts to the result that a certain category associated with LD is a left-Garside category, which projects onto the standard Garside category of braids. This approach leads to a realistic program for establishing the Embedding Conjecture of [Dehornoy, Braids and Self-distributivity, Birkhäuser (2000), Chap. IX].

The notion of a Garside monoid emerged at the end of the 1990’s [24, 19] as a development of Garside’s theory of braids [32], and it led to many developments [2, 3, 5, 6, 7, 8, 13, 14, 15, 31, 33, 34, 41, 42, 45, 46, 47, ...]. More recently, Bessis [4], Digne–Michel [27], and Krammer [38] introduced the notion of a Garside category as a further extension, and they used it to capture new, nontrivial examples and improve our understanding of their algebraic structure. The concept of a Garside category is also implicit in [25] and [35], and maybe in the many diagrams of [18].

Here we shall describe and investigate a new example of (left)-Garside category, namely a certain category \mathcal{LD}^+ associated with the left self-distributivity law

\[(LD) \quad x(yz) = (xy)(xz).\]

The interest in this law originated in the discovery of several nontrivial structures that obey it, in particular in set theory [16, 40] and in low-dimensional topology [36, 30, 44]. A rather extensive theory was developed in the decade 1985-95 [18].

Investigating self-distributivity in the light of Garside categories seems to be a good idea. It turns out that a large part of the theory developed so far can be summarized into one single statement, namely

The category \mathcal{LD}^+ is a left-Garside category,

stated as the first part of Theorem 6.1.

The interest of the approach should be at least triple. First, it gives an opportunity to restate a number of previously unrelated properties in a new language that is natural and should make them more easily understandable—this is probably not useless. In particular, the connection between self-distributivity and braids is now expressed in the simple statement:

There exists a right-lcm preserving surjective functor of \mathcal{LD}^+ to the Garside category of positive braids,

(second part of Theorem 6.1). This result allows one to recover most of the usual algebraic properties of braids as a direct application of the properties of \mathcal{LD}^+:

1991 Mathematics Subject Classification. 18B40, 20N02, 20F36.

Key words and phrases. Garside category, Garside monoid, self-distributivity, braid, greedy normal form, least common multiple, LD-expansion.
roughly speaking, Garside’s theory of braids is the emerged part if an iceberg, namely the algebraic theory of self-distributivity.

Second, a direct outcome of the current approach is a realistic program for establishing the Embedding Conjecture. The latter is the most puzzling open question involving free self-distributive systems. Among others, it says that the equivalence class of any bracketed expression under self-distributivity is a semilattice, i.e., any two expressions admit a least upper bound with respect to a certain partial ordering. Many equivalent forms of the conjecture are known [18, Chapter IX]. At the moment, no complete proof is known, but we establish the following new result

Unless the left-Garside category $\mathcal{L}D^+$ is not regular, the Embedding Conjecture is true, (Theorem 6.2). This result reduces a possible proof of the conjecture to a (long) sequence of verifications.

Third, the category $\mathcal{L}D^+$ seems to be a seminal example of a left-Garside category, quite different from all previously known examples of Garside categories. In particular, being strongly asymmetric, $\mathcal{L}D^+$ is not a Garside category. The interest of investigating such objects per se is not obvious, but the existence of a nontrivial example such as $\mathcal{L}D^+$ seems to be a good reason, and a help for orientating further research. In particular, our approach emphasizes the role of locally left-Garside monoids\(^\dagger\): this is a monoid M that fails to be Garside because no global element Δ exists, but nevertheless possesses a family of elements Δ_x that locally play the role of the Garside element and are indexed by a set on which the monoid M partially acts. Most of the properties of left-Garside monoids extend to locally left-Garside monoids, in particular the existence of least common multiples and, in good cases, of the greedy normal form.

Acknowledgement. Our definition of a left-Garside category is borrowed from [27] (up to a slight change in the formal setting, see Remark 2.6). Several proofs in Section 2 and 3 use arguments that are already present, in one form or another, in [1, 48, 28, 29, 12, 19, 35] and now belong to folklore. Most appear in the unpublished paper [27] by Digne and Michel, and are implicit in Krammer’s paper [38]. Our reasons for including such arguments here is that adapting them to the current weak context requires some polishing, and that it makes it natural to introduce our two main new notions, namely locally Garside monoids and regular left-Garside categories.

The paper is organized in two parts. The first one (Sections 1 to 3) contains those general results about left-Garside categories and locally left-Garside monoids that will be needed in the sequel, in particular the construction and properties of the greedy normal form. The second part (Sections 4 to 8) deals with the specific case of the category $\mathcal{L}D^+$ and its connection with braids. Sections 4 and 5 review basic facts about the self-distributivity law and explain the construction of the category $\mathcal{L}D^+$. Section 6 is devoted to proving that $\mathcal{L}D^+$ is a left-Garside category and to showing how the results of Section 3 might lead to a proof of the Embedding Conjecture. In Section 7, we show how to recover the classical algebraic properties of braids from those of $\mathcal{L}D^+$. Finally, we explain in Section 8 some alternative

\(^\dagger\)This is not the notion of a locally Garside monoid in the sense of [27]; we think that the name “preGarside” is more relevant for that notion, which involves no counterpart of any Garside element or map, but is only the common substratum of all Garside structures.
solutions for projecting LD^+ to braids. In an appendix, we briefly describe what happens when the associativity law replaces the self-distributivity law: here also a left-Garside category appears, but a trivial one.

We use \mathbb{N} for the set of all positive integers.

1. Left-Garside categories

We define left-Garside categories and describe a uniform way of constructing such categories from so-called locally left-Garside monoids, which are monoids with a convenient partial action.

1.1. Left-Garside monoids. Let us start from the now classical notion of a Garside monoid. Essentially, a Garside monoid is a monoid in which divisibility has good properties, and, in addition, there exists a distinguished element Δ whose divisors encode the whole structure. Slightly different versions have been considered [24, 19, 26], the one stated below now being the most frequently used. In this paper, we are interested in one-sided versions involving left-divisibility only, hence we shall first introduce the notion of a left-Garside monoid.

Throughout the paper, if a, b are elements of a monoid—or, from Section 1.2, morphisms of a category—we say that a left-divides b, denoted $a \preceq b$, if there exists c satisfying $ac = b$. The set of all left-divisors of a is denoted by $\text{Div}(a)$. If $ac = b$ holds with $c \neq 1$, we say that a is a proper left-divisor of b, denoted $a \prec b$.

We shall always consider monoids M where 1 is the only invertible element, which will imply that \preceq is a partial ordering. If two elements a, b of M admit a greatest lower bound c with respect to \preceq, the latter is called a greatest common left-divisor, or left-gcd, of a and b, denoted $c = \text{gcd}(a, b)$. Similarly, a \preceq-least upper bound d is called a least common right-multiple, or right-lcm, of a and b, denoted $d = \text{lcm}(a, b)$. We say that M admits local right-lcm’s if any two elements of M that admit a common right-multiple admit a right-lcm.

Finally, if M is a monoid and S, S' are subsets of M, we say that S left-generates S' if every nontrivial element of S' admits at least one nontrivial left-divisor belonging to S.

Definition 1.1. We say that a monoid M is left-preGarside if

(LG$_0$) for each a in M, every \preceq-increasing sequence in $\text{Div}(a)$ is finite,

(LG$_1$) M is left-cancellative,

(LG$_2$) M admits local right-lcm’s.

An element Δ of M is called a left-Garside element if

(LG$_3$) $\text{Div}(\Delta)$ left-generates M, and $a \preceq \Delta$ implies $\Delta \preceq a\Delta$.

We say that M is left-Garside if it is left-preGarside and possesses at least one left-Garside element.

Using “generates” instead of “left-generates” in (LG$_3$) would make no difference, by the following trivial remark—but the assumption (LG$_0$) is crucial, of course.

Lemma 1.2. Assume that M is a monoid satisfying (LG$_0$). Then every subset S left-generating M generates M.

Proof. Let a be a nontrivial element of M. By definition there exist $a_1 \neq 1$ in S and a' satisfying $a = a_1 a'$. If a' is trivial, we are done. Otherwise, there exist $a_2 \neq 1$
in S and a'' satisfying $a' = a_2a''$, and so on. The sequence $1, a_1, a_1a_2, \ldots$ is \prec-increasing and it lies in $\text{Div}(a)$, hence it must be finite, yielding $a = a_1 \ldots a_d$ with a_1, \ldots, a_d in S.

Right-divisibility is defined symmetrically: a right-divides b if $b = ca$ holds for some c. Then the notion of a right-(pre)Garside monoid is defined by replacing left-divisibility by right-divisibility and left-product by right-product in Definition 1.1.

Definition 1.3. We say that a monoid M is **Garside with Garside element** Δ if M is both left-Garside with left-Garside element Δ and right-Garside with right-Garside element Δ.

The equivalence of the above definition with that of [26] is easily checked. The seminal example of a Garside monoid is the braid monoid B_n^+ equipped with Garside’s fundamental braid Δ_n, see for instance [32, 29]. Other classical examples are free abelian monoids and, more generally, all spherical Artin–Tits monoids [10], as well as the so-called dual Artin–Tits monoids [9, 4]. Every Garside monoid embeds in a group of fractions, which is then called a Garside group.

Let us mention that, if a monoid M is left-Garside, then mild conditions imply that it is Garside: essentially, it is sufficient that M is right-cancellative and that the left- and right-divisors of the left-Garside element Δ coincide [19].

1.2. **Left-Garside categories.** Recently, it appeared that a number of results involving Garside monoids still make sense in a wider context where categories replace monoids [4, 27, 38]. A category is similar to a monoid, but the product of two elements is defined only when the target of the first is the source of the second. In the case of Garside monoids, the main benefit of considering categories is that it allows for relaxing the existence of the global Garside element Δ into a weaker, local version depending on the objects of the category, namely a map from the objects to the morphisms.

We refer to [43] for some basic vocabulary about categories—we use very little of it here.

Convention. Throughout the paper, composition of morphisms is denoted by a multiplication on the right: fg means “f then g”. If f is a morphism, the source of f is denoted $\partial_0 f$, and its target is denoted $\partial_1 f$. In all examples, we shall make the source and target explicit: morphisms are triples (x, f, y) satisfying $\partial_0(x, f, y) = x$, $\partial_1(x, f, y) = y$.

A morphism f is said to be nontrivial if $f \neq 1_{\partial_0 f}$ holds.

We extend to categories the terminology of divisibility. So, we say that a morphism f is a left-divisor of a morphism g, denoted $f \preceq g$, if there exists h satisfying $fh = g$. If, in addition, h can be assumed to be nontrivial, we say that $f \prec g$ holds. Note that $f \prec g$ implies $\partial_0 f = \partial_0 g$. We denote by $\text{Div}(f)$ the collection of all left-divisors of f.

The following definition is equivalent to Definition 2.10 of [27] by F. Digne and J. Michel—see Remark 2.6 below.

Definition 1.4. We say that a category \mathcal{C} is left-preGarside if

- (\mathcal{L}_0) for each f in $\text{Hom}(\mathcal{C})$, every \prec-ascending sequence in $\text{Div}(f)$ is finite,
- (\mathcal{L}_1) $\text{Hom}(\mathcal{C})$ admits left-cancellation,
Example 1.5. Assume that M is a left-Garside monoid with left-Garside element Δ. One trivially obtains a left-Garside category $C(M)$ by putting

$$\text{Obj}(C(M)) = \{1\}, \quad \text{Hom}(C(M)) = \{1 \times M \times \{1\}, \quad \Delta(1) = \Delta.$$

Another left-Garside category \tilde{C}_M can be attached with M, namely taking

$$\text{Obj}(\tilde{C}(M)) = M, \quad \text{Hom}(\tilde{C}(M)) = \{(a, b, c) \mid ab = c\}, \quad \Delta(a) = \Delta.$$

It is natural to call $\tilde{C}(M)$ the Cayley category of M since its graph is the Cayley graph of M (defined provided M is right-cancellative).

The notion of a right-Garside category can be defined symmetrically, exchanging left and right everywhere and exchanging the roles of source and target. In particular, the map Δ and Axiom (\mathcal{L}_2) is to be replaced by a map ∇ satisfying $\partial_1 \nabla(x) = x$ and, using $b \succcurlyeq a$ for “a right-divides b”.

$$(\mathcal{L}_2) \quad \nabla(y) \text{ right-generates } \text{Hom}(-, y), \quad \nabla(y) \nabla(f) \text{ implies } \nabla(\partial_0 y) f \succcurlyeq \nabla(y).$$

Then comes the natural two-sided version of a Garside category [4, 27].

Definition 1.6. We say that a category C is Garside with Garside map Δ if C is left-Garside with left-Garside map Δ and right-Garside with right-Garside map ∇ satisfying $\Delta(x) = \nabla(\partial_1 (\Delta(x))$ and $\nabla(y) = \Delta(\partial_0 (\nabla(y))$ for all objects x, y.

It is easily seen that, if M is a Garside monoid, then the categories $C(M)$ and $\tilde{C}(M)$ of Example 1.5 are Garside categories. Insisting that the maps Δ and ∇ involved in the left- and right-Garside structures are connected as in Definition 1.6 is crucial: see Appendix for a trivial example where the connection fails.

1.3. Locally left-Garside monoids. We now describe a general method for constructing a left-Garside category starting from a monoid equipped with a partial action on a set. The trivial examples of Example 1.5 enter this family, and so do the two categories LD^- and B^- investigated in the second part of this paper.

Definition 1.7. Assume that M is a monoid. We say that $\alpha : M \times X \to X$ is a partial (right) action of M on X if, writing $x \cdot a$ for $\alpha(a)(x)$,

(i) $x \cdot 1 = x$ holds for each $x \in X$,

(ii) $(x \cdot a) \cdot b = x \cdot ab$ holds for all x, a, b, this meaning that either both terms are defined and they are equal, or neither is defined,

(iii) for each finite subset S in M, there exists $x \in X$ such that $x \cdot a$ is defined for each a in S.

In the above context, for each $x \in X$, we put

$$(1.1) \quad M_x = \{ a \in M \mid x \cdot a \text{ is defined} \}.$$

Then Conditions (i), (ii), (iii) of Definition 1.7 imply

$$1 \in M_x, \quad ab \in M_x \iff (a \in M_x \& b \in M_{x \cdot a}), \quad \forall \text{ finite } S \exists x (S \subseteq M_x).$$
A monoid action in the standard sense, i.e., an everywhere defined action, is a partial action. For a more typical case, consider the \(n \)-strand Artin braid monoid \(B_n^+ \). We recall that \(B_n^+ \) is defined for \(n \leq \infty \) by the monoid presentation

\[
B_n^+ = \langle \sigma_1, \ldots, \sigma_{n-1} \mid \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \text{ for } |i - j| = 1, \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \text{ for } |i - j| \geq 2 \rangle.
\]

Then we obtain a partial action of \(B_\infty^+ \) on \(\mathbb{N} \) by putting

\[
n \cdot a = \begin{cases}
n & \text{if } a \text{ belongs to } B_n^+, \\
\text{undefined} & \text{otherwise}.
\end{cases}
\]

A natural category can then be associated with every partial action of a monoid.

Definition 1.8. For \(\alpha \) a partial action of a monoid \(M \) on a set \(X \), the category associated with \(\alpha \), denoted \(C(\alpha) \), or \(C(M, X) \) if the action is clear, is defined by

\[
\text{Obj}(C(M, X)) = X, \quad \text{Hom}(C(M, X)) = \{(x, a, x \cdot a) \mid x \in X, a \in M\}.
\]

Example 1.9. We shall denote by \(B^+ \) the category associated with the action (1.3) of \(B_\infty^+ \) on \(\mathbb{N} \), i.e., we put

\[
\text{Obj}(B^+) = \mathbb{N}, \quad \text{Hom}(B^+) = \{(n, a, n) \mid n \in B_n^+\}.
\]

Define \(\Delta : \text{Obj}(B^+) \to \text{Hom}(B^+) \) by \(\Delta(n) = (n, \Delta_n, n) \). Then the well known fact that \(B_n^+ \) is a Garside monoid for each \(n \) [32, 37] easily implies that \(B^+ \) is a Garside category (as will be formally proved in Proposition 1.11 below).

The example of \(B^+ \) shows the benefit of going from a monoid to a category. The monoid \(B_\infty^+ \) is not a (left)-Garside monoid, because it is of infinite type and there cannot exist a global Garside element \(\Delta \). However, the partial action of (1.3) enable us to restrict to subsets \(B_n^+ \) (submonoids in the current case) for which Garside elements exist: with the notation of (1.1), \(B_n^+ \) is \((B_\infty^+)_n \). Thus the categorical context allows to capture the fact that \(B_\infty^+ \), in some sense, locally Garside. It is easy to formalize these ideas in a general setting.

Definition 1.10. Let \(M \) be a monoid with a partial action \(\alpha \) on a set \(X \). A sequence \((\Delta_x)_{x \in X} \) of elements of \(M \) is called a left-Garside sequence for \(\alpha \) if, for each \(x \in X \), the element \(x \cdot \Delta_x \) is defined and

\[
(\text{LGS}_3) \text{ Div}(\Delta_x) \text{ left-generates } M_x \text{ and } a \preceq \Delta_x \text{ implies } \Delta_x \preceq a \Delta_{x \cdot a}.
\]

The monoid \(M \) is said to be locally left-Garside with respect to \(\alpha \) if it is left-preGarside and there is at least one left-Garside sequence for \(\alpha \).

A typical example of a locally left-Garside monoid is \(B_\infty^+ \) with its action (1.3) on \(\mathbb{N} \). Indeed, the sequence \((\Delta_n)_{n \in \mathbb{N}} \) is clearly a left-Garside sequence for (1.3).

The next result should appear quite natural.

Proposition 1.11. Assume that \(M \) is a locally left-Garside monoid with left-Garside sequence \((\Delta_x)_{x \in X} \). Then \(C(M, X) \) is a left-Garside category with left-Garside map \(\Delta \) defined by \(\Delta(x) = (x, \Delta_x, x \cdot \Delta_x) \).

Proof. By definition, \((x, a, y) \preceq (x', a', y') \) in \(C(M, X) \) implies \(x' = x \) and \(a \preceq a' \) in \(M \). So the hypothesis that \(M \) satisfies \((\text{LGS}_0) \) implies that \(C(M, X) \) does.

Next, \((x, a, y)(y, b, z) = (x, a, y)(y, b', z') \) implies \(ab = ab' \) in \(M \), hence \(b = b' \) by \((\text{LGS}_1) \), and, therefore, \(C(M, X) \) satisfies \((\text{LGS}_1) \).
Hence M and x, c, x that a holds in M. By (\mathcal{L}_f), a and b admit a right-lcm c, and we have $a \equiv c$, $b \equiv c$, and $c \equiv ab'$. By hypothesis, $x \cdot ab'$ is defined, hence so is $x \cdot c$, and it is obvious to check that $(x, c, x \cdot c)$ is a right-lcm of (x, a, y) and (x, b, z) in $\text{Hom}(\mathcal{C}(M, X))$.

Hence $\mathcal{C}(M, X)$ satisfies (\mathcal{L}_f).

Assume that (x, a, y) is a nontrivial morphism of $\text{Hom}(\mathcal{C}(M, X))$. This means that a is nontrivial, so, by (\mathcal{L}_f), some left-divisor a' of Δ_x is a left-divisor of a. Then $(x, a', x \cdot a') \equiv \Delta(x)$ holds, and $\Delta(x)$ left-generates $\text{Hom}(x, -)$.

Finally, assume $(x, a, y) \equiv \Delta(x)$ in $\text{Hom}(\mathcal{C}(M, X))$. This implies $a \equiv \Delta_x$ in M. Then (\mathcal{L}_f) in M implies $\Delta_x \equiv a\Delta_y$. By hypothesis, $y \cdot \Delta_y$ is defined, and we have $(x, a, y) \Delta(y) = (x, a\Delta_y, x \cdot a\Delta_y)$, of which $(x, \Delta_x, x \cdot \Delta_x)$ is a left-divisor in $\text{Hom}(\mathcal{C}(M, X))$. So (\mathcal{L}_f) is satisfied in $\mathcal{C}(M, X)$.

It is not hard to see that, conversely, if M is a left-preGarside monoid, then $\mathcal{C}(M, X)$ being a left-Garside category implies that M is a locally left-Garside monoid. We shall not use the result here.

If M has a total action on X, i.e., if $x \cdot a$ is defined for all x and a, the sets M_x coincide with M, and Condition (\mathcal{L}_f) reduces to (\mathcal{L}_f). In this case, each element Δ_x is a left-Garside element in M, and M is a left-Garside monoid. A similar result holds for each set M_x that turns out to be a submonoid (if any).

Proposition 1.12. Assume that M is a locally left-Garside monoid with left-Garside sequence $(\Delta_x)_{x \in X}$, and x is such that M_x is closed under product and $\Delta_y = \Delta_x$ holds for each y in M_x. Then M_x is a left-Garside submonoid of M.

Proof. By definition of a partial action, $x \cdot 1$ is defined, so M_x contains 1, and it is a submonoid of M. We show that M_x satisfies (\mathcal{L}_0), (\mathcal{L}_1), (\mathcal{L}_2), and (\mathcal{L}_f). First, a counter-example to (\mathcal{L}_0) in M_x would be a counter-example to (\mathcal{L}_0) in M, hence M_x satisfies (\mathcal{L}_0). Similarly, an equality $ab = ab'$ with $b \neq b'$ in M_x would also contradict (\mathcal{L}_1) in M_x, so M_x satisfies (\mathcal{L}_1). Now, assume that a and b admit in M_x, hence in M, a common right-multiple c. Then a and b admit a right-lcm c' in M. By hypothesis, $x \cdot c$ is defined, and $c' \equiv c$ holds. By definition of a partial action, $x \cdot c'$ is defined as well, i.e., c' lies in M_x, and it is a right-lcm of a and b in M_x. So M_x satisfies (\mathcal{L}_2), and it is left-preGarside.

Next, Δ_x is a left-Garside element in M_x. Indeed, let a be any nontrivial element of M_x. By (\mathcal{L}_f), there exists a nontrivial divisor a' of a satisfying $a' \equiv \Delta_x$. By definition of a partial action, $x \cdot a'$ is defined, so it belongs to M_x, and Δ_x left-generates M_x. Finally, assume $a \equiv \Delta_x$. As Δ_x belongs to M_x, this implies $a \equiv \Delta_x$. As Δ_x belongs to M_x, this implies $a \equiv \Delta_x$. Hence $a \equiv \Delta_x$ by (\mathcal{L}_f), i.e., $\Delta_x \equiv \Delta_x$, since we assumed that the sequence Δ is constant on M_x. So Δ_x a left-Garside in M_x.

2. Simple morphisms

We return to general left-Garside categories and establish a few basic results. As in the case of Garside monoids, an important role is played by the divisors of Δ, a local notion here.

2.1. Simple morphisms and the functor ϕ.

Definition 2.1. Assume that \mathcal{C} is a left-Garside category. A morphism f of \mathcal{C} is called simple if it is a left-divisor of $\Delta(\partial f)$. In this case, we denote by f^*
the unique simple morphism satisfying \(f f^* = \Delta(\partial_0 f) \). The family of all simple morphisms in \(C \) is denoted by \(\text{Hom}^{sp}(C) \).

By definition, every identity morphism \(1_x \) is a left-divisor of every morphism with source \(x \), hence in particular of \(\Delta(x) \). Therefore \(1_x \) is simple.

Definition 2.2. Assume that \(C \) is a left-Garside category. We put \(\phi(x) = \partial_1(\Delta(x)) \) for \(x \in \text{Obj}(C) \), and \(\phi(f) = f^{**} \) for \(f \) in \(\text{Hom}^{sp}(C) \).

Although straightforward, the following result is fundamental—and it is the main argument for stating (\(\mathcal{L}_3 \)) in the way we did.

Lemma 2.3. Assume that \(C \) is a left-Garside category.

(i) If \(f \) is a simple morphism, so are \(f^* \) and \(\phi(f) \).

(ii) Every right-divisor of a morphism \(\Delta(x) \) is simple.

Proof. (i) By (\(\mathcal{L}_3 \)), we have \(ff^* = \Delta(\partial_0 f) \preceq f \Delta(\partial_1 f) \), hence \(f^* \preceq \Delta(\partial_1 f) \) by left-cancelling \(f \). This shows that \(f^* \) is simple. Applying the result to \(f^* \) shows that \(\phi(f) \)—as well as \(\phi^k(f) \) for each positive \(k \)—is simple.

(ii) Assume that \(g \) is a right-divisor of \(\Delta(x) \). This means that there exists \(f \) satisfying \(fg = \Delta(x) \), hence \(g = f^* \) by (\(\mathcal{L}_1 \)). Then \(g \) is simple by (i) \(\square \)

Lemma 2.4. Assume that \(C \) is a left-Garside category.

(i) The morphisms \(1_x \) are the only left- or right-invertible morphisms in \(C \).

(ii) Every morphism of \(C \) is a product of simple morphisms.

(iii) There is a unique way to extend \(\phi \) into a functor of \(C \) into itself.

(iv) The map \(\Delta \) is a natural transformation of the identity functor into \(\phi \), i.e., for each morphism \(f \), we have

\[
(2.1) \quad f \Delta(\partial_1 f) = \Delta(\partial_0 f) \phi(f).
\]

Proof. (i) Assume \(fg = 1_x \) with \(f \not=} 1_x \) and \(g \not=} 1_{\partial_1 f} \). Then we have

\[
1_x \prec f \prec fg \prec f \prec fg \prec ...,
\]

an infinite \(\prec \)-increasing sequence in \(\text{Div}(1_x) \) that contradicts (\(\mathcal{L}_0 \)).

(ii) Let \(f \) be a morphism of \(C \), and let \(x = \partial_0 f \). If \(f \) is trivial, then it is simple, as observed above. We wish to prove that simple morphisms generate \(\text{Hom}(C) \). Owing to Lemma 1.2, it is enough to prove that simple morphisms left-generate \(\text{Hom}(C) \), i.e., that every nontrivial morphism with source \(x \) is left-divisible by a simple morphism with source \(x \), in other words by a left-divisor of \(\Delta(x) \). This is exactly what the first part of Condition (\(\mathcal{L}_3 \)) claims.

(iii) Up to now, \(\phi \) has been defined on objects, and on simple morphisms. Note that, by construction, (2.1) is satisfied for each simple morphism \(f \). Indeed, applying Definition 2.1 for \(f \) and \(f^* \) gives the relations

\[
ff^* = \Delta(\partial_0 f) \quad \text{and} \quad f^* f^{**} = \Delta(\partial_0 f^*) = \Delta(\partial_1 f),
\]

whence

\[
f \Delta(\partial_1 f) = ff^{**} = \Delta(\partial_0 f^*)f^{**} = \Delta(\partial_0 f)\phi(f).
\]

Applying this to \(f = 1_x \) gives \(\Delta(x) = \Delta(x)\phi(1_x) \), hence \(\phi(1_x) = 1_{\phi(x)} \) by (\(\mathcal{L}_1 \)).

Let \(f \) be an arbitrary morphism of \(C \), and let \(f_1...f_p \) and \(g_1...g_q \) be two decompositions of \(f \) as a product of simple morphisms, which exist by (ii). Repeatedly
applying (2.1) to \(f_p, \ldots, f_1 \) and \(g_q, \ldots, g_1 \) gives
\[
 f \Delta(\partial_0 f) = f_1 \cdots f_p \Delta(\partial_0 f) = \Delta(\partial_0 f) \phi(f_1) \cdots \phi(f_p)
\]
\[
 = g_1 \cdots g_q \Delta(\partial_1 f) = \Delta(\partial_0 f) \phi(g_1) \cdots \phi(g_q).
\]
By (LG), we deduce \(\phi(f_1) \cdots \phi(f_p) = \phi(g_1) \cdots \phi(g_q) \), and therefore there is no ambiguity in defining \(\phi(f) \) to be the common value. In this way, \(\phi \) is extended to all morphisms in such a way that \(\phi \) is a functor and (2.1) always holds. Conversely, the above definition is clearly the only one that extends \(\phi \) into a functor.

(iv) We have seen above that (2.1) holds for every morphism \(f \), so nothing new is needed here. See Figure 1 for an illustration.

\[
\begin{align*}
x & \xymatrix{ x \ar[r]^f & y } \\
\Delta(x) & \Delta(y) \ar[d]_f \\
\phi(x) & \phi(y) \ar[u]^{\phi(f)}
\end{align*}
\]

Figure 1. Relation (2.1): the Garside map \(\Delta \) viewed as a natural transformation from the identity functor to the functor \(\phi \).

Lemma 2.5. Assume that \(\mathcal{C} \) is a left-Garside category. Then, for each object \(x \) and each simple morphism \(f \), we have
\[
(2.2) \quad \phi(\Delta(x)) = \Delta(\phi(x)) \quad \text{and} \quad \phi(f^\ast) = \phi(f)^\ast.
\]

Proof. By definition, the source of \(\Delta(x) \) is \(x \) and its target is \(\phi(x) \), hence applying (2.1) with \(f = \Delta(x) \) yields \(\Delta(x) \Delta(\phi(x)) = \Delta(\phi(x)) \phi(\Delta(x)) \), hence \(\Delta(\phi(x)) = \phi(\Delta(x)) \) after left-cancelling \(\Delta(x) \).

On the other hand, let \(x = \partial_0 f \). Then we have \(\Delta(x) \Delta(\phi(x)) = \Delta(\phi(x)) \phi(\Delta(x)) \), hence \(\Delta(\phi(x)) = \phi(\Delta(x)) \) after left-cancelling \(\Delta(x) \).

Applying \(\phi \) and the above relation, we find
\[
\phi(f) \phi(f^\ast) = \phi(\Delta(x)) = \Delta(\phi(x)) = \Delta(\partial_0(\phi(f))) = \phi(f) \phi(f)^\ast.
\]
Left-cancelling \(\phi(f) \) yields \(\phi(f^\ast) = \phi(f)^\ast \).

\[\square\]

Remark 2.6. We can now see that Definition 1.4 is equivalent to Definition 2.10 of [27]: the only difference is that, in the latter, the functor \(\phi \) is part of the definition. Lemma 2.4(iv) shows that a left-Garside category in our sense is a left-Garside category in the sense of [27]. Conversely, the hypothesis that \(\phi \) and \(\Delta \) satisfy (2.1) implies that, for \(f : x \to y \), we have \(\Delta(x) \phi(y) = f \Delta(y) \), whence \(\Delta(x) \leq f \Delta(y) \) and \(f^\ast \phi(y) = \Delta(y) \), which, by (LG), implies \(\phi(f) = f^\ast \). So every left-Garside category in the sense of [27] is a left-Garside category in the sense of Definition 1.4.

2.2. The case of a locally left-Garside monoid

We now consider the particular case of a category associated with a partial action of a monoid \(M \).

Lemma 2.7. Assume that \(M \) is a locally left-Garside monoid with left-Garside sequence \((\Delta_x)_{x \in X}\). Then \(\Delta_x \equiv a \Delta_x \ast a \) holds whenever \(x \ast a \) is defined, and, defining \(\Delta_x \ast a \) by \(\Delta_x \ast a = a \Delta_x \ast a \), we have
\[
(2.3) \quad \phi(x) = x \ast \Delta_x, \quad \phi((x, a, y)) = (\phi(x), \phi(a, \phi(y))).
\]
Proof. Assume that \(x \cdot a \) is defined. By Lemma 2.4(ii), the morphism \((x,a,x \cdot a)\) of \(\mathcal{C}(M,X) \) can be decomposed into a finite product of simple morphisms \((x_0,a_1,x_1), \ldots, (x_{d-1},a_d,x_d)\). This implies \(a = a_1 \cdots a_d \) in \(M \). The hypothesis that each morphism \((x_{i-1},a_i,x_i)\) is simple implies \(\Delta_{x_{i-1}} \preceq a_i \Delta_{x_i} \) for each \(i \), whence

\[
\Delta_x \preceq a_1 \Delta_{x_1} \preceq a_1 a_2 \Delta_{x_2} \preceq \cdots \preceq a_1 \cdots a_d \Delta_{x_d} = a \Delta_{x \cdot a}.
\]

Hence, for each element \(a \) in \(M_x \), there exists a unique element \(a' \) satisfying \(\Delta_x a' = a \Delta_{x \cdot a} \), and this is the element we define to be \(\phi_x(a) \).

Then, \(x \cdot a = y \) implies

\[
(x,a,y)(y,\Delta_y,\phi(y)) = (x,\Delta_x,\phi(x))((\phi(x),\phi_x(a),\phi(y)).
\]

By uniqueness, we deduce \(\phi((x,a,y)) = (\phi(x),\phi_x(a),\phi(y)). \)

\(\square \)

2.3. Greatest common divisors. We observe—or rather recall—that left-gcd’s always exist in a left-preGarside category. We begin with a standard consequence of the noetherianity assumption (\((\mathcal{L}_0)\)).

Lemma 2.8. Assume that \(\mathcal{C} \) is a left-preGarside category and \(S \) is a subset of \(\text{Hom}(\mathcal{C}) \) that contains the identity-morphisms and is closed under right-lcm. Then every morphism has a unique maximal left-divisor that lies in \(S \).

Proof. Let \(f \) be an arbitrary morphism. Starting from \(f_0 = 1_{\partial_0 f} \), which belongs to \(S \) by hypothesis, we construct a \(\prec \)-increasing sequence \(f_0, f_1, \ldots \) in \(S \cap \text{Div}(f) \).

As long as \(f_i \) is not \(\prec \)-maximal in \(S \cap \text{Div}(f) \), we can find \(f_{i+1} \) in \(S \) satisfying \(f_i \prec f_{i+1} \approx f \). Condition \((\mathcal{L}_0)\) implies that the construction stops after a finite number \(d \) of steps. Then \(f_d \) is a maximal left-divisor of \(f \) lying in \(S \).

As for uniqueness, assume that \(g' \) and \(g'' \) are maximal left-divisors of \(f \) that lie in \(S \). By construction, \(g' \) and \(g'' \) admit a common right-multiple, namely \(f \), hence, by \((\mathcal{L}_2)\), they admit a right-lcm \(g \). By construction, \(g \) is a left-divisor of \(f \), and it belongs to \(S \) since \(g' \) and \(g'' \) do. The maximality of \(g \) and \(g' \) implies \(g' = g = g'' \). \(\square \)

Proposition 2.9. Assume that \(\mathcal{C} \) is a left-preGarside category. Then any two morphisms of \(\mathcal{C} \) sharing a common source admit a unique left-gcd.

Proof. Let \(S \) be the family of all common left-divisors of \(f \) and \(g \). It contains \(1_{\partial_0 f} \), and it is closed under lcm. A left-gcd of \(f \) and \(g \) is a maximal left-divisor of \(f \) lying in \(S \). Lemma 2.8 gives the result. \(\square \)

2.4. Least common multiples. As for right-lcm, the axioms of left-Garside categories only demand that a right-lcm exists when a common right-multiple does. A necessary condition for such a common right-multiple to exist is to share a common source. This condition is also sufficient. Again we begin with an auxiliary result.

Lemma 2.10. Assume that \(\mathcal{C} \) is a left-Garside category. Then, for \(f = f_1 \cdots f_d \) with \(f_1, \ldots, f_d \) simple and \(x = \partial_0 f \), we have

\[
(2.4) \quad f \preceq \Delta(x) \Delta(\phi(x)) \cdots \Delta(\phi^{d-1}(x)).
\]

Proof. We use induction on \(d \). For \(d = 1 \), this is the definition of simplicity. Assume \(d \geq 2 \). Put \(y = \partial_1 f_1 \). Applying the induction hypothesis to \(f_2 \cdots f_d \), we find

\[
f = f_1(f_2 \cdots f_d) \preceq f_1 \Delta(y) \Delta(\phi(y)) \cdots \Delta(\phi^{d-2}(y))
\]

\[
= \Delta(x) \Delta(\phi(x)) \cdots \Delta(\phi^{d-2}(x)) \Delta(\phi^{d-1}(f_1))
\]

\[
\preceq \Delta(x) \Delta(\phi(x)) \cdots \Delta(\phi^{d-2}(x)) \Delta(\phi^{d-1}(x)).
\]
The second equality comes from applying (2.1) \(d - 1 \) times, and the last inequality comes from the fact that \(\phi^{d-1}(f_1) \) is simple with source \(\phi^{d-1}(x) \).

Proposition 2.11. Assume that \(C \) is a left-Garside category. Then any two morphisms of \(C \) sharing a common source admit a unique right-lcm.

Proof. Let \(f, g \) be any two morphisms with source \(x \). By Lemma 2.4, there exists \(d \) such that \(f \) and \(g \) can be expressed as the product of at most \(d \) simple morphisms. Then, by Lemma 2.10, \(\Delta(x) \Delta(\phi(x)) \cdots \Delta(\phi^{d-1}(x)) \) is a common right-multiple of \(f \) and \(g \). Finally, \((\mathbb{L}_2) \) implies that \(f \) and \(g \) admit a right-lcm. The uniqueness of the latter is guaranteed by Lemma 2.4(i). \(\square \)

In a general context of categories, right-lcm’s are usually called push-outs (whereas left-lcm’s are called pull-backs). So Proposition 2.11 states that every left-Garside category admits pushouts.

Applying the previous results to the special case of categories associated with a partial action gives analogous results for all locally left-Garside monoids.

Corollary 2.12. Assume that \(M \) is a locally left-Garside monoid with respect to some partial action of \(M \) on \(X \).

(i) Any two elements of \(M \) admit a unique left-gcd and a unique right-lcm.

(ii) For each \(x \) in \(X \), the subset \(M_x \) of \(M \) is closed under right-lcm.

Proof. (i) As for left-gcd’s, the result directly follows from Proposition 2.9 since, by definition, \(M \) is left-preGarside.

As for right-lcm’s, assume that \(M \) is locally left-Garside with left-Garside sequence \((\Delta_x)_{x \in X} \). Let \(a, b \) be two elements of \(M \). By definition of a partial action, there exists \(x \) in \(X \) such that both \(x \cdot a \) and \(x \cdot b \) are defined. By Proposition 2.11, \((x, a, x \cdot a) \) and \((x, b, x \cdot b) \) admit a right-lcm \((x, c, z) \) in the category \(C(M, X) \). By construction, \(c \) is a common right-multiple of \(a \) and \(b \) in \(M \). As \(M \) is assumed to satisfy \((\mathbb{L}_2) \), \(a \) and \(b \) admit a right-lcm in \(M \).

(ii) Fix now \(x \) in \(X \), and let \(a, b \) belong to \(M_x \), i.e., assume that \(x \cdot a \) and \(x \cdot b \) are defined. Then \((x, a, x \cdot a) \) and \((x, b, x \cdot b) \) are morphisms of \(C(M, X) \). As above, they admit a right-lcm, which must be \((x, c, x \cdot c) \) when \(c \) is the right-lcm of \(a \) and \(b \). Hence \(c \) belongs to \(M_x \). \(\square \)

3. Regular left-Garside categories

The main interest of Garside structures is the existence of a canonical normal forms, the so-called greedy normal form [29]. In this section, we adapt the construction of the normal form to the context of left-Garside categories—this was done in [27] already—and of locally left-Garside monoids. The point here is that studying the computation of the normal form naturally leads to introducing the notion of a regular left-Garside category, crucial in Section 6.

3.1. The head of a morphism.

By Lemma 2.4(ii), every morphism in a left-Garside category is a product of simple morphisms. The decomposition need not to be unique in general, and the first step for constructing a normal form consists in isolating a particular simple morphism that left-divides the considered morphism. It will be useful to develop the construction in a general framework where the distinguished morphisms need not necessarily be the simple ones.
Notation. We recall that, for \(f, g\) in \(\text{Hom}(\mathcal{C})\), where \(\mathcal{C}\) is a left-preGarside category, \(\text{lcm}(f, g)\) is the right-lcm of \(f\) and \(g\), when it exists. In this case, we denote by \(f \setminus g\) the unique morphism that satisfies
\[
(3.1) \quad f \cdot f \setminus g = \text{lcm}(f, g).
\]
We use a similar notation in the case of a (locally) left-Garside monoid.

Definition 3.1. Assume that \(\mathcal{C}\) is a left-preGarside category and \(\mathcal{S}\) is included in \(\text{Hom}(\mathcal{C})\). We say that \(\mathcal{S}\) is a seed for \(\mathcal{C}\) if
(i) \(\mathcal{S}\) left-generates \(\text{Hom}(\mathcal{C})\),
(ii) \(\mathcal{S}\) is closed under the operations \(\text{lcm}\) and \(\setminus\),
(iii) \(\mathcal{S}\) is closed under left-divisor.

In other words, \(\mathcal{S}\) is a seed for \(\mathcal{C}\) if (i) every nontrivial morphism of \(\mathcal{C}\) is left-divisible by a nontrivial element of \(\mathcal{S}\), (ii) for all \(f, g\) in \(\mathcal{S}\), the morphisms \(\text{lcm}(f, g)\) and \(f \setminus g\) belong to \(\mathcal{S}\) whenever they exist, and (iii) for each \(f\) in \(\mathcal{S}\), the relation \(h \preceq f\) implies \(h \in \mathcal{S}\).

Lemma 3.2. If \(\mathcal{C}\) is a left-Garside category, then \(\text{Hom}^{\mathcal{S}}(\mathcal{C})\) is a seed for \(\mathcal{C}\).

Proof. First, \(\text{Hom}^{\mathcal{S}}(\mathcal{C})\) left-generates \(\text{Hom}(\mathcal{C})\) by Condition (LG3).

Next, assume that \(f, g\) are simple morphisms sharing the same source \(x\). By Proposition 2.11, the morphisms \(\text{lcm}(f, g)\) and \(f \setminus g\) exist. By definition, we have \(f \preceq \Delta(x)\) and \(g \preceq \Delta(x)\), hence \(\text{lcm}(f, g) \preceq \Delta(x)\). Hence \(\text{lcm}(f, g)\) is simple. Let \(h\) satisfy \(\text{lcm}(f, g)h = \Delta(x)\). This is also \(f(\setminus g)h = \Delta(x)\). By Lemma 2.3(ii), \((f \setminus g)h\), which is a right-divisor of \(\Delta(x)\), is simple, and, therefore, \(f \setminus g\), which is a left-divisor of \((f \setminus g)h\), is simple as well by transitivity of \(\preceq\).

Finally, \(\text{Hom}^{\mathcal{S}}(\mathcal{C})\) is closed under left-divisor by definition. \(\square\)

Lemma 2.8 guarantees that, if \(\mathcal{S}\) is a seed for \(\mathcal{C}\), then every morphism \(f\) of \(\mathcal{C}\) has a unique maximal left-divisor \(g\) lying in \(\mathcal{S}\), and Condition (i) of Definition 3.1 implies that \(g\) is nontrivial whenever \(f\) is.

Definition 3.3. In the context above, the morphism \(g\) is called the \(\mathcal{S}\)-head of \(f\), denoted \(H_{\mathcal{S}}(f)\).

In the case of \(\text{Hom}^{\mathcal{S}}(\mathcal{C})\), it is easy to check, for each \(f\) in \(\text{Hom}(\mathcal{C})\), the equality
\[
(3.2) \quad H_{\text{Hom}^{\mathcal{S}}(\mathcal{C})}(f) = \gcd(f, \Delta(\partial_0 f));
\]
in this case, we shall simply write \(H(f)\) for \(H_{\text{Hom}^{\mathcal{S}}(\mathcal{C})}(f)\).

3.2. Normal form. The following result is an adaptation of a result that is classical in the framework of Garside monoids.

Proposition 3.4. Assume that \(\mathcal{C}\) is a left-preGarside category and \(\mathcal{S}\) is a seed for \(\mathcal{C}\). Then every nontrivial morphism \(f\) of \(\mathcal{C}\) admits a unique decomposition
\[
(3.3) \quad f = f_1...f_d,
\]
where \(f_1,...,f_d\) lie in \(\mathcal{S}\), \(f_d\) is nontrivial, and \(f_i\) is the \(\mathcal{S}\)-head of \(f_i...f_d\) for each \(i\).

Proof. Let \(f\) be a nontrivial morphism of \(\mathcal{C}\), and let \(f_1\) be the \(\mathcal{S}\)-head of \(f\). Then \(f_1\) belongs to \(\mathcal{S}\), it is nontrivial, and we have \(f = f_1f'\) for some unique \(f'\). If \(f'\) is trivial, we are done, otherwise we repeat the argument with \(f'\). In this way we obtain a \(\preceq\)-increasing sequence \(1_{\partial_0 f} \prec f_1 \prec f_1f_2 \prec ...\). Condition (LG0) implies
that the construction stops after a finite number of steps, yielding a decomposition of the form (3.3).

As for uniqueness, assume that \((f_1, \ldots, f_d)\) and \((g_1, \ldots, g_c)\) are decomposition of \(f\) that satisfy the conditions of the statement. We prove \((f_1, \ldots, f_d) = (g_1, \ldots, g_c)\) using induction on \(\min(d, c)\). First, \(d = 0\) implies \(c = 0\) by Lemma 2.4(i). Otherwise, the hypotheses imply \(f_1 = H_S(f) = g_1\). Left-cancelling \(f_1\) gives two decompositions \((f_2, \ldots, f_d)\) and \((g_2, \ldots, g_c)\) of \(f_2 \cdots f_d\), and we apply the induction hypothesis.

Definition 3.5. In the context above, the sequence \((f_1, \ldots, f_d)\) is called the \(S\)-normal form of \(f\).

When \(S\) turns out to be the family \(\text{Hom}^p(C)\), the \(S\)-normal form will be simply called the normal form. The interest of the \(S\)-normal form lies in that it is easily characterized and easily computed. First, one has the following local characterization of normal sequences.

Proposition 3.6. Assume that \(C\) is a left-preGarside category and \(S\) is a seed for \(C\). Then a sequence of morphisms \((f_1, \ldots, f_d)\) is \(S\)-normal if and only if each length two subsequence \((f_i, f_{i+1})\) is \(S\)-normal.

This follows from an auxiliary lemma.

Lemma 3.7. Assume that \((f_1, f_2)\) is \(S\)-normal and \(g\) belongs to \(S\). Then \(g \lessdot f f_1 f_2\) implies \(g \lessdot f f_1\).

Proof. The hypothesis implies that \(f\) and \(g\) have the same source. Put \(g' = f \backslash g\). The hypothesis that \(S\) is closed under \(\backslash\) and an easy induction on the length of the \(S\)-normal form of \(f\) show that \(g'\) belongs to \(S\). By hypothesis, we have both \(g \lessdot f f_1 f_2\) and \(f \lessdot f f_1 f_2\), hence \(\text{lcm}(f, g) = f g' \lessdot f f_1 f_2\) whence \(g' \lessdot f f_1 f_2\) by left-cancelling \(f\). As \(g\) belongs to \(S\) and \((f_1, f_2)\) is normal, this implies \(g' \lessdot f_1\), and finally \(g \lessdot f g' \lessdot f f_1\).

Proof of Proposition 3.6. It is enough to consider the case \(d = 2\), from which an easy induction on \(d\) gives the general case. So we assume that \((f_1, f_2)\) and \((f_2, f_3)\) are \(S\)-normal, and aim at proving that \((f_1, f_2, f_3)\) is \(S\)-normal. The point is to prove that, if \(g\) belongs to \(S\), then \(g \lessdot f_1 f_2 f_3\) implies \(g \lessdot f_1\). So assume \(g \lessdot f_1 f_2 f_3\). As \((f_2, f_3)\) is \(S\)-normal, Lemma 3.7 implies \(g \lessdot f_1 f_2\). As \((f_1, f_2)\) is \(S\)-normal, this implies \(g \lessdot f_1\).

3.3. A computation rule.

We establish now a recipe for inductively computing the \(S\)-normal form, namely determining the \(S\)-normal form of \(gf\) when that of \(f\) is known and \(g\) belongs to \(S\).

Proposition 3.8. Assume that \(C\) is a left-preGarside category, \(S\) is a seed for \(C\), and \((f_1, \ldots, f_a)\) is the \(S\)-normal form of \(f\). Then, for each \(g\) in \(S\), the \(S\)-normal form of \(gf\) is \((f'_1, \ldots, f'_i, g_0)\), where \(g_0 = g\) and \((f'_1, g_0)\) is the \(S\)-normal form of \(g_{i-1} f_i\) for \(i\) increasing from \(1\) to \(d\) — see Figure 2.

Proof. For an induction, it is enough to consider the case \(d = 2\), hence to prove

Claim. Assume that the diagram

\[
\begin{array}{ccc}
\triangleleft & 1 & \triangleright \\
\downarrow & & \downarrow \\
1 & & 2 \\
\end{array}
\]

is commutative and \((f_1, f_2)\) and \((f'_1, g_1)\) are \(S\)-normal. Then \((f'_1, f'_2)\) is \(S\)-normal.
Proposition 3.10.\hspace{1em}Let \(f_0, f_1, f_2, \ldots, f_{d−1}, f_d \) be a sequence of \(\mathcal{S} \) factors. Assume that \(f_0, f_1, f_2, \ldots, f_{d−1}, f_d \) is \(\mathcal{S} \)-normal. Then \(f_0, f_1, f_2, \ldots, f_{d−1}, f_d \) is \(\mathcal{S} \)-normal if and only if it can be represented by a braid diagram in which any two strands cross at most once.

Proof. Axiom (LG\(\text{loc} \)) guarantees that every nontrivial element of \(\mathcal{M} \) is left-divisible by some nontrivial element of \(\Sigma \). Then, by hypothesis, \(\Sigma = \{ a \in \mathcal{M} \mid \exists x \in X(a \leq \Delta_x) \} \). Then \(\Sigma \) is a seed for \(\mathcal{M} \), every element of \(\mathcal{M} \) admits a unique \(\Sigma \)-normal form, and the counterpart of Propositions 3.6 and 3.8 hold for the \(\Sigma \)-normal form in \(\mathcal{M} \).

Definition 3.9. A left-Garside sequence \((\Delta_x)_{x \in X}\) witnessing that a certain monoid is locally left-Garside is said to be coherent if, for all \(a, x, x' \) such that \(a \cdot x \) is defined, \(a \leq \Delta_{x'} \) implies \(a \leq \Delta_x \).

For instance, the family \((\Delta_n)_{n \in \mathbb{N}} \) witnessing for the locally left-Garside structure of the monoid \(B_{\infty} \) is coherent. Indeed, a positive \(n \)-strand braid \(a \) is a left-divisor of \(\Delta_n \) if and only if it is a left-divisor of \(\Delta_{n'} \) for every \(n' \geq n \). The reason is that being simple is an intrinsic property of positive braids: a positive braid is simple if and only if it can be represented by a braid diagram in which any two strands cross at most once [28].

Proposition 3.10. Assume that \(\mathcal{M} \) is a locally left-Garside monoid associated with a coherent left-Garside sequence \((\Delta_x)_{x \in X}\). Let \(\Sigma = \{ a \in \mathcal{M} \mid \exists x \in X(a \leq \Delta_x) \} \). Then \(\Sigma \) is a seed for \(\mathcal{M} \), every element of \(\mathcal{M} \) admits a unique \(\Sigma \)-normal form, and the counterpart of Propositions 3.6 and 3.8 hold for the \(\Sigma \)-normal form in \(\mathcal{M} \).

Proof. Axiom (LG\(\text{loc} \)) guarantees that every nontrivial element of \(\mathcal{M} \) is left-divisible by some nontrivial element of \(\Sigma \). Then, by hypothesis, \(1_x \leq \Delta_x \) holds for each object \(x \). Then, assume \(a, b \in \Sigma \). There exists \(x \) such that \(x \cdot a \) and \(x \cdot b \) is defined. By definition of \(\Sigma \), there exists \(x' \) satisfying \(a \leq \Delta_{x'} \), hence, by definition of coherence, we have \(a \leq \Delta_x \). A similar argument gives \(b \leq \Delta_x \), whence \(\text{lcm}(a, b) \leq \Delta_x \), and \(\text{lcm}(a, b) \in \Sigma \). So there exists \(c \) satisfying \(a(a \setminus b) c = \Delta_x \). By (LG\(\text{loc} \)), we deduce \(a(a \setminus b) c \leq \Delta_{x \cdot a} \), whence \(a \setminus b \leq \Delta_{x \cdot a} \), and we conclude that \(a \setminus b \) belongs to \(\Sigma \). Finally, it directly results from its definition that \(\Sigma \) is closed under left-divisor. Hence \(\Sigma \) is a seed for \(\mathcal{M} \) in the sense of Definition 3.1.

As, by definition, \(\mathcal{M} \) is a left-preGarside monoid, Proposition 3.4 applies, guaranteeing the existence and uniqueness of the \(\Sigma \)-normal form on \(\mathcal{M} \), and so do Propositions 3.6 and 3.8. \(\square \)
Hence, the following equalities always hold:

\[\gcd(f_0, f_2) = \gcd(f_1, f_2, \Delta(\partial_0 f_1)) = \gcd(f_1, f_2, f_1^*) = f_1 \gcd(f_2, f_1^*). \]

Then the normal form \((f_0, f_1, ..., f_d)\) of \((g_0, f_1, ..., f_d)\) is normal.

Thus, the good properties of the greedy normal form are preserved when the assumption that a global Garside element \(\Delta\) exists is replaced by the weaker assumption that local Garside elements \(\Delta_x\) exist, provided they satisfy some coherence.

3.4. Regular left-Garside categories.

It is natural to look for a counterpart of the recipe of Proposition 3.8 involving right-multiplication by an element of the seed instead of left-multiplication. Such a counterpart exists but, interestingly, the situation is not symmetric, and we need a new argument. The latter demands that the considered category satisfies an additional condition, which is automatically satisfied in a two-sided Garside category, but not in a left-Garside category.

In this section, we only consider the case of a left-Garside category and its simple morphisms, and not the case of a general left-preGarside category with an arbitrary seed—see Remark 3.14. So, we only refer to the standard normal form.

Definition 3.11. We say that a left-Garside category \(C\) is regular if the functor \(\phi\) preserves normality of length 2 sequences: for \(f_1, f_2\) simple with \(\partial_1 f_1 = \partial_0 f_2\),

\[
(f_1, f_2) \text{ normal implies } (\phi(f_1), \phi(f_2)) \text{ normal}.
\]

Proposition 3.12. Assume that \(C\) is a regular left-Garside category, that \((f_1, ..., f_d)\) is the normal form of a morphism \(f\), and that \(g\) is simple. Then the normal form of \(fg\) is \((g_0, f'_1, ..., f'_d)\), where \(g_d = g\) and \((g_{i-1}, f'_i)\) is the normal form of \(f_i g_i\) for \(i\) decreasing from \(d\) to 1—see Figure 3.

We begin with an auxiliary observation.

Lemma 3.13. Assume that \(C\) is a left-Garside category and \(f_1, f_2\) are simple morphisms satisfying \(\partial_1 f_1 = \partial_0 f_2\). Then \((f_1, f_2)\) is normal if and only if \(f_1^*\) and \(f_2\) are left-coprime, i.e., \(\gcd(f_1^*, f_2)\) is trivial.

Proof. The following equalities always hold:

\[
H(f_1, f_2) = \gcd(f_1, f_2, \Delta(\partial_0 f_1)) = \gcd(f_1, f_2, f_1^*) = f_1 \gcd(f_2, f_1^*). \]

Hence \((f_1, f_2)\) is normal, i.e., \(f_1 = H(f_1, f_2)\) holds, if and only if \(f_1 = f_1 \gcd(f_2, f_1^*)\) does, which is \(\gcd(f_2, f_1^*) = 1_{\partial_1 f_1}\) as left-cancelling \(f_1\) is allowed. \(\square\)

Proof of Proposition 3.12. As in the case of Proposition 3.8 it is enough to consider the case \(d = 2\), and therefore it is enough to prove

Claim. Assume that the diagram

\[
\begin{array}{ccc}
& f_1 & \downarrow f_2 \\
\downarrow g_0 & & \downarrow g_1 \\
f'_1 & & f'_2
\end{array}
\]

is commutative and \((f_1, f_2)\) and \((g_1, f_2)\) are normal. Then \((f'_1, f'_2)\) is normal.

\[
\begin{array}{ccc}
f_1 & \rightarrow & f_d \\
\downarrow g_0 & & \downarrow g_d \\
f_1' & & f_d'
\end{array}
\]

Figure 3. Adding one simple factor \(g_d\) on the right of a simple sequence \((f_1, ..., f_d)\): compute the normal form \((g_{d-1}, f'_d)\) of \((g_{d-1} f_{d-1})\), then the normal form \((g_{d-2} f_{d-2})\) of \((g_{d-2} f_{d-2})\), and so on from right to left; the sequence \((g_0, f'_1, ..., f'_d)\) is normal.
Remark 3.14. The general framework of a left-preGarside category C can be a genuine one. For instance, if we require that, for each f, additional conditions are satisfied. However, it is unclear that the extension can be valid in S.

Lemma 3.13, the hypothesis that (g_1, f_1') is normal implies $\gcd(g_1', f_1') = 1$, and, finally, we deduce $h \leq f_1', f_2'$ is normal.

Remark 3.14. It might be tempting to mimic the arguments of this section in the general framework of a left-preGarside category C and a seed S, provided some additional conditions are satisfied. However, it is unclear that the extension can be a genuine one. For instance, if we require that, for each f in S, there exists f^* in S such that ff^* exists and depends on $\partial_0 f$ only, then the map $\partial_0 f \mapsto ff^*$ is a left-Garside map and we are back to left-Garside categories.

3.5. Regularity criteria. We conclude with some sufficient conditions implying regularity. In particular, we observe that, in the two-sided case, regularity is automatically satisfied.

Lemma 3.15. Assume that C is a left-Garside category C. Then a sufficient condition for C to be regular is that the functor ϕ is bijective on $\mathcal{H}om(C)$.

Proof. Assume that C is a left-Garside category and ϕ is bijective on $\mathcal{H}om(C)$. First we claim that $\phi(f) \leq \phi(g)$ implies $f \leq g$ in C. Indeed, assume $\phi(g) = \phi(f)h$. As ϕ is surjective, there exists h' such that $\phi(h') = \phi(f)$, hence $\phi(g) = \phi(fh')$ since ϕ is a functor, hence $g = fh'$ since ϕ is injective.

Next, we claim that, if $\phi(f)$ is simple if and only if f is simple. That the condition is sufficient directly follows from Definition 2.1. Conversely, assume that $\phi(f)$ is simple. This means that there exists g satisfying $\phi(f)g = \Delta(\partial_0 \phi(f))$. As ϕ is surjective, there exists g' satisfying $g = \phi(g')$. Applying (2.2), we obtain $\phi(fg') = \Delta(\partial_0 \phi(f)) = \phi(\Delta(\partial_0 f))$, hence $fg' = \Delta(\partial_0 f)$ by injectivity of ϕ.

Finally, assume that (f_1, f_2) is normal, and g is a simple morphism left-dividing $\phi(f_1)\phi(f_2)$, hence satisfying $gh = \phi(f_1)\phi(f_2)$ for some h. As ϕ is surjective, we have $g = \phi(g')$ and $h = \phi(h')$ for some g', h'. Moreover, by the claim above, the hypothesis that g is simple implies that g' is simple as well. Then we have $\phi(g')\phi(h') = \phi(f_1)\phi(f_2)$, hence $g'h' = f_1f_2$ since ϕ is a functor and it is injective. The hypothesis that (f_1, f_2) is normal implies $g' \leq f_1$, hence $g = \phi(g') \leq \phi(f_1)$. So $(\phi(f_1), \phi(f_2))$ is normal, and C is regular. □
Proposition 3.16. Every Garside category is regular.

Proof. Assume that \(\mathcal{C} \) is a left-Garside with respect to \(\Delta \) and right-Garside with respect to \(\nabla \) satisfying \(\Delta(x) = \nabla(x') \) for \(x' = \partial_1 \Delta(x) \). Put \(\psi(x') = \partial_0 \nabla(x') \) for \(x' \) in \(\text{Obj}(\mathcal{C}) \) and, for \(g \) simple in \(\text{Hom}(\mathcal{C}) \), hence a right-divisor of \(\nabla(\partial_1 g) \), denote by \(^*g \) the unique simple morphism satisfying \(^*g g = \nabla(\partial_1 g) \), and put \(\psi(g) = ^*g \).

Then arguments similar to those of Lemma 2.4 give the equality
\[(3.5) \quad \nabla(\partial_0 g) g = \psi(g) \nabla(\partial_1 g) \]

which is an exact counterpart of (2.1). Let \(f : x \to y \) be any morphism in \(\mathcal{C} \). Put \(x' = \phi(x) \) and \(y' = \phi(y) \). By construction, we also have \(x = \psi(x') \) and \(y = \psi(y') \).

Applying (2.1) to \(f : x \to y \), we obtain \(\Delta(x) \phi(f) = f \Delta(y) \), which is also
\[(3.6) \quad \nabla(x') \phi(f) = f \nabla(y') \]

On the other hand, applying (3.5) to \(\phi(f) : x' \to y' \) yields
\[(3.7) \quad \nabla(x') \phi(f) = \psi(\phi(f)) \nabla(y') \]

Comparing (3.6) and (3.7) and right-cancelling \(\nabla(y') \), we deduce \(\psi(\phi(f)) = f \). A symmetric argument gives \(\phi(\psi(g)) = g \) for each \(g \), and we conclude that \(\psi \) is the inverse of \(\phi \), which is therefore bijective. Then we apply Lemma 3.15. \(\square \)

Remark 3.17. The above proof shows that, if \(\mathcal{C} \) is a left-Garside category that is Garside, then the associated functor \(\phi \) is bijective both on \(\text{Obj}(\mathcal{C}) \) and on \(\text{Hom}(\mathcal{C}) \).

Let us mention without proof that this necessary condition is actually also sufficient.

Apart from the previous very special case, we can state several weaker regularity criteria that are close to the definition and will be useful in Section 6. We recall that \(H(f) \) denoted the maximal simple morphism left-dividing \(f \).

Proposition 3.18. A left-Garside category \(\mathcal{C} \) is regular if and only if \(\phi \) preserves the head function on product of two simples: for \(f_1, f_2 \) simple with \(\partial_1 f_1 = \partial_0 f_2 \),
\[(3.8) \quad H(\phi(f_1 f_2)) = \phi(H(f_1 f_2)) \]

Proof. Assume that \(\mathcal{C} \) is regular, and let \(f_1, f_2 \) satisfy \(\partial_1 f_1 = \partial_0 f_2 \). Let \((f'_1, f'_2) \) be the formal form of \(f_1 f_2 \)—which has length 2 at most by Proposition 3.8. Then, \((\phi(f'_1), \phi(f'_2)) \) is normal and satisfies \(\phi(f'_1) \phi(f'_2) = \phi(f_1 f_2) \), so \((\phi(f'_1), \phi(f'_2)) \) is the normal form of \(f_1 f_2 \). Hence we have \(H(f_1 f_2) = f'_1 \) and \(H(\phi(f_1 f_2)) = \phi(f'_1) \), which is (3.8).

Conversely, assume (3.8) and let \((f_1, f_2) \) be normal. By construction, we have \(f_1 = H(f_1 f_2) \), hence \(\phi(f_1) = H(\phi(f_1 f_2)) \) by hypothesis. This means that the normal form of \(\phi(f_1 f_2) \) is \((\phi(f_1), g) \) for some \(g \) satisfying \(\phi(f_1 f_2) = \phi(f_1) g \). Now \(\phi(f_2) \) is such a morphism \(g \), and, by \((L \mathcal{G}_1) \), it is the only one. So the normal form of \(\phi(f_1 f_2) \) is \((\phi(f_1), \phi(f_2)) \), and \(\mathcal{C} \) is regular. \(\square \)

Proposition 3.19. Assume that \(\mathcal{C} \) is a left-Garside category \(\mathcal{C} \). Then two sufficient conditions for \(\mathcal{C} \) to be regular are

(i) The functor \(\phi \) preserves left-coprimeness of simple morphisms: for \(f, g \) simple with \(\partial_0 f = \partial_0 g \),
\[(3.9) \quad \gcd(f, g) = 1 \quad \text{implies} \quad \gcd(\phi(f), \phi(g)) = 1. \]
The functor \(\phi \) preserves the gcd operation on simple morphisms: for \(f, g \) simple with \(\partial_0 f = \partial_0 g \),
\[
\text{(3.10)} \quad \gcd(\phi(f), \phi(g)) = \phi(\gcd(f, g)),
\]
and, moreover, \(\phi(f) \) is nontrivial whenever \(f \) is nontrivial.

Proof. Assume (i). Let \((f, g)\) be normal. By Lemma 3.13, we have \(\gcd(f^*, g) = 1 \).
By (3.9), we deduce \(\gcd(\phi(f^*), \phi(g)) = 1 \). By Lemma 2.5, this equality is also \(\gcd(\phi(f)^*, \phi(g)) = 1 \), which, by Lemma 3.13 again, means that \((\phi(f), \phi(g))\) is normal. Hence \(\mathcal{C} \) is regular.

On the other hand, it is clear that (ii) implies (i). \(\square \)

4. Self-distributivity

We quit general left-Garside categories, and turn to the description of one particular example, namely a certain category (two categories actually) associated with the left self-distributive law. The latter is the algebraic law
\[(LD) \quad x(yz) = (xy)(xz)\]
extensively investigated in [18].

We first review some basic results about this law and the associated free LD-systems, i.e., the binary systems that obey the LD-law. The key notion is the notion of an LD-expansion, with two derived categories \(LD_0^+ \) and \(LD^+ \) that will be our main subject of investigation from now on.

4.1. Free LD-systems

For each algebraic law (or family of algebraic laws), there exist universal objects in the category of structures that satisfy this law, namely the free systems. Such structures can be uniformly described as the quotient of some absolutely free structures under a convenient congruence.

Definition 4.1. We let \(T_n \) be the set of all bracketed expressions involving variables \(x_1, \ldots, x_n \), i.e., the closure of \(\{x_1, \ldots, x_n\} \) under \(t_1 \star t_2 = (t_1)(t_2) \). We use \(T \) for the union of all sets \(T_n \). Elements of \(T \) are called terms.

Typical terms are \(x_1, x_2 \star x_1, x_3 \star (x_3 \star x_1), \) etc. It is convenient to think of terms as rooted binary trees with leaves indexed by the variables: the trees associated with the previous terms are \(\bigstar_{x_1} \), \(\bigwedge_{x_2} \bigwedge_{x_1} \), and \(\bigwedge_{x_3} \bigwedge_{x_1} \bigwedge_{x_3} \), respectively. The system \((T_n, \star)\) is the absolutely free system (or algebra) generated by \(x_1, \ldots, x_n \), and every binary system generated by \(n \) elements is a quotient of this system. So is in particular the free LD-system of rank \(n \).

Definition 4.2. We denote by \(=_{LD} \) the least congruence (i.e., equivalence relation compatible with the product) on \((T_n, \star)\) that contains all pairs of the form
\[
(t_1 \star (t_2 \star t_3), (t_1 \star t_2) \star (t_1 \star t_3)).
\]
Two terms \(t, t' \) satisfying \(t =_{LD} t' \) are called LD-equivalent.

The following result is then standard.

Proposition 4.3. For each \(n \leq \infty \), the binary system \((T_n/\equiv_{LD}, \star)\) is a free LD-system based on \(\{x_1, \ldots, x_n\} \).
4.2. LD-expansions. The relation $=_{LD}$ is a complicated object, about which many questions remain open. In order to investigate it, it proved useful to introduce the subrelation of $=_{LD}$ that corresponds to applying the LD-law in the expanding direction only.

Definition 4.4. Let t, t' be terms. We say that t' is an atomic LD-expansion of t, denoted $t \rightarrow^{1}_{LD} t'$, if t' is obtained from t by replacing some subterm of the form $t_1 \ast (t_2 \ast t_3)$ with the corresponding term $(t_1 \ast t_2) \ast (t_1 \ast t_3)$. We say that t' is an LD-expansion of t, denoted $t \rightarrow_{LD} t'$, if there exists a finite sequence of terms t_0, \ldots, t_p satisfying $t_0 = t$, $t_p = t'$, and $t_{i-1} \rightarrow_{LD} t_i | t_{i+1}$ for $1 \leq i \leq p$.

By definition, being an LD-expansion implies being LD-equivalent, but the converse is not true. For instance, the term $(x \ast x) \ast (x \ast x)$ is an (atomic) LD-expansion of $x \ast (x \ast x)$, but the latter is not an LD-expansion of the former. However, it should be clear that $=_{LD}$ is generated by \rightarrow_{LD}, so that two terms t, t' are LD-equivalent if and only if there exists a finite zigzag t_0, t_1, \ldots, t_p satisfying $t_0 = t$, $t_2p = t'$, and $t_{i-1} \rightarrow_{LD} t_i | t_{i+1}$ for each odd i.

The first nontrivial result about LD-equivalence is that the previous zigzags may always be assumed to have length two.

Proposition 4.5. [17] Two terms are LD-equivalent if and only if they admit a common LD-expansion.

This result is similar to the property that, if a monoid M satisfies Ore’s conditions—as the braid monoid B_n does for instance—then every element in the universal group of M can be expressed as a fraction of the form ab^{-1} with a, b in M.

Proposition 4.5 plays a fundamental role in the sequel, and we need to recall some elements of its proof.

Definition 4.6. [17] First, a binary operation \circ on terms is recursively defined by

\begin{equation}
(4.1) \qquad t \circ x_i = t \ast x_i, \quad t \circ (t_1 \ast t_2) = (t \circ t_1) \ast (t \circ t_2). \tag{4.1}
\end{equation}

Next, for each term t, the term $\phi(t)$ is recursively defined by\(^2\)

\begin{equation}
(4.2) \quad \phi(x_i) = x_i, \quad \phi(t_1 \ast t_2) = \phi(t_1) \circ \phi(t_2). \tag{4.2}
\end{equation}

The idea is that $t \circ t'$ is obtained by distributing t everywhere in t' once. Then $\phi(t)$ is the image of t when \ast is replaced with \circ everywhere in the unique expression of t in terms of variables. Examples are given in Figure 4. A straightforward induction shows that $t \circ t'$ is always an LD-expansion of $t \ast t'$ and, therefore, that $\phi(t)$ is an LD-expansion of t.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4.png}
\caption{The fundamental LD-expansion $\phi(t)$ of a term t, recursive definition: $\phi(t_1 \ast t_2)$ is obtained by distributing $\phi(t_1)$ everywhere in $\phi(t_2)$.}
\end{figure}

The main step for establishing Proposition 4.5 consists in proving that $\phi(t)$ plays with respect to atomic LD-expansions a role similar to Garside’s fundamental

\(^2\)In [17] and [18], ϑ is used instead of ϕ, an inappropriate notation in the current context.
braid Δ_n with respect to Artin’s generators σ_i—which makes it natural to call $\phi(t)$ the fundamental LD-expansion of t.

Lemma 4.7. [17] [18, Lemmas V.3.11 and V.3.12] (i) The term $\phi(t)$ is an LD-expansion of each atomic LD-expansion of t.

(ii) If t' is an LD-expansion of t, then $\phi(t')$ is an LD-expansion of $\phi(t)$.

Sketch of proof. One uses induction on the size of the involved terms. Once Lemma 4.7 is established, an easy induction on d shows that, if there exists a length d sequence of atomic LD-expansions connecting t to t', then $\phi^d(t)$ is an LD-expansion of t'.

Then a final induction on the length of a zigzag connecting t to t' shows that, if t and t' are LD-equivalent, then $\phi^d(t)$ is an LD-expansion of t' for sufficiently large d (namely for d at least the number of “zag”s in the zigzag). □

4.3. The category \mathcal{LD}_0.

A category (and a quiver) is naturally associated with every graph, and the previous results invite to introduce the category associated with the LD-expansion relation \rightarrow_{LD}.

Definition 4.8. We denote by \mathcal{LD}_0^+ the category whose objects are terms, and whose morphisms are pairs of terms (t, t') satisfying $t \rightarrow_{LD} t'$.

By construction, the category \mathcal{LD}_0^+ is left- and right-cancellative, and Proposition 4.5 means that any two morphisms of \mathcal{LD}_0^+ with the same source admit a common right-multiple. Moreover, a natural candidate for being a left-Garside map is obtained by defining $\Delta(t) = (t, \phi(t))$ for each term t.

Question 4.9. Is \mathcal{LD}_0^+ a left-Garside category?

Question 4.9 is currently open. We shall see in Section 6.3 that it is one of the many forms of the so-called Embedding Conjecture. The missing part is that we do not know that least common multiples exist in \mathcal{LD}_0^+, the problem being that we have no method for proving that a common LD-expansion of two terms is possibly a least common LD-expansion.

5. The monoid \mathcal{LD}^+ and the category \mathcal{LD}^+

The solution for overcoming the above difficulty consists in developing a more precise study of LD-expansions that takes into account the position where the LD-law is applied. This leads to introducing a certain monoid \mathcal{LD}^+ whose elements provide natural labels for LD-expansions, and, from there, a new category \mathcal{LD}^+, of which \mathcal{LD}_0^+ is a projection. This category \mathcal{LD}^+ is the one on which a left-Garside structure will be proved to exist.

5.1. Labelling LD-expansions.

By definition, applying the LD-law to a term t means selecting some subterm of t and replacing it with a new, LD-equivalent term. When terms are viewed as binary rooted trees, the position of a subterm can be specified by describing the path that connects the root of the tree to the root of
Figure 6. Action of D_α to a term t: the LD-law is applied to expand t at position α, i.e., to replace the subterm $t_{/\alpha}$, which is $t_{/0} \star (t_{/10} \star t_{/11})$, with $(t_{/0} \star t_{/10}) \star (t_{/0} \star t_{/11})$; in other words, the light grey subtree is duplicated and distributed to the left of the dark grey and black subtrees.

the considered subtree, hence typically by a binary address, i.e., a finite sequence of 0's and 1's, according to the convention that 0 means “forking to the left” and 1 means “forking to the right”. Hereafter, we use \mathcal{A} for the set of all such addresses, and ϵ for the empty address, which corresponds to the position of the root in a tree.

Notation. For t a term and α an address, we denote by $t_{/\alpha}$ the subtree of t whose root has address α, if it exists, i.e., if α is short enough.

So, for instance, if t is the tree $x_1 \star (x_2 \star x_3)$, we have $t_{/0} = x_1$, $t_{/10} = x_2$, whereas $t_{/100}$ is not defined, and $t_{/\epsilon} = t$ holds, as it holds for every term.

Definition 5.1. (See Figure 6.) We say that t' is a D_α-expansion of t, denoted $t' = t \cdot D_\alpha$, if t' is the atomic LD-expansion of t obtained by applying LD at the position α, i.e., replacing the subterm $t_{/\alpha}$, which is $t_{/0} \star (t_{/10} \star t_{/11})$, with the term $(t_{/0} \star t_{/10}) \star (t_{/0} \star t_{/11})$.

By construction, every atomic LD-expansion is a D_α-expansion for a unique α. The idea is to use the letters D_α as labels for LD-expansions. As arbitrary LD-expansions are compositions of finitely many atomic LD-expansions, hence of D_α-expansions, it is natural to use finite sequences of D_α to label LD-expansions. In other words, we extend the (partial) action of D_α on terms into a (partial) action of finite sequences of D_α's. Thus, for instance, we write

$$t' = t \cdot D_\alpha D_\beta D_\gamma$$

to indicate that t' is the LD-expansion of t obtained by successively applying the LD-law (in the expanding direction) at the positions α, then β, then γ.

Lemma 5.2. Definition 5.1 gives a partial action of the free monoid $\{D_\alpha \mid \alpha \in \mathcal{A}\}^*$ on T (the set of terms), in the sense of Definition 1.7.

Proof. Conditions (i) and (ii) of Definition 1.7 follow from the construction. The point is to prove (iii), i.e., to prove that, if $w_1, ..., w_n$ are arbitrary finite sequences of letters D_α, then there exists at least one term t such that $t \cdot w_i$ is defined for each i. This is what [18, Proposition VII.1.21] states.

5.2. The monoid LD^+. There exist clear connections between the action of various D_α’s: different sequences may lead to the same transformations of trees. Our approach will consist in identifying a natural family of such relations and introducing the monoid presented by these relations.
Lemma 5.3. For all α, β, γ, the following pairs have the same action on trees:

(i) $D_{\alpha \beta \gamma} D_{\alpha \gamma \beta}$ and $D_{\alpha \alpha \gamma \beta}$; (“parallel case”)
(ii) $D_{\alpha \beta \gamma \delta} D_{\alpha \beta \gamma}$ and $D_{\alpha \beta \gamma \delta} D_{\alpha \beta \gamma \delta}$; (“nested case 1”)
(iii) $D_{\alpha \beta \gamma \delta} D_{\alpha \beta \gamma}$ and $D_{\alpha \beta \gamma \delta} D_{\alpha \beta \gamma \delta}$; (“nested case 2”)
(iv) $D_{\alpha \beta \gamma \delta} D_{\alpha \beta \gamma}$ and $D_{\alpha \beta \gamma \delta} D_{\alpha \beta \gamma \delta}$; (“nested case 3”)
(v) $D_{\alpha \beta \gamma \delta} D_{\alpha \beta \gamma}$ and $D_{\alpha \beta \gamma \delta} D_{\alpha \beta \gamma \delta}$; (“critical case”)

Sketch of proof. The commutation relation of the parallel case is clear, as the transformations involve disjoint subterms. The nested cases are commutation relations as well, but, because one of the involved subtree is nested in the other, it may be moved, and even possibly duplicated when the main expansion is performed, so that the nested expansion(s) correspond to different names before and after the main expansion. Finally, the critical case is specific to the LD-law, and there is no way to predict it except the verification, see Figure 7.

□

Definition 5.4. Let R_{LD} be the family of all relations of Lemma 5.3. We define LD^+ to be the monoid $\langle \{D_{\alpha} \mid \alpha \in A\} \mid R_{LD}\rangle^+$.

Lemma 5.3 immediately implies

Proposition 5.5. The partial action of the free monoid $\{D_{\alpha} \mid \alpha \in A\}^*$ on terms induces a well defined partial action of the monoid LD^+.

For a term and a in LD^+, we shall naturally denote by $t \cdot a$ the common value of $t \cdot w$ for all sequences w of D_{α} that represent a.

Remark 5.6. In this way, each LD-expansion receives a label that is an element of LD^+, thus becoming a labelled LD-expansion. However, we do not claim that a labelled LD-expansion are the same as an LD-expansion. Indeed, we do not claim that the relations of Lemma 5.3 exhaust all possible relations between the action of the D_{α}’s on terms. A priori, it might be that different elements of LD^+ induce the same action on terms, so that one pair (t, t') might correspond to several labelled expansions with different labels. As we shall see below, the uniqueness of the labelling is another form of the above mentioned Embedding Conjecture.

5.3. The category LD^+. We are now ready to introduce our main subject of interest, namely the category LD^+ of labelled LD-expansions. The starting point is the same as for LD_0^+, but the difference is that, now, we explicitly take into account the way of expanding the source is expanded into the target.
Definition 5.7. We denote by LD^+ the category whose objects are terms, and whose morphisms are triples (t, a, t') with a in LD^+ and $t \cdot a = t'$.

In other words, LD^+ is the category associated with the partial action of LD^+ on terms, in the sense of Section 1.8. We recall our convention that, when the morphisms of a category are triples, the source is the first entry, and the target is the last entry. So, for instance, a typical morphism in LD^+ is the triple

$$ \left(\begin{array}{c} \gamma \\ \alpha \\ \delta \end{array} \right), $$

whose source is the term $x \ast (x \ast (x \ast x))$ (we use the default convention that unspecified variables mean some fixed variable x), and whose target is the term $(x \ast x) \ast ((x \ast x) \ast (x \ast x))$.

5.4. The element Δ_t. We aim at proving that the category LD^+ is a left-Garside category. To this end, we need to define the Δ-morphisms. As planned in Section 4.3, the latter will be constructed using the LD-expansions $(t, \phi(t))$. Defining a labelled version of this expansion means fixing some canonical way of expanding a term t into the corresponding term $\phi(t)$. A natural solution then exists, namely following the recursive definition of the operations \ast and ϕ.

For w a word in the letters D_α, we denote by $sh_0(w)$ the word obtained by replacing each letter D_α of w with the corresponding letter D_{α_0}, i.e., by shifting all indices by 0. Similarly, we denote by $sh_\gamma(w)$ the word obtained by appending γ on the left of each address in w. The LD-relations of Lemma 5.3 are invariant under shifting: if w and w' represent the same element a of LD^+, then, for each γ, the words $sh_\gamma(w)$ and $sh_\gamma(w')$ represent the same element, naturally denoted $sh_\gamma(a)$, of LD^+. By construction, sh_γ is an endomorphism of the monoid LD^+. For each a in LD^+, the action of $sh_\gamma(a)$ on a term t corresponds to the action of a to the γ-subterm of t: so, for instance, if $t' = t \ast a$ holds, then $t' \ast t_1 = (t \ast t_1) \ast sh_\gamma(a)$ holds as well, since the 0-subterm of $t \ast t_1$ is t, whereas that of $t' \ast t_1$ is t'.

Definition 5.8. For each term t, the elements δ_t and Δ_t of LD^+ are defined by the recursive rules

$$ \begin{align*}
\delta_t & = \begin{cases} 1 & \text{for } t \text{ of size 1, i.e., when } t \text{ is a variable } x_i, \\
D_\gamma \cdot sh_0(\delta_{t_0}) \cdot sh_1(\delta_{t_1}) & \text{for } t = t_0 \ast t_1, \end{cases} \\
\Delta_t & = \begin{cases} 1 & \text{for } t \text{ of size 1,} \\
sh_0(\Delta_{t_0}) \cdot sh_1(\Delta_{t_1}) \cdot \delta_{\phi(t_1)} & \text{for } t = t_0 \ast t_1. \end{cases}
\end{align*} $$

Example 5.9. Let t be $x \ast (x \ast (x \ast x))$. Then t_0 is x, and, therefore, Δ_{t_0} is 1. Next, t_1 is $x \ast (x \ast x)$, so (5.2) reads $\Delta_t = sh_1(\Delta_{t_1}) \cdot \delta_{\phi(t_1)}$. Then $\phi(t_1)$ is $(x \ast x) \ast (x \ast x)$. Applying (5.1), we obtain

$$ \delta_{\phi(t_1)} = D_\gamma \cdot sh_0(\delta_{x \ast x}) \cdot sh_1(\delta_{x \ast x}) = D_\gamma D_0 D_1. $$

On the other hand, using (5.2) again, we find

$$ \Delta_{t_1} = sh_0(\Delta_x) \cdot sh_1(\Delta_{x \ast x}) \cdot \delta_{x \ast x} = 1 \cdot 1 \cdot D_\gamma = D_\gamma, $$

and, finally, we obtain $\Delta_t = D_1 D_0 D_1$. According to the defining relations of the monoid LD^+, this element is also $D_0 D_1 D_\gamma$. Note the compatibility of the result with the examples of Figures 5 and 7.
Lemma 5.10. For all terms t_0, t, we have

\[(5.3) \quad (t_0 \ast t) \ast \delta_t = t_0 \ast t,\]
\[(5.4) \quad t \ast \Delta_t = \phi(t).\]

The proof is an easy inductive verification.

5.5. Connection with braids. Before investigating the category \mathcal{LD}^+ more precisely, we describe the simple connection existing between the category \mathcal{LD}^+ and the positive braid category B^+ of Example 1.9.

Lemma 5.11. Define $\pi : \{D_\alpha \mid \alpha \in \mathbb{A}\} \to \{\sigma_i \mid i \geq 1\} \cup \{1\}$ by

\[(5.5) \quad \pi(D_\alpha) = \begin{cases}
\sigma_{i+1} & \text{if } \alpha \text{ is the address } 1^i; \text{ i.e., } 11\ldots1, \text{ } i \text{ times,} \\
1 & \text{otherwise.}
\end{cases}\]

Then π induces a surjective monoid homomorphism of \mathcal{LD}^+ onto B^+_∞.

Proof. The point is that each LD-relation of Lemma 5.3 projects under π onto a braid equivalence. All relations involving addresses that contain at least one 0 collapse to mere equalities. The remaining relations are

\[D_1, D_1 = D_{j+1}^j \quad \text{with } j \geq i + 2,
\]
which projects to the valid braid relation $\sigma_{i-1}\sigma_{j-1} = \sigma_{j-1}\sigma_{i-1}$, and

\[D_1, D_1, D_1 = D_{i+1}^{j+1} D_{i+1}^0 \quad \text{with } j = i + 1,
\]
which projects to the not less valid braid relation $\sigma_{i-1}\sigma_{j-1}\sigma_{i-1} = \sigma_{j-1}\sigma_{i-1}\sigma_{j-1}$.

We introduced a category $\mathcal{C}(M, X)$ for each monoid M partially acting on X in Definition 1.8. The braid category B^+ and our current category \mathcal{LD}^+ are of these type. For such categories, natural functors arise from morphisms between the involved monoids, and we fix the following notation.

Definition 5.12. Assume that M, M' are monoids acting on sets X and X', respectively. A morphism $\varphi : M \to M'$ and a map $\psi : X \to X'$ are called compatible if

\[(5.6) \quad \psi(x \cdot a) = \psi(x) \cdot \varphi(a)\]
holds whenever $x \cdot a$ is defined. Then, we denote by $[\varphi, \psi]$ the functor of $\mathcal{C}(M, X)$ to $\mathcal{C}(M', X')$ that coincides with ψ on objects and maps (x, a, y) to $(\psi(x), \varphi(a), \psi(y))$.

Proposition 5.13. Define the right-height $\text{ht}(t)$ of a term t by $\text{ht}(x_i) = 0$ and $\text{ht}(t_0 \ast t_1) = \text{ht}(t_1) + 1$. Then the morphism π of (5.5) is compatible with ht, and $[\pi, \text{ht}]$ is a surjective functor of \mathcal{LD}^+ onto B^+.

The parameter $\text{ht}(t)$ is the length of the rightmost branch in t viewed as a tree or, equivalently, the number of final $)$’s in t viewed as a bracketed expression.

Proof. Assume that (t, a, t') belongs to $\text{Hom}(\mathcal{LD}^+)$. Put $n = \text{ht}(t)$. The LD-law preserves the right-height of terms, so we have $\text{ht}(t') = n$ as well. The hypothesis that $t \ast a$ exists implies that the factors D_1, D_1 that occur in some (hence in every) expression of a satisfy $i < n - 1$. Hence $\pi(a)$ is a braid of B^+_n, and $n \ast \pi(a)$ is defined. Then the compatibility condition (5.6) is clear, $[\pi, \text{ht}]$ is a functor of \mathcal{LD}^+ to B^+.

Surjectivity is clear, as each braid σ_i belongs to the image of π. □

Moreover, a simple relation connects the elements Δ_t of \mathcal{LD}^+ and the braids Δ_n.
Proposition 5.14. We have \(\pi(\Delta_t) = \Delta_n \) whenever \(t \) has right-height \(n \geq 1 \).

Proof. We first prove that \(\text{ht}(t) = n \) implies

\[
(5.7) \quad \pi(\delta_t) = \sigma_1 \sigma_2 \ldots \sigma_n
\]

using induction on the size of \(t \). If \(t \) is a variable, we have \(\text{ht}(t) = 0 \) and \(\delta_t = 1 \), so the equality is clear. Otherwise, write \(t = t_0 \star t_1 \). By definition, we have

\[
\delta_t = D_x \cdot \text{sh}_0(\delta_{t_0}) \cdot \text{sh}_1(\delta_{t_1}).
\]

Let \(\text{sh} \) denote the endomorphism of \(B^+_{\infty} \) that maps \(\sigma_i \) to \(\sigma_{i+1} \) for each \(i \). Then \(\pi \) collapses every term in the image of \(\text{sh}_0 \), and \(\pi(\text{sh}_1(a)) = \text{sh}(\pi(a)) \) holds for each \(a \) in \(\text{LD}^+ \). Hence, using the induction hypothesis \(\pi(\delta_{t_1}) = \sigma_1 \ldots \sigma_{n-1} \), we deduce

\[
\pi(\delta_t) = \sigma_1 \cdot 1 \cdot \text{sh}(\sigma_1 \ldots \sigma_{n-1}) = \sigma_1 \ldots \sigma_n,
\]

which is (5.7). Put \(\Delta_0 = 1 \) (= \(\Delta_1 \)). We prove that \(\text{ht}(t) = n \) implies \(\pi(\Delta_t) = \Delta_n \) for \(n \geq 0 \), using induction on the size of \(t \) again. If \(t \) is a variable, we have \(n = 0 \) and \(\Delta_t = 1 \), as expected. Otherwise, write \(t = t_0 \star t_1 \). The definition gives

\[
\Delta_t = \text{sh}_0(\Delta_{t_0}) \cdot \text{sh}_1(\Delta_{t_1}) \cdot \delta_{\phi(t_1)}.
\]

As above, \(\pi \) collapses the term in the image of \(\text{sh}_0 \), and it transforms \(\text{sh}_1 \) into \(\text{sh} \). Hence, using the induction hypothesis \(\pi(\Delta_{t_1}) = \Delta_{n-1} \) and (5.7) for \(\phi(t_1) \), whose right-height is that of \(t_1 \), we obtain

\[
\pi(\Delta_t) = 1 \cdot \text{sh}(\Delta_{n-1}) \cdot \sigma_1 \sigma_2 \ldots \sigma_{n-1} = \Delta_n.
\]

\(\square \)

6. The main results

We can now state the two main results of this paper.

Theorem 6.1. For each term \(t \), put \(\Delta(t) = (t, \Delta_t, \phi(t)) \). Then \(\text{LD}^+ \) is a left-Garside category with left-Garside map \(\Delta \), and \([\pi, \text{ht}]\) is a surjective right-lcm preserving functor of \(\text{LD}^+ \) onto the positive braid category \(B^+ \).

Theorem 6.2. Unless the category \(\text{LD}^+ \) is not regular, the Embedding Conjecture of [18, Chapter IX] is true.

6.1. Recognizing left-preGarside monoids. Owing to Proposition 1.11 and to the construction of \(\text{LD}^+ \) from the partial action of the monoid \(\text{LD}^+ \) on terms, the first part of Theorem 6.1 is a direct consequence of

Proposition 6.3. The monoid \(\text{LD}^+ \) equipped with its partial action on terms via self-distributivity is a locally left-Garside monoid with associated left-Garside sequence \((\Delta_t)_{t \in T} \).

This is the result we shall prove now. The first step is to prove that \(\text{LD}^+ \) is left-preGarside. To do it, we appeal to general tools that we now describe. As for \((\text{LD}_0) \), we have an easy sufficient condition when the action turns out to be monotonous in the following sense.
Proposition 6.4. Assume that M has a partial action on X and there exists a map $\mu : X \rightarrow \mathbb{N}$ such that $a \neq 1$ implies $\mu(x \cdot a) > \mu(x)$. Then M satisfies (\mathcal{L}_0).

Proof. Assume that (a_1, \ldots, a_t) is a \prec-increasing sequence in $\text{Div}(a)$. By definition of a partial action, there exists x in X such that $x \cdot a$ is defined, and this implies that $x \cdot a_i$ is defined for each i. Next, the hypothesis that (a_1, \ldots, a_t) is \prec-increasing implies that there exist $b_2, \ldots, b_t \neq 1$ satisfying $a_i = a_{i-1}b_i$ for each i. We find

$$\mu(x \cdot a_i) = \mu((x \cdot a_{i-1}) \cdot b_i) > \mu(x \cdot a_{i-1}),$$

and the sequence $(\mu(x \cdot a_1), \ldots, \mu(x \cdot a_t))$ is increasing. As $\mu(x \cdot a_1) \geq \mu(x)$ holds, we deduce $\ell \leq \mu(x \cdot a) - \mu(x) + 1$ and, therefore, M satisfies (\mathcal{L}_0). \hfill \Box

As for conditions (\mathcal{L}_1) and (\mathcal{L}_2), we appeal to the subword reversing method of [21]. If S is any set, we denote by S^* the set of all finite sequences of elements of S, i.e., of words on the alphabet S. Then S^* equipped with concatenation is a free monoid. We use ϵ for the empty word.

Definition 6.5. Let S be any set. A map $C : S \times S \rightarrow S^*$ is called a complement on S. Then, we denote by R_C the family of all relations $aC(a, b) = bC(b, a)$ with $a \neq b$ in S, and by \hat{C} the unique (possibly partial) map of $S^* \times S^*$ to S^* that extends C and obeys the recursive rules

$$(6.1) \quad \hat{C}(u, v_1v_2) = \hat{C}(u, v_1)\hat{C}(v_1, u), \quad \hat{C}(v_1v_2, u) = \hat{C}(v_2, \hat{C}(u, v_1)).$$

Proposition 6.6 ([21] or [18, Prop.II.2.5]). Assume that M is a monoid satisfying (\mathcal{L}_0) and admitting the presentation $(S, R_C)^*$, where C is a complement on S. Then the following are equivalent:

(i) The monoid M is left-preGarside;

(ii) For all a, b, c in S, we have

$$(6.2) \quad \hat{C}(\hat{C}(\hat{C}(a, b), \hat{C}(b, c)), \hat{C}(\hat{C}(b, a), \hat{C}(b, c))) = \epsilon.$$

6.2. Proof of Theorem 6.1. We shall now prove that the monoid LD^+ equipped its partial action on terms via left self-distributivity satisfies the criteria of Section 6.1. Here, and in most subsequent developments, we heavily appeal to the results of [18], some of which have quite intricate proofs.

Proof of Theorem 6.1. First, each term t has a size $\mu(t)$, which is the number of inner nodes in the associated binary tree. Then the hypothesis of Proposition 6.4 clearly holds: if t' is a nontrivial LD-expansion of t, then the size of t' is larger than that of t. Then, by Proposition 6.4, LD^+ satisfies (\mathcal{L}_0).

Next, we observe that the presentation of LD^+ in Definition 5.4 is associated with a complement on the set $\{D_\alpha \mid \alpha \in A\}$. Indeed, for each pair of addresses α, β, there exists in the list R_{LD} exactly one relation of the type $D_\alpha \ldots = D_\beta \ldots$. Hence, in view of Proposition 6.6, and because we know that LD^+ satisfies (\mathcal{L}_0), it suffices to check that (6.2) holds in LD^+ for each triple $D_\alpha, D_\beta, D_\gamma$. This is Proposition VIII.1.9 of [18]. Hence LD^+ satisfies (\mathcal{L}_1) and (\mathcal{L}_2), and it is a left-preGarside monoid.

Let us now consider the elements Δ_ℓ of Definition 5.8. First, by Lemma 5.10, $t \cdot \Delta_\ell$ is defined for each term t, and it is equal to $\phi(t)$. Next, assume that $t \cdot D_\alpha$ is defined. Then Lemma VII.3.16 of [18] states that D_α is a left-divisor of Δ_ℓ in LD^+, whereas Lemma VII.3.17 of [18] states that Δ_ℓ is a left-divisor of $D_\alpha \Delta_\ell D_\alpha$. Hence Condition ($\mathcal{L}_0^{loc}$) of Definition 1.10 is satisfied, and the sequence $(\Delta_\ell)_{\ell \in T}$ is a
left-Garside sequence in L^+. Hence L^+ is a locally left-Garside monoid, which completes the proof of Proposition 6.3.

By Proposition 1.11, we deduce that L^D, which is $\mathcal{C}(L^+, T)$ by definition, is a left-Garside category with left-Garside map Δ as defined in Theorem 6.1.

As for the connection with the braid category B^+, we saw in Proposition 5.13 that $[\pi, \text{ht}]$ is a surjective functor of L^+ onto B^+, and it just remains to prove that it preserves right-lcm’s. This follows from the fact that the homomorphism π of L^+ to B^∞ preserves right-lcm’s, which in turn follows from the fact that L^+ and B^∞ are associated with complements C and C^s satisfying, for each pair of addresses α, β,

\[\pi(C(D_\alpha, D_\beta)) = C(\pi(D_\alpha), \pi(D_\beta)).\]

Indeed, let a, b be any two elements of L^+. Let u, v be words on the alphabet $\{D_\alpha \mid \alpha \in A\}$ that represent a and b, respectively. By Proposition II.2.16 of [18], the word $\hat{C}(u, v)$ exists, and $u\hat{C}(u, v)$ represents $\text{lcm}(a, b)$. Then $\pi(u\hat{C}(u, v))$ represents a common right-multiple of the braids $\pi(a)$ and $\pi(b)$, and, by (6.3), we have

\[\pi(u\hat{C}(u, v)) = \pi(u)\hat{C}(\pi(u), \pi(v)).\]

This shows that the braid represented by $\pi(u\hat{C}(u, v))$, which is $\pi(\text{lcm}(a, b))$ by definition, is the right-lcm of the braids $\pi(a)$ and $\pi(b)$. So the morphism π preserves right-lcm’s, and the proof of Theorem 6.1 is complete. □

6.3. The Embedding Conjecture. From the viewpoint of self-distributive algebra, the main benefit of the current approach might be that its leads to a natural program for possibly establishing the so-called Embedding Conjecture. This conjecture, at the moment the most puzzling open question involving free LD-systems, can be stated in several equivalent forms.

Proposition 6.7. [18, Section IX.6] The following are equivalent:

(i) The monoid L^+ embeds in a group;
(ii) The monoid L^+ admits right-cancellation;
(iii) The categories L^D and L^+ are isomorphic;
(iv) The functor ϕ associated with the category L^D is injective;
(v) For each term t, the LD-expansions of t make an upper-semilattice;
(vi) The relations of Lemma 5.3 generate all relations that connect the action of D_α’s by self-distributivity.

Each of the above properties is conjectured to be true: this is the Embedding Conjecture.

We turn to the proof of Theorem 6.2. So our aim is to show that the Embedding Conjecture is true whenever the category L^D is regular. To this end, we shall use some technical results from [18], plus the following criterion, which enables one to prove right-cancellability by only using simple morphisms.

Proposition 6.8. Assume that \mathcal{C} is a left-Garside category and the associated functor ϕ is injective on $\text{Obj}(\mathcal{C})$. Then the following are equivalent:

(i) $\text{Hom}(\mathcal{C})$ admits right-cancellation;
(ii) The functor ϕ is injective on $\text{Hom}(\mathcal{C})$.

Moreover, if \mathcal{C} is regular, (i) and (ii) are equivalent to

(iii) The functor ϕ is injective on simple morphisms of \mathcal{C}.
Proof. Assume that \(f, g \) are morphisms of \(\mathcal{C} \) that satisfy \(\phi(f) = \phi(g) \). As \(\phi \) is a functor, we first deduce
\[
\phi(\partial_0 f) = \partial_0(\phi(f)) = \partial_0(\phi(g)) = \phi(\partial_0 g),
\]
hence \(\partial_0 f = \partial_0 g \) as \(\phi \) is injective on objects. A similar argument gives \(\partial_1 f = \partial_1 g \). Then, (2.1) gives
\[
f \Delta(\partial_1 f) = \Delta(\partial_0 f) \phi(f) = \Delta(\partial_0 g) \phi(g) = g \Delta(\partial_1 g) = g \Delta(\partial_1 f).
\]
If we can cancel \(\Delta(\partial f) \) on the right, we deduce \(f = g \) and, therefore, (i) implies (ii).

Conversely, assume that \(h \) is simple and \(fh = gh \) holds. By multiplying by \(h^* \), we deduce \(fhh^* = ghh^* \), i.e., \(f \Delta(\partial_0 h) = g \Delta(\partial_0 h) \). As we have \(\partial_1 f = \partial_0 h = \partial_1 g \) by hypothesis, applying (2.1) gives
\[
\Delta(\partial_0 f) \phi(f) = f \Delta(\partial_1 f) = g \Delta(\partial_0 g) = \Delta(\partial_0 g) \phi(g) = \Delta(\partial_0 f) \phi(g),
\]
hence \(\phi(f) = \phi(g) \) by left-cancelling \(\Delta(\partial_0 f) \). If (ii) holds, we deduce \(f = g \), i.e., \(h \) is right-cancellable. As simple morphisms generate \(\text{Hom}(\mathcal{C}) \), we deduce that every morphism is right-cancellable and, therefore, (ii) implies (i).

It is clear that (ii) implies (iii). So assume that \(\mathcal{C} \) is regular and (iii) holds. Let \(f, g \) satisfy \(\phi(f) = \phi(g) \). Let \((f_1, ..., f_d) \) and \((g_1, ..., g_e) \) be the normal forms of \(f \) and \(g \), respectively. The regularity assumption implies that every length 2 subsequence of \((\phi(f_1), ..., \phi(f_d)) \) and \((\phi(g_1), ..., \phi(g_e)) \) is normal. Moreover, (iii) guarantees that \(\phi(f_i) \) and \(\phi(g_i) \) is nontrivial. Hence \(\phi(f_1, ..., \phi(f_d)) \) and \(\phi(g_1, ..., \phi(g_e)) \) are normal. As \(\phi \) is a functor, we have \(\phi(f_1) = \phi(f_2) \) by replacing the subterms \(\phi(f_0) \) of \(\phi(t) \) by \(x_i \). Then, by induction hypothesis, \(f_i \) and \(g_i \), hence \(f \), can be recovered from \(\phi(t) \) and \(\phi(t_0) \).

So, in order to prove Theorem 6.2, it suffices to show that the category \(\mathcal{LD}^+ \) satisfies the hypotheses of Proposition 6.8, and this is what we do now.

Lemma 6.9. The functor \(\phi \) of \(\mathcal{LD}^+ \) is injective on objects, i.e., on terms.

Proof. We show using induction on the size of \(t \) that \(\phi(t) \) determines \(t \). The result is obvious if \(t \) has size 0. Assume \(t = t_0 \ast t_1 \). By construction, the term \(\phi(t) \) is obtained by substituting every variable \(x_i \) occurring in the term \(\phi(t_1) \) with the term \(\phi(t_0) \ast x_i \). Hence \(\phi(t_0) \) is the \(n-10 \)th subterm of \(\phi(t) \), where \(n \) is the common right-height of \(t \) and \(\phi(t) \). From there, \(\phi(t_1) \) can be recovered by replacing the subterms \(\phi(t_0) \ast x_i \) of \(\phi(t) \) by \(x_i \). Then, by induction hypothesis, \(t_0 \) and \(t_1 \), hence \(t \), can be recovered from \(\phi(t) \) and \(\phi(t_0) \).

Lemma 6.10. The functor \(\phi \) of \(\mathcal{LD}^+ \) is injective on simple morphisms.

Proof. Assume that \(f, f' \) are morphisms of \(\mathcal{LD}^+ \) satisfying \(\phi(f) = \phi(f') \), say \(f = (t, a, s) \) and \(f' = (t', a', s') \). The explicit description of Lemma 2.7 implies \(\phi(t) = \phi(t') \), hence \(t = t' \) by Lemma 6.9. Similarly, we have \(\phi(s) = \phi(s') \), hence \(s' = s \). Therefore, we have \(t \ast a = t \ast a' = s \). By Proposition VII.126 of [18], we deduce that \(t \ast a = t \ast a' \) holds for every term \(t \) for which both \(t \ast a \) and \(t \ast a' \) are defined. Then Proposition IX.6.6 of [18] implies \(a = a' \) provided \(a \) or \(a' \) is simple.

We can now complete the argument.

Proof of Theorem 6.2. The category \(\mathcal{LD}^+ \) is left-Garside, with an associated functor \(\phi \) that is injective both on objects and on simple morphisms. By Proposition 6.8,
if \mathcal{LD}^+ is regular, then $\text{Hom}(\mathcal{LD}^+)$ admits right-cancellation, which is one of the forms of the Embedding Conjecture, namely (ii) in Proposition 6.7.

6.4. A program for proving the regularity of \mathcal{LD}^+. At this point, we are left with the question of proving (or disproving)

Conjecture 6.11. The left-Garside category \mathcal{LD}^+ is regular.

The regularity criteria of Section 3.5 lead to a natural program for possibly proving Conjecture 6.11 and, therefore, the Embedding Conjecture.

We begin with a preliminary observation.

Lemma 6.12. The left-Garside sequence $(\Delta_t)_{t \in T}$ on \mathcal{LD}^+ is coherent (in the sense of Definition 3.9).

Proof. The question is to prove that, if t is a term and $t \cdot a$ is defined and $a \preceq \Delta_t$, holds for some t', then we necessarily have $a \preceq \Delta_{t'}$. This is a direct consequence of Proposition VIII.5.1 of [18]. Indeed, the latter states that an element a is a left-divisor of some element Δ_t if and only if a can be represented by a word in the letters D_a that has a certain special form. This property does not involve the term t, and it implies that, if a left-divides Δ_t, then it automatically left-divides every element $\Delta_{t'}$ such that $t' \cdot a$ is defined.

So, according to Proposition 3.10, we obtain a well defined notion of a simple element in \mathcal{LD}^+: an element a of \mathcal{LD}^+ is called simple if it left-divides at least one element of the form Δ_t. Then simple elements form a seed in \mathcal{LD}^+, and are eligible for a normal form satisfying the general properties described in Section 3. In this context, applying Proposition 3.19(ii) leads to the following criterion.

Proposition 6.13. Assume that, for each term t and all simple elements a, b of \mathcal{LD}^+ such that $t \cdot a$ and $t \cdot b$ are defined, we have

$$gcd(\phi_t(a), \phi_t(b)) = \phi_t(gcd(a, b)).$$

Then Conjecture 6.11 is true.

Proof. Let f, g be two simple morphisms in \mathcal{LD}^+ that satisfy $\partial_0 f = \partial_0 g = t$. By definition, f has the form $(t, a, t \cdot a)$ for some a satisfying $a \preceq \Delta_t$, hence simple in \mathcal{LD}^+. Similarly, f has the form $(t, b, t \cdot b)$ for some simple element b, and we have $gcd(f, g) = (t, gcd(a, b), t \cdot gcd(a, b))$. On the other hand, Lemma 2.7 gives $\phi(f) = (\phi(t), \phi_t(a), \phi_t(b))$ and $\phi(g) = (\phi(t), \phi_t(b), \phi(t \cdot b))$, whence

$$gcd(\phi(f), \phi(g)) = (\phi(t), gcd(\phi_t(a), \phi_t(b)), \phi(t) \cdot gcd(\phi_t(a), \phi_t(b))).$$

If (6.4) holds, we deduce

$$gcd(\phi(f), \phi(g)) = \phi(gcd(f, g)).$$

By Proposition 3.19(ii), this implies that \mathcal{LD}^+ is regular.

Example 6.14. Assume $a = D_\ell$, $b = D_1$, and $t = x \ast (x \ast (x \ast x))$. Then $t \cdot a$ and $t \cdot b$ are defined. On the other hand, we have $\phi(t) = ((x \ast x) \ast (x \ast x)) \ast ((x \ast x) \ast (x \ast x))$. An easy computation gives $\phi_t(D_\ell) = D_0 D_1$ and $\phi_t(D_1) = D_\ell$, see Figure 8. We find $gcd(\phi_t(a), \phi_t(b)) = 1 = gcd(a, b)$, and (6.4) is true in this case.

Note that the counterpart of (6.4) involving right-lcm’s fails. In the current case, we have

$$\text{lcm}(\phi_t(a), \phi_t(b)) = \phi_t(\text{lcm}(a, b)) \cdot D_0 D_1 :$$
Figure 8. The left diagram shows an instance of Relation (6.4): for the considered choice of t, we find $\Delta_t = D_1D_1D_\epsilon$, $\Delta_{t \cdot D_1} = D_1D_1D_0D_0D_1D_{10}$, leading to $\phi_t(D_1) = D_0$ and $\phi_t(D_1) = D_0D_1$. Here $\phi_t(D_1)$ and $\phi_t(D_1)$ are left-coprime, so (6.4) is true. The right diagram shows that the counterpart involving lcm’s fails.

the terms $\phi(t \cdot D_\epsilon)$ and $\phi(t \cdot D_1)$ admit a common LD-expansion that is smaller than $\phi_t(t \cdot \text{lcm}(D_\epsilon, D_1))$, which turns out to be $\phi^2(t)$, see Figure 8 again.

The reader may similarly check that (6.4) holds for $t = (x \star (x \star x)) \star (x \star (x \star x))$ with $a = D_0$ and $b = D_1$; the values are $\phi_t(D_0) = D_{000}D_{010}D_{100}D_{110}$ and $\phi_t(D_1) = D_{\epsilon}$.

Proposition 6.13 leads to a realistic program that would reduce the proof of the Embedding Conjecture to a (long) sequence of verifications. Indeed, it is shown in Proposition VIII.5.15 of [18] that every simple element a of LD^+ admits a unique expression of the form

$$a = \prod_{\alpha \in \Lambda} D^{(e_\alpha)}_\alpha,$$

where $D^{(c)}_\alpha$ denotes $D_\alpha D_{\alpha_1}...D_{\alpha_{1 \leftarrow 1}}$ and \succ refers to the unique linear ordering of Λ satisfying $\alpha \succ 0 \beta > 0 \alpha \gamma$ for all α, β, γ. In this way, we associate with every simple element a of LD^+ a sequence of nonnegative integers $(e_\alpha)_{\alpha \in \Lambda}$ that plays the role of a sequence of coordinates for a. Then it should be possible to

- express the coordinates of $\phi_t(a)$ in terms of those of a,
- express the coordinates of $\gcd(a, b)$ in terms of those of a and b.

If this were done, proving (or disproving) the equalities (6.4) should be easy.

Remark. Contrary to the braid relations, the LD-relations of Lemma 5.3 are not symmetric. However, it turns out that the presentation of LD^+ is also associated with what can naturally be called a left-complement, namely a counterpart of a (right)-complement involving left-multiples. But the latter fails to satisfy the counterpart of (6.2), and it is extremely unlikely that one can prove that the monoid LD^+ is possibly right-cancellative (which would imply the Embedding Conjecture) using some version of Proposition 6.6.
7. Reproving braids properties

Proposition 5.13 and Theorem 6.1 connect the Garside structures associated with self-distributivity and with braids, both being previously known to exist. In this section, we show how the existence of the Garside structure of braids can be (re)-proved to exist assuming the existence of the Garside structure of LD^+ only. So, for a while, we pretend that we do not know that the braid monoid B_n^+ has a Garside structure, and we only know about the Garside structure of LD^+.

7.1. Projections. We begin with a general criterion guaranteeing that the projection of a locally left-Garside monoid is again a locally left-Garside monoid.

If π is a map of S to \mathfrak{S}, we still denote by π the alphabetical homomorphism of S^* to \mathfrak{S} that extends π, defined by $\pi(s_1...s_t) = \pi(s_1)...\pi(s_t)$.

Lemma 7.1. Assume that

- M is a locally left-Garside monoid associated with a complement C on S;
- \overline{M} is a monoid associated with a complement \overline{C} on \mathfrak{S} and satisfying (\mathfrak{L}_G);
- $\pi : S \rightarrow \mathfrak{S} \cup \{c\}$ satisfies $\pi(S) \supseteq \mathfrak{S}$ and

\begin{equation}
\tag{7.1}
\text{For all } a, b \text{ in } S, \text{ we have } \overline{C}(\pi(a), \pi(b)) = \pi(C(a, b)).
\end{equation}

Then \overline{M} is left-preGarside, and π induces a surjective right-lcm preserving homomorphism of M onto \overline{M}.

Proof. An easy induction shows that, if u, v are words on S and $\overline{C}(u, v)$ exists, then $\overline{C}(\pi(u), \pi(v))$ exists as well and we have

\begin{equation}
\tag{7.2}
\overline{C}(\pi(u), \pi(v)) = \pi(\overline{C}(u, v)).
\end{equation}

Let $\overline{a}, \overline{b}, \overline{c}$ be elements of \mathfrak{S}. By hypothesis, there exist a, b, c in S satisfying $\pi(a) = \overline{a}, \pi(b) = \overline{b}, \pi(c) = \overline{c}$. As M is left-preGarside, by the direct implication of Proposition 6.6, the relation (6.2) involving a, b, c is true in S^*. Applying π and using (7.2), we deduce that the relation (6.2) involving $\pi, \overline{b}, \overline{c}$ is true in \mathfrak{S}. Then, as \overline{M} satisfies (\mathfrak{L}_G) by hypothesis, the converse implication of Proposition 6.6 implies that \overline{M} is left-preGarside.

Then, by definition, the relations $aC(a, b) = bC(b, a)$ with $a, b \in S$ make a presentation of M. Now, for a, b in S, we find

$$\pi(a)\overline{C}(\pi(a), \pi(b)) = \pi(aC(a, b)) = \pi(bC(b, a)) = \pi(b)\overline{C}(\pi(b), \pi(a))$$

in \overline{M}, which shows that the homomorphism of S^* to \overline{M} that extends π induces a well defined homomorphism of M to \overline{M}. This homomorphism, still denoted π, is surjective since, by hypothesis, its image includes \mathfrak{S}.

Finally, we claim that π preserves right-lcm's. The argument is almost the same as in the proof of Theorem 6.1, with the difference that, here, we do not assume that common multiples necessarily exist. Let a, b be two elements of M that admit a common right-multiple. Let u, v be words on S^* that represent a and b, respectively. By Proposition II.2.16 of [18], the word $\overline{C}(u, v)$ exists, and $u\overline{C}(u, v)$ represents lcm(a, b). Then the word $\pi(u\overline{C}(u, v))$ represents a common right-multiple of $\pi(a)$ and $\pi(b)$ in \overline{M}, and, by (7.2), we have

$$\pi(u\overline{C}(u, v)) = \pi(u)\overline{C}(\pi(u), \pi(v)).$$
Proof. First, the hypotheses of Lemma 7.1 are satisfied, hence \overline{M} is left-preGarside and π induces a surjective lcm-preserving homomorphism of M onto \overline{M}.

Next, by (7.5), the definition of the elements Δ_x for $x \in X$ is unambiguous. It remains to check that the sequence $(\Delta_x)_{x \in X}$ is a left-Garside sequence with respect to the action of \overline{M} on \overline{X}. So, assume $\overline{x} \in \overline{M}$, and let x be any element of M satisfying $\overline{w}(x) = \overline{x}$.

First, $x \cdot \Delta_x$ is defined, hence, by (7.3), so is $\overline{w}(x) \cdot \pi(\Delta_x)$, which is $\overline{\pi} \cdot \Delta_{\overline{x}}$

Assume now $\overline{x} \neq 1$ and $\overline{\pi} \cdot \overline{x}$ is defined. As $\overline{\mathcal{S}}$ generates \overline{M}, we can assume $x \in \overline{\mathcal{S}}$ without loss of generality. By (7.4), the existence of $\overline{f} \cdot \overline{x}$ implies that of $x \cdot \theta(\overline{f})$. As $(\Delta_x)_{x \in X}$ is a left-Garside sequence for the action of M on X, we have $a' \preceq \Delta_x$ for some $a' \neq 1$ left-dividing $\theta(\overline{f})$. By construction, $\theta(\overline{f})$ lies in \mathcal{S}, and it is an atom in M. So the only possibility is $a' = \theta(\overline{f})$, i.e., we have $\theta(\overline{f}) \preceq \Delta_x$. Applying π, we deduce $\overline{\pi} \preceq \Delta_{\overline{x}}$ in \overline{M}.

Finally, under the same hypotheses, we have $\Delta_x \preceq \theta(\overline{f}) \Delta_x \cdot \theta(\overline{f})$ in M. Using $\pi(\Delta_x \cdot \theta(\overline{f})) = \Delta_\pi(\overline{x} \cdot \theta(\overline{f})) = \Delta_\pi(\overline{x}) \cdot \pi = \Delta_{\overline{x}} \cdot \overline{\pi}$, we deduce $\overline{\pi} \preceq \overline{\Delta}_{\overline{x}} \cdot \overline{\pi}$ in \overline{M}, always under the hypothesis $\overline{x} \in \overline{\mathcal{S}}$. The case of an arbitrary element \overline{x} for which $\overline{\pi} \cdot \overline{x}$ exists then follows from an easy induction on the length of an expression of \overline{x} as a product of elements of $\overline{\mathcal{S}}$. □

It should then be clear that, under the hypotheses of Proposition 7.2, $[\pi, \overline{w}]$ is a surjective, right-lcm preserving functor of $\mathcal{C}(M, X)$ to $\mathcal{C}(\overline{M}, \overline{X})$.

7.2. The case of LD^+ and B^+. Applying the criterion of Section 7.1 to the categories LD^+ and B^+ is easy.
Proposition 7.3. The monoid B^+_{∞} is a locally left-Garside monoid with respect to its action on \mathbb{N}, and $(\Delta_n)_{n \in \mathbb{N}}$ is a left-Garside sequence in B^+_{∞}.

Proof. Hereafter, we denote by C the complement on $\{D_n \mid \alpha \in \mathbb{A}\}$ associated with the LD-relations of Lemma 5.3, and by \overline{C} the complement on $\{\sigma_i \mid i \geq 1\}$ associated with the braid relations of (1.2). We consider the maps π of Lemma 5.11, and hit from terms to nonnegative integers. Finally, we define θ by $\theta(\sigma_i) = D_{i-1}$. We claim that these data satisfy all hypotheses of Proposition 7.2. The verifications are easy. That the complements C and \overline{C} satisfy (7.1) follows from a direct inspection. For instance, we find

$$\pi(C(D_1, D_2)) = \pi(D_1D_2D_0) = \sigma_1\sigma_2 = \overline{C}(\sigma_2, \sigma_1) = \overline{C}(\pi(D_1), \pi(D_2)),$$

and similar relations hold for all pairs of generators D_α, D_β.

Then, the action of LD on terms preserve the right-height, whereas the action of braids on \mathbb{N} is trivial, so (7.3) is clear. Next, define θ by $\theta(\sigma_i) = D_{i-1}$. Then θ is a section for t, and we observe that $t \cdot \theta(\sigma_i)$ is defined if and only if the right-height of t is at least $i+1$, hence if and only if $ht(t) \cdot \sigma_i$ is defined, so (7.4) is satisfied.

Finally, we observed in Proposition 5.13 that $\pi(\Delta_i)$ is equal to $\Delta_{ht(t)}$, hence it depends on $ht(t)$ only. So (7.5) is satisfied.

Therefore, Proposition 7.2 applies, and it gives the expected result. \qed

Corollary 7.4. (i) The braid category \mathcal{B}^+ is a left-Garside category.

(ii) For each n, the braid monoid B^+_n is a Garside monoid.

Proof. Point (i) follows from Proposition 1.11 once we know that B^+_{∞} is locally left-Garside. Point (ii) follows from Proposition 1.12 since, for each n, the sub-monoid B^+_n is the monoid $(B^+_{\infty})_n$ in the sense of Definition 1.7. \qed

Thus, as announced, the Garside structure of braids can be recovered from the left-Garside structure associated with the LD-law.

8. Intermediate Categories

We conclude with a different topic. The projection of the self-distributivity category \mathcal{LD}^+ to the braid category \mathcal{B}^+ described above is partly trivial in that terms are involved through their right-height only and the corresponding action of braids on integers is just constant. Actually, one can consider alternative projections corresponding to less trivial braid actions and leading to two-step projections

$$\mathcal{LD}^+ \longrightarrow \mathcal{C}(B^+_{\infty}, X) \longrightarrow \mathcal{B}^+.$$

We shall describe two such examples.

8.1. Action of braids on sequences of integers. Braids act on sequences of integers via their permutations. Indeed, the rule

$$(x_1, ..., x_n) \cdot \sigma_i = (x_1, ..., x_{i-1}, x_{i+1}, x_i, x_{i+2}, ..., x_n).$$

defines an action of B^+_n on \mathbb{N}^n, whence a partial action of B^+_{∞} on \mathbb{N}^\ast, where \mathbb{N}^\ast denotes the set of all finite sequences in \mathbb{N}. In this way, we obtain a new category $\mathcal{C}(B^+_{\infty}, \mathbb{N}^\ast)$, which clearly projects to \mathcal{B}^+. We shall now describe an explicit projection of \mathcal{LD}^+ onto this category. We recall that terms have been defined to be bracketed expressions constructed from a fixed sequence of variables $x_1, x_2, ...$ (or as binary trees with leaves labelled with
variables x_p), and that, for t a term and α a binary address, t/α denotes the subterm of t whose root, when t is viewed as a binary tree, has address α.

Proposition 8.1. Let \hat{B}^+ be the category associated with the partial action (8.1) of B^+_{∞} on \mathbb{N}^*. Then \hat{B}^+ is a Garside category, and the projection $[\pi, \text{ht}]$ of \mathcal{LD}^+ onto B^+ factors through \hat{B}^+ into

$$\mathcal{LD}^+ \xrightarrow{[\pi, \hat{\pi}]} \hat{B}^+ \xrightarrow{[\text{id}, \text{lg}]} B^+,$$

where $\hat{\pi}$ is defined for $\text{ht}(t) = n$ by

$$\hat{\pi}(t) = (\text{var}_n(t_0), \text{var}_n(t_{10}), ..., \text{var}_n(t_{1n-10})),
$$

$\text{var}_n(t)$ denoting the index of the rightmost variable occurring in t.

So, a typical morphism of \hat{B}^+ is $((1, 2, 2), \sigma_1, (2, 1, 2))$, and the projection of terms to sequences of integers is given by

$$\hat{\pi} \mapsto (p_1, p_2, ..., p_n).$$

Proof (Sketch). The point is to check that the action of the LD-law on the indices of the right variables of the subterms with addresses 1^i0 is compatible with the action of braids on sequences of integers. It suffices to consider the basic case of $D_{1,-1}$, and the expected relation is shown in Figure 9. Details are easy. Note that, for symmetry reasons, the category \hat{B}^+ is not only left-Garside, but even Garside. □

8.2. **Action of braids on LD-systems.** The action of positive braids on sequences of integers defined in (8.1) is just one example of a much more general situation, namely the action of positive braids on sequences of elements of any LD-system. It is well known—see, for instance, [18, Chapter I]—that, if (S, \star) is an LD-system, i.e., \star is a binary operation on S that obeys the LD-law, then

$$(x_1, ..., x_n) \star \sigma_i = (x_1, ..., x_{i-1}, x_i \star x_{i+1}, x_i, x_{i+2}, ..., x_n)$$

induces a well defined action of the monoid B^+_{∞} on the set S^n, and, from there, a partial action of B^+_{∞} on the set S^* of all finite sequences of elements of S.
Proposition 8.2. Assume that \((S, \star)\) is an LD-system, and let \(B^+_S\) be the category associated with the partial action (8.2) of \(B^+_\infty\) on \(S^*\). Then \(B^+_S\) is a left-Garside category, and, for all \(s_1, s_2, \ldots \) in \(S\), the projection \([\pi, \text{ht}]\) of \(LD^+\) onto \(B^+\) factors through \(B^+_S\) into

\[
LD^+ \xrightarrow{[\pi, \pi_S]} B^+_S \xrightarrow{[\text{id}, \text{lg}]} B^+,
\]

where \(\pi_S\) is defined for \(\text{ht}(t) = n\) by

\[
\pi_S(t) = (\text{eval}_S(t_0), \ldots, \text{eval}_S(t_{1^n-1})),
\]

eval_S(t) being the evaluation of \(t\) in \((S, \star)\) when \(x_p\) is given the value \(s_p\) for each \(p\).

We skip the proof, which is an easy verification similar to that of Proposition 8.1.

When \((S, \star)\) is \(\mathbb{N}\) equipped with \(x \star y = y\) and we map \(x_p\) to \(p\), we obtain the category \(\tilde{B}^+\) of Proposition 8.1. In this case, the (partial) action of braids is not constant as in the case of \(B^+\), but it factors through an action of the associated permutations, and it is therefore far from being free. By contrast, if we take for \(S\) the braid group \(B^\infty\) with \(\star\) defined by \(x \star y = x \text{sh}(y) \sigma_i \text{sh}(x)^{-1}\), where we recall \(\text{sh}\) is the shift endomorphism of \(B^\infty\) that maps \(\sigma_i\) to \(\sigma_{i+1}\) for each \(i\), and if we send \(x_0\) to 1 (or to any other fixed braid) for each \(p\), then the corresponding action (8.2) of \(B^+_\infty\) on \((B^\infty)^*\) is free, in the sense that \(a = a'\) holds whenever \(\pi, \pi \phi\) holds for at least one sequence \(\phi\) in \((B^\infty)^*\): this follows from Lemma III.1.10 of [23]. This suggests that the associated category \(\mathcal{C}(B^+_{\infty}, (B^\infty)^*)\) has a very rich structure.

Appendix: Other algebraic laws

The above approach of self-distributivity can be developed for other algebraic laws as well. However, at least from the viewpoint of Garside structures, the case of self-distributivity seems quite particular.

The case of associativity. Associativity is the law \(x(yz) = (xy)z\). It is syntactically close to self-distributivity, the only difference being that the variable \(x\) is not duplicated in the right hand side. Let us say that a term \(t'\) is an \(A\)-expansion of another term \(t\) if \(t'\) can be obtained from \(t\) by applying the associativity law in the left-to-right direction only, i.e., by iteratively replacing subterms of the form \(t_1 \star (t_2 \star t_3)\) by the corresponding term \((t_1 \star t_2) \star t_3\). Then the counterpart of Proposition 4.5 is true, i.e., two terms \(t, t'\) are equivalent up to associativity if and only if they admit a common \(A\)-expansion, a trivial result since every size \(n\) term \(t\) admits an \(A\)-expansion the term \(\phi(t)\) obtained from \(t\) by pushing all brackets to the left.

As in Sections 4.3 and 5.2, we can introduce the category \(A^+_0\) whose objects are terms, and whose morphisms are pairs \((t, t')\) with \(t'\) an \(A\)-expansion of \(t\). As in Section 5.1, we can take positions into account, using \(A_{\alpha}\) when associativity is applied at address \(\alpha\), and introduce a monoid \(A^+\) that describes the connections between the generators \(A_{\alpha}\) [22]. Here the relations of Lemma 5.3 are to be replaced by analogous new relations, among which the MacLane–Stasheff Pentagon relations \(A^+_0 = A_{\alpha_1} A_{\alpha_2} A_{\alpha_0}\). The monoid \(A^+\) turns out to be a well known object: indeed, it is (isomorphic to) the submonoid \(F^+\) of R. Thompson’s group \(F\) generated by the standard generators \(x_1, x_2, \ldots\) [11].

Finally, as in Section 5, we can introduce the category \(A^+\), whose objects are terms, and whose morphisms are triples \((t, a, t')\) with \(a\) in \(A^+\) and \(t \star a = t'\). Using \(\psi(t)\) for the term obtained from \(t\) by pushing all brackets to the right, we have
Proposition. The categories A_0^+ and A^+ are isomorphic; A_0^+ is left-Garside with Garside map $t \mapsto (t, \phi(t))$, and right-Garside with Garside map $t \mapsto (\psi(t), t)$.

This result might appear promising. It is not! Indeed, the involved Garside structure(s) is trivial: the maps ϕ and ψ are constant on each orbit of the action of A^+ on terms, and it easily follows that every morphism in A_0^+ and A^+ is left-simple and right-simple so that, for instance, the greedy normal form of any morphism always has length one⁴. The only observation worth noting is that A^+ provides an example where the left- and the right-Garside structures are not compatible, and, therefore, we have no Garside structure in the sense of Definition 1.6.

Central duplication. We conclude with still another example, namely the exotic central duplication law $x(yz) = (xy)(yz)$ of [20]. The situation there turns out to be very similar to that of self-distributivity, and a nontrivial left-Garside structure appears. As there is no known connection between this law and other widely investigated objects like braids, it is probably not necessary to go into details.

References

⁴We do not claim that the monoid A^+ is not an interesting object in itself: actually it is, with rich nontrivial algebraic and geometric properties, see [22]; we only say that the current Garside category approach is not relevant here.
LEFT-GARSIDE CATEGORIES, SELF-DISTRIBUTIVITY, AND BRAIDS 37

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen, 14032 Caen, France

E-mail address: dehornoy@math.unicaen.fr

URL: //www.math.unicaen.fr/~dehornoy