Implementation and Experimental Investigation of Sensorless Speed Control with Initial Rotor Position Estimation for Interior Permanent Magnet Synchronous Motor Drive
Mohamed Boussak

To cite this version:
Mohamed Boussak. Implementation and Experimental Investigation of Sensorless Speed Control with Initial Rotor Position Estimation for Interior Permanent Magnet Synchronous Motor Drive. IEEE Power Electronics, 2005, vol. 20 (n°6), pp. 1413-1422. <10.1109/TPEL.2005.854014>. <hal-00334161>

HAL Id: hal-00334161
https://hal.archives-ouvertes.fr/hal-00334161
Submitted on 24 Oct 2008
Implementation and Experimental Investigation of Sensorless Speed Control With Initial Rotor Position Estimation for Interior Permanent Magnet Synchronous Motor Drive

Mohamed Boussak, Member, IEEE

Abstract—In this paper, a new approach to sensorless speed control and initial rotor position estimation for interior permanent magnet synchronous motor (IPMSM) drive is presented. In rotating condition, speed and rotor position estimation of IPMSM drive are obtained through an extended Kalman filter (EKF) algorithm simply by measurement of the stator line voltages and currents. The main difficulty in developing an EKF for IPMSM is the complexity of the dynamic model expressed in the stationary coordinate system. This model is more complex than that of the surface PMSM, because of the asymmetry of the magnetic circuit. The starting procedure is a problem under sensorless drives, because no information is available before starting. The initial rotor position is estimated by a suitable sequence of voltage pulses intermittently applied to the stator windings at standstill and the measurement of the peak current values of the current leads to the rotor position. Magnetic saturation effect on the saliency is used to distinguish the north magnetic pole from the south. To illustrate our work, we present experimental results for an IPMSM obtained on a floating point digital signal processor (DSP) TMS320C31/40 MHz based control system.

Index Terms—Extended Kalman filter (EKF), initial position estimation, interior permanent magnet synchronous motor (IPMSM), position and velocity estimation, sensorless drive.

I. INTRODUCTION

RECENTLY, the development and availability of very high energy permanent magnet materials has contributed to an increased use of the permanent magnet synchronous motor (PMSM) in high performance variable speed motors in many industrial applications. The inherent advantages of using a PMSM drive is that it has a high ratio of torque to weight, high power factor, faster response, rugged construction, easy maintenance, ease of control and high efficiency.

The high performance speed or position control requires an accurate knowledge of rotor shaft position and velocity in order to synchronize the phase excitation pulses to the rotor position. This implies the need for speed or position sensors such as an absolute encoder or a magnetic resolver attached to the shaft of the motor. However, in most applications, these sensors present several disadvantages, such as reduced reliability, susceptibility
to noise, additional cost and weight and increased complexity of the drive system. The position and velocity sensorless control of PMSM drive overcome these difficulties.

In recent years, several solutions have been proposed in the literature for both speed and position sensorless methods for the PMSM [1]–[34]. Three basic techniques are reported in the literature for sensorless rotor position estimation of PMSM drive.

- Techniques based on back-electromotive-force (back-EMF) estimation [1]–[8].
- Techniques based on state observers [9], [10] and extended Kalman filters (EKF) [11]–[16].
- Techniques based on spatial saliency tracking [17]–[34].

Position estimation based on back-EMF techniques estimate the flux and velocity from the voltage and current, which is especially sensitive to the stator resistance at low speed range. The actual voltage information on the machine terminal can hardly be detected because of the small back-EMF of the machine and the system noise produced by the nonlinear characteristics of the switching devices. The back-EMF methods have good position estimation in middle and high speed but it fails in the low speed region.

The magnitude of back-EMF voltage is proportional to the rotor speed, thus at standstill it is impossible to estimate the initial position. Therefore starting from unknown rotor position may be accompanied by a temporary reverse rotation or may cause a starting failure.

Because of its ability to perform state estimation for nonlinear systems that involve random noise environment, the EKF appears to be a viable and computationally efficient candidate for the online estimation of speed and rotor position of an IPMSM [11]–[16].

The technique based on spatial saliency tracking using magnetic saliency is suitable for zero speed operation and makes it possible to estimate the initial rotor position without parameter influences. For initial rotor position, there are mainly two basic methods based on using pulse signal injection [22]–[25] or sinusoidal carrier signal injection [26]–[32].

In this paper, sensorless speed control with initial rotor position estimation of an IPMSM is described. We propose a sensorless speed control of IPMSM using magnetic saliency technique for initial position estimation and EKF for dynamic speed and position estimation. The IPMSM is characterized by the fact that its phase inductance varies appreciably in function of the rotor position and produces a spatial saliency useful for sensorless speed control. For initial rotor position estimation, we use the technique based on magnetic saliency [22] by applying at a standstill, rectangular pulse voltage to the phase motor. Therefore, the initial rotor position at standstill can be estimated by measurement of the peak current values which depend on the rotor position. This method still has one problem in the estimation of magnetic pole position at standstill because there are two stable points.

It is important to distinguish the position from the north magnetic pole, because if the estimated initial rotor position is aligned with the south magnetic pole the couple becomes negative and consequently the system will be unstable. Therefore, in order to distinguish the north and south pole positions, we use magnetic saturation effects on the saliency to track the magnet pole polarity.

At low and high speed range, the sensorless control of an IPMSM drive is achieved by EKF algorithm. The measured quantities are the line currents for EKF state variables and the line voltages for EKF command vector. The voltages feeding the motor have pulse width modulation (PWM) waveforms. We propose to use the fundamental components of the voltages and currents. The current fundamental components are obtained by analog low pass filtering and the fundamental voltage components are obtained by sensing the digital switching of the inverter through opto-couplers.

High-performance current regulator with the decoupling of the d- and q-axis and voltage command compensation is also proposed. The proposed sensorless speed control and initial rotor position estimation algorithms of IPMSM are implemented on a digital signal processor (DSP). The experimental results confirm the effectiveness of the proposed method.

II. IPMSM DRIVE EQUATIONS

A. IPMSM Equations

The control scheme of the proposed IPMSM drive system is shown in Fig. 1. The orthogonal two-phase α–β frame is fixed to the stator windings. The d–q frame shows the synchronously rotating reference frame and the d-axis coincides with the N pole of the rotor, and θ represents the angle of the rotor position. The d–q model for IPMSM is given as

\[
\begin{bmatrix}
\dot{u}_d \\
\dot{u}_q
\end{bmatrix} = \begin{bmatrix}
R_s + pL_d & -\omega L_q \\
\omega L_d & R_s + pL_d
\end{bmatrix} \begin{bmatrix}
\dot{i}_d \\
\dot{i}_q
\end{bmatrix} + \begin{bmatrix}
0 \\
\omega K_e
\end{bmatrix}
\]

(1)

where \(L_d = l_s + (3/2)(L_0 - L_2)\) and \(L_q = l_s + (3/2)(L_0 + L_2)\).

The electromagnetic torque \(T_e\) is given as

\[
T_e = N_p[(L_d - L_q)i_di_q + K_v\dot{i}_q].
\]

(2)

The dynamic model of the IPMSM is developed on the basis of some simplifying hypotheses. Thus, saturation and iron losses are not considered. The back-EMF is assumed to have a sine form, while eddy currents are ignored.
The dynamic IPMSM nonlinear state equation is written in the following fourth order system

\[
\begin{bmatrix}
\frac{di_d}{dt} \\
\frac{di_q}{dt} \\
\frac{d\omega}{dt} \\
\frac{d\theta}{dt}
\end{bmatrix} = \begin{bmatrix}
-\frac{R_d}{L_d} & \frac{L_a}{L_d} & 0 & 0 \\
-\frac{R_q}{L_q} & -\frac{L_a}{L_q} & 0 & 0 \\
N_p^2 L_m J & N_p^2 K_e J & 1 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix} \begin{bmatrix}
i_d \\
i_q \\
\omega \\
\theta
\end{bmatrix} + \begin{bmatrix}
\frac{1}{L_d} & 0 & 0 & 0 \\
0 & \frac{1}{L_q} & 0 & 0 \\
0 & 0 & 0 & N_p \frac{L_m}{J}
\end{bmatrix} \begin{bmatrix}
v_d \\
v_q
\end{bmatrix}.
\] (3)

The \(d\)- and \(q\)-axis currents cannot be controlled independently by \(v_d\) and \(v_q\) voltages because of the cross-coupling effects between two axes as shown in (1). For high performance speed control, \(d\)- and \(q\)-axis current regulators with the decoupling feed-forward compensation are proposed in this paper as shown in Fig. 2.

The \(d\)-axis reference current \(i^*_{d}\) is set to zero in order to maximize the torque-to-current ratio of the IPMSM. The \(q\)-axis reference current \(i^*_{q}\) is obtained from the speed error \((\Omega^* - \Omega)\) through the speed regulator as shown in Fig. 2. The outputs of the \(d\)-\(q\) current regulators give the reference voltages \(v_{d1}^*, v_{q1}^*\) in the rotating reference frame. In the block diagram of Fig. 2, the feed-forward terms, \(e_d\) and \(e_q\), used for the decoupling control are given by

\[
e_d = \omega L_d q\theta_q \\
e_q = -\omega (L_d i_d + K_e).
\] (4) (5)

The decoupling current control and the voltage command compensation are very useful in improving the performance of the current vector control and the flux weakening control.

B. EKF Algorithm

The EKF is one of the most widely used for tracking and estimation for nonlinear systems due to its simplicity, optimality, trackability and robustness. In order to achieve sensorless control of the salient-pole IPMSM, EKF is used for the estimation of the speed and rotor position. The line voltages of the motor and the load torque are the vector input variable of the system. The speed and the rotor position are the two magnitudes to be estimated, and with the motor current they constitute the state vector. The motor currents will be the only observable magnitude that constitute the output vector.

For the implementation of an EKF for sensorless IPMSM drive, the choice of the two axis reference frame is essential. The ideal case is to use the \(d\) -- \(q\) rotating reference frame attached to the rotor. This solution is not compatible for IPMSM sensorless speed control because the input vector (currents and voltages) of the estimator are rotor position dependent. We can observe that an error of estimation in the initial position of the rotor can have serious repercussions by inducing error in the progress of the EKF with regard to the real system.

We seek to preserve the IPMSM control in the rotor reference frame. The speed and the position are estimated using only measurements of the stator voltages and currents. The EKF based observers use the motor model with quantities in the fixed reference frame \(\alpha \beta\) attached to the stator frame and are therefore independent of the rotor position.

The nonlinear dynamic state model of the IPMSM in a stationary reference frame is described by the following expressions:

\[
\frac{d}{dt}[x] = [A][x] + [B][u] \\
[y] = [C][x].
\] (6)

The matrix elements of \(A\) and \(B\) are given in Appendix A. The two stator currents, the electrical speed and position are used as system state variables.
The voltage components in the $\alpha - \beta$ fixed stator-oriented frame are
\begin{align}
v_\alpha &= \sqrt{\frac{2}{3}} \left[v_u - \frac{v_v}{2} - \frac{v_w}{2} \right] \tag{7} \\
v_\beta &= \frac{\sqrt{2}}{2} \left[v_v - v_u \right]. \tag{8}
\end{align}

The EKF algorithm should be calculated by using a microcontroller, and the dynamic state model given by (6) is to be expressed in a discrete state model.

The discrete state model is described by the following expressions:
\begin{align}
\frac{d}{dt} x(t) &= f[x(t), u(t), t] + G(t)v(t) \\
y(t) &= h[x(t), t] + w(t) \tag{9}
\end{align}

where $x(t)$ is the state vector, $y(t)$ is the output vector of the discrete state model defined as the measurement signals.

The output vector variables are defined as
\begin{align}
y(t) &= \begin{bmatrix} i_\alpha(t) \\ i_\beta(t) \end{bmatrix} \tag{10} \\
h[x(t), t] &= \begin{bmatrix} i_\alpha(t) \\ i_\beta(t) \end{bmatrix}. \tag{11}
\end{align}

The state vector variables are defined as
\begin{align}
x_k &= \begin{bmatrix} v_\alpha \\ i_\beta \\ \omega \\ \theta \end{bmatrix}_k \\
y_k &= \begin{bmatrix} i_\alpha \\ i_\beta \end{bmatrix}_k. \tag{12}
\end{align}

$f[x(t), u(t), t]$ is given in (6).

The command vector u is
\begin{align}
u(t) &= \begin{bmatrix} v_\alpha \\ v_\beta \end{bmatrix}^T \tag{14}
\end{align}

and
\begin{align}
H_{k+1} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}. \tag{15}
\end{align}

\[
[L] = \begin{bmatrix}
I_s + I_0 + I_2 \cos 2\theta & -\frac{L_2}{2} + I_2 \cos \left(2\theta - \frac{2\pi}{3} \right) & -I_s + I_0 + I_2 \cos \left(2\theta + \frac{2\pi}{3} \right) \\
-\frac{L_2}{2} + I_2 \cos \left(2\theta - \frac{2\pi}{3} \right) & I_s + I_0 + I_2 \cos \left(2\theta + \frac{2\pi}{3} \right) & -\frac{L_2}{2} + I_2 \cos 2\theta \\
-\frac{L_2}{2} + I_2 \cos \left(2\theta + \frac{2\pi}{3} \right) & -I_s + I_0 + I_2 \cos \left(2\theta - \frac{2\pi}{3} \right) & I_s + I_0 + I_2 \cos 2\theta
\end{bmatrix}
\]
the motor are sinusoidal functions of the rotor position given as

\[I_u = I_0 + \Delta I_u = I_0 + \Delta I_0 \cos(2\theta) \]
\[I_v = I_0 + \Delta I_v = I_0 + \Delta I_0 \cos \left(\frac{2\theta - 2\pi}{3} \right) \]
\[I_w = I_0 + \Delta I_w = I_0 + \Delta I_0 \cos \left(\frac{2\theta + 2\pi}{3} \right) \]

where \(I_0 = (1/3)(I_u + I_v + I_w) \) is the dc current component and \(\Delta I_0 \) is the amplitude of a fluctuated component. We measure the phase current peaks \(I_u, I_v, \) and \(I_w \) and we calculate the difference \(\Delta I_u = I_u - I_0, \Delta I_v = I_v - I_0, \) and \(\Delta I_w = I_w - I_0. \) Fig. 4 shows the experimental phase current peaks \(I_u, I_v, \) and \(I_w \) for the angle of the rotor position in the case of the nonsaturated condition where the dc current component \(I_0 = 0.95 \) A. Fig. 5 shows the measured difference of current peaks \(\Delta I_u, \Delta I_v, \) and \(\Delta I_w \) compared to the dc current component \(I_0. \) The sector of initial electrical rotor position can be estimated by using the combination of signs of \(\Delta I_u, \Delta I_v, \) and \(\Delta I_w \) (Fig. 5), which is summarized in Table I [22] with two domains.

An expression for the rotor position found in (19) was generated by using trigonometric identities from the above expressions (16), (17), and (18) and isolating the angle terms for \(\theta \) given as

\[tg(2\theta) = \frac{\sqrt{3}(\Delta I_v - \Delta I_w)}{2\Delta I_u - \Delta I_v - \Delta I_w}. \]

The position could be found by calculating the inverse tangent and dividing the remaining angle by two. For small angles, an approximation of \(tg(2\theta) \) to the first order (\(tg(2\theta) \approx 2\theta \)), we obtain the expression (20) of the estimated initial electrical rotor position according to the current fluctuations peak. Once the domain is specified, for example in the case where sign (\(\Delta I_u = + \)) sign (\(\Delta I_v = - \)) and sign (\(\Delta I_w = - \)), the initial electrical rotor position can be estimated by the following expressions:

\[\begin{align*}
\theta & \approx \frac{\sqrt{3}}{2} \frac{\Delta I_v - \Delta I_w}{2\Delta I_u - \Delta I_v - \Delta I_w} \quad \theta \in \left[-\frac{\pi}{12}, \frac{\pi}{12} \right] \\
\theta & \approx \frac{\sqrt{3}}{2} \frac{\Delta I_v - \Delta I_w}{2\Delta I_u - \Delta I_v - \Delta I_w} + \pi \quad \theta \in \left[\frac{11\pi}{12}, \frac{13\pi}{12} \right]
\end{align*} \]

To distinguish north magnetic pole between \(\theta \) and \(\theta + \pi \), we take into account the magnetic saturation by applying to the motor pulse vector voltages \(v(100), v(010), \) and \(v(001) \) during the long time \(T_L \) and we measure, respectively, the \(u \)-phase, \(v \)-phase and \(w \)-phase current peaks. By comparing the current peaks obtained by using voltage pulse applied with short and long time, initial electrical rotor position can be discriminated between \(\theta \) and \(\theta + \pi. \) According to Fig. 6, when the permanent magnet flux has an inverse direction to that created by a current impulse in the stator winding, this flux is subtractive and therefore the variation of the current is weaker than if the flux were additive.

Consequently when the north magnetic pole is in the vicinity of the axis of one of the three stator phases, the current response is necessarily higher in this phase. Under these conditions there are thus three 120\(^\circ\) sectors (\(\triangle O\hat{B} \), (\(\triangle O\hat{C} \), and (\(\triangle O\hat{A} \), each one centered around the axis of the phase. When the north magnetic pole is in one of these three sectors, the current in the corresponding phase gives the highest current peak. For this type of test, the magnetic saturation appears at \(\theta = \)}
0, because the flux is added to the magnet flux and subtracted at \(\theta = \pi \) (Fig. 6).

Fig. 7 shows the experimental phase current peaks \(I_u, I_v \) and \(I_w \) for the angle of the initial electrical rotor position in the case of the saturated condition when voltage pulse with a long time \(T_L \) is applied to the stator windings of the motor.

Let us take the previous example where sign \((\Delta I_u = +) \), sign \((\Delta I_u = -) \) and sign \((\Delta I_w = -) \), we have obtained two estimate initial electrical rotor positions \(\theta \in \left[-\frac{\pi}{12}, \frac{\pi}{12} \right] \) or \(\theta \in \left[(11\pi/12), (13\pi/12) \right] \). In order to distinguish the initial electrical rotor position estimation, we apply to the motor pulse vector voltages \(v(100) \) and we measure the current peaks \(I_u, I_v \) and \(I_w \). We notice that if the current \(I_u > I_w \) and \(I_u > I_v \) in this case the initial electrical rotor position is located in the sector 1 (see Fig. 7 and Table II) where \(\theta \in \left[-\left(\pi/3\right), \left(\pi/3\right) \right] \), consequently the real initial electrical rotor position estimation is located in the sector 1 (see Fig. 5 and Table I) where \(\theta \in \left[-\left(\pi/12\right), \left(\pi/12\right) \right] \). If it is not the case, then the real initial position estimation is located at \(\theta \in \left[(11\pi/12), (13\pi/12) \right] \). We can apply the same reasoning for the other cases and the discrimination between two estimated initial electrical rotor positions is summarized in Table II.

Fig. 8 shows the comparison between the actual and the estimated initial electrical rotor position. The estimation was performed at 15° electrical degree intervals from 0° to 210° electrical degrees. The comparison shows a good agreement and confirms the effectiveness of the proposed method.

Fig. 9 shows the experimental of initial electrical rotor position estimation error over the range from 0° to 210° electrical degrees. As a result, the average and maximum values of the error for the initial rotor position estimation are 1.14° and 7.4° electrical degrees, respectively. The obtained values for initial electrical rotor position are small for the purposes of the application. The accuracy of initial rotor position estimation is dependent on the accuracy of current peaks measurement.

The initial rotor position estimation is achieved by means of the response current of two types of voltage pulse applied to the IPMSM, one during short time \(T_C \), the other during long time \(T_L \). The system of control makes it possible to apply and to manage the response of the signals tests to the machine with the inverter which operates in this case like a chopper. Thus, the magnitude of the voltage pulse is equal to the dc-bus voltage of the input inverter (\(V_{dc} = 316 \text{ V} \)).

When the voltage pulse with short or long time is applied to the stator windings of the motor, we noted that the machine rotor is practically at standstill with a small vibration (Fig. 10). The current generated by the high frequency voltage pulse applied to the motor produces an impulse low magnitude torque with null average value.

Fig. 10 shows the speed responses at standstill when the voltage pulse with short time \(T_C \) [Fig. 10(a)] and with long time \(T_L \) [Fig. 10(b)] is applied to the stator windings of the motor with initial rotor position \(\theta_0 = \pm 60^\circ \). It can be seen the machine rotor did not move, but it is in a critical position of unstable balance and we note the occurrence of a small vibration on the rotor. The speed is within \(-1 \text{ r/min} \) to 1 r/min and its average value is null, thus the motor keep at standstill.
IV. SENSORLESS DRIVE IMPLEMENTATION

The DSP System used for sensorless IPMSM drive control implementation is based on the DS1102 controller board from dSpace GmbH. The heart of the DS1102 controller board is a TMS320C31 32-b DSP floating-point processor. Fig. 11 shows the complete DSP system setup used for sensorless speed control of the IPMSM drive implementation. The proposed sensorless controller scheme is based on a current-controlled voltage source inverter (VSI) structure. For the current control loops, we use the synchronously rotating reference frame attached to the rotor. The EKF used for the dynamic rotor position and speed estimation operates in the stationary reference frame.

All the system controls of the IPMSM drive are implemented inside the DS1102 controller board. A resolver is used for real speed measurement to be compared to the estimated speed. The PWM logic is generated by an external analog circuit. The line current is detected by Hall LEM LA 25-NP and is converted through a 12 b A/D converter. In A PWM drive, the line-to-line voltage changes very rapidly. The fundamental components of the line-to-line voltages are reconstructed by sensing the digital switching information of the inverter through opto-couplers. To retrieve the fundamental components from the digital switching information of the inverter, we use a direct analog method.

The voltage components \(v_{\alpha}\) and \(v_{\beta}\) in the stator axis frame are obtained through coordinate transformation of the phase \(v_{A}, v_{B},\) and \(v_{C}\) using operational amplifier circuit with a minimum offset. The \(v_{\alpha}, v_{\beta}\) voltages are then passed through analog low pass filters to eliminate the high frequency harmonics and are converted through a 16 b A/D converter.

In our experimental test we assume that the dc-bus voltage is constant. If the dc-bus voltage varies it affects the voltage measurement accuracy, therefore the measurement of dc-bus voltage is necessary. The carrier frequency of a conventional sinusoidal PWM inverter is 5 kHz, in which three-phase sinusoidal reference voltages are compared with a triangular wave. The EKF algorithm predicts the state in \(t_k\) with the sampling period \(T_s\) fixed at 500 \(\mu\)s.

The IPMSM has highly nonsymmetrical distribution of reactances in \(d-q\) rotor frame. All the experimental results are obtained using as feedback estimated rotor speed and position. The measurements of the actual rotor speed and position are detected with a resolver. The choice of initial values for matrixes
Fig. 13. Estimated rotor speed error.

Fig. 14. Measured and estimated rotor position.

Fig. 15. Estimated rotor position error.

TABLE III

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pole pairs</td>
<td>(N_p)</td>
<td>5</td>
</tr>
<tr>
<td>Armature resistance</td>
<td>(R_s)</td>
<td>1.4 (\Omega)</td>
</tr>
<tr>
<td>(d)-axes inductance</td>
<td>(L_d)</td>
<td>0.00547 H</td>
</tr>
<tr>
<td>(q)-axes inductance</td>
<td>(L_q)</td>
<td>0.00758 H</td>
</tr>
<tr>
<td>Maximum phase current</td>
<td>(I_m)</td>
<td>15 A</td>
</tr>
<tr>
<td>Rated torque</td>
<td>(T_r)</td>
<td>3.3 Nm</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>(\Omega_m)</td>
<td>4000 r/min</td>
</tr>
<tr>
<td>Torque constant</td>
<td>(K_t)</td>
<td>0.461 Nm/A</td>
</tr>
<tr>
<td>Rotor inertia</td>
<td>(J)</td>
<td>(2.9 \times 10^{-3}) Kgm(^2)</td>
</tr>
<tr>
<td>Frictional constant</td>
<td>(f)</td>
<td>(8.6 \times 10^{-4}) Nm/rad/s</td>
</tr>
<tr>
<td>Inverter input dc voltage</td>
<td>(V_{dc})</td>
<td>316 V</td>
</tr>
<tr>
<td>Sampling period</td>
<td>(T_s)</td>
<td>500 (\mu s)</td>
</tr>
<tr>
<td>Duration of the short time</td>
<td>(T_c)</td>
<td>30 (\mu s)</td>
</tr>
<tr>
<td>Duration of the long time</td>
<td>(T_L)</td>
<td>300 (\mu s)</td>
</tr>
<tr>
<td>PWM switching frequency</td>
<td>(f_c)</td>
<td>5 kHz</td>
</tr>
</tbody>
</table>

where \(I_d \) is the identity matrix of dimension \((4 \times 4) \).

In Fig. 12 the measured and estimated rotor speed is reported in steady state with a speed command of 150 r/min. It can be seen therefore that the estimated speed shows a good correspondence to the actual rotor speed with an error of a less than \(\Delta \omega = 9 \) r/min shown in Fig. 13.

In Fig. 14, the measured and estimated rotor position is reported in steady state with a speed reference of 150 r/min. According to the experimental results, the estimated position shows good correspondence to the actual rotor position with an average error of a less than \(\Delta \theta = 5.4^\circ \) electrical angle degrees (Fig. 15) which corresponds to about \(1.1^\circ \) mechanical angle degrees.

The parameter of the PMSM used for simulation and experiment is given in Table III.

V. CONCLUSION

In this paper, a new approach initial rotor position estimation including magnet polarity and sensorless speed control of IPMSM has been proposed. The feasibility of initial rotor position estimation and sensorless speed control of IPMSM drive has been investigated through experiments as well as computer simulations. The estimation of the initial rotor position is based on the investigation of the magnetic saliency without requiring knowledge the motor parameters except the ration of \(d \)-axis and \(q \)-axis inductance. The magnet polarity is identified using the magnetic saturation effect. According to the experimental results, the average of the estimation initial rotor position error is \(1.14^\circ \) electrical degrees, and the maximum estimation error is \(7.4^\circ \) electrical degrees.

In rotating condition, speed and rotor position estimation of IPMSM drive are obtained through an extended Kalman filter (EKF) algorithm. The correspondence of the estimated rotor position to the actual position indicates that the EKF algorithm is effective and can be used to replace the position encoder. The coupling of initial rotor position estimation technique to EKF algorithm for sensorless control algorithm make possible to operate the motor from zero speed up to full speed. The estimated algorithm was implemented in a digital controller using a DSP, and an experimental speed control system consisting of an IPMSM and a voltage-source PWM inverter was made up and tested.

The experimental results show that the proposed method has good sensorless speed control performance with initial rotor position estimation. As a result, good controllability over the wide speed range was confirmed, which proved the feasibility of the proposed method.
APPENDIX A

The matrix elements of A and B in (6) are

$$A_{11} = -\frac{R_s}{2L_{\pi}} (I_{\Sigma} - L_{\Delta} \cos 2\theta) + \frac{\omega L_{\Sigma}}{2L_{\pi}} L_{\Delta} \sin 2\theta$$

(A1)

$$A_{12} = \frac{\omega L_{\Sigma}}{2L_{\pi}} (I_{\Delta} + L_{\Sigma} \cos 2\theta) + \frac{R_s}{2L_{\pi}} L_{\Delta} \sin 2\theta$$

(A2)

$$A_{13} = \frac{K_e}{L_q} \sin \theta$$

(A3)

$$A_{21} = -\frac{\omega L_{\Sigma}}{2L_{\pi}} (I_{\Delta} + L_{\Sigma} \cos 2\theta) + \frac{R_s}{2L_{\pi}} L_{\Delta} \sin 2\theta$$

(A4)

$$A_{22} = -\frac{R_s}{2L_{\pi}} (I_{\Delta} + L_{\Sigma} \cos 2\theta) - \frac{\omega L_{\Sigma}}{2L_{\pi}} L_{\Delta} \sin 2\theta$$

(A5)

$$A_{23} = \frac{K_e}{L_q} \cos \theta$$

(A6)

$$A_{31} = -\frac{N_p}{J} \left(K_t \sin \theta + \frac{L_{\Delta}}{2} i_{\alpha} \sin 2\theta \right)$$

(A7)

$$A_{32} = \frac{N_p}{J} \left(K_t \cos \theta + \frac{L_{\Delta}}{2} (i_{\beta} \sin 2\theta + 2i_{\alpha} \cos 2\theta) \right)$$

(A8)

$$A_{33} = -\frac{f}{J}$$

(A9)

$$B_{11} = \frac{1}{2L_{\pi}} (I_{\Sigma} - L_{\Delta} \cos 2\theta)$$

(A10)

$$B_{12} = \frac{L_{\Delta}}{2L_{\pi}} \sin 2\theta$$

(A11)

$$B_{21} = \frac{L_{\Delta}}{2L_{\pi}} \sin 2\theta$$

(A12)

$$B_{22} = \frac{1}{2L_{\pi}} (I_{\Sigma} + L_{\Delta} \cos 2\theta)$$

(A13)

$$B_{33} = \frac{N_p}{J}$$

(A14)

with $I_{\Sigma} = I_{d} + I_{q}$, $L_{\Delta} = L_{d} - L_{q}$, $L_{\pi} = L_{d} L_{q}$.

APPENDIX B

The EKF is a mathematical tool for estimating the states of dynamic nonlinear systems. The nonlinear state space equations of the motor model are written in the following continuous form:

$$\dot{x}(t) = f([x(t), u(t), t]) + G(t)v(t)$$

$$y(t) = h(x(t), t) + w(t).$$

(B1)

Where the initial state vector $x(t_0)$ is modeled as a Gaussian-random vector with mean x_0 and covariance P_{0x}, $u(t)$ is the deterministic control input vector, $v(t)$ is zero-mean Gaussian noise matrix of state model which is independent of $x(t_0)$ with a covariance matrix $Q(t)$, $w(t)$ is a zero-mean white Gaussian noise matrix of output model with a covariance matrix $R(t)$, $G(t)$ is the weighting matrix of noise, y the output vector and u the control matrix.

The filter has a predictor-corrector structure as follows (superscripts k and $k+1$ refer to the time before and after the measurements have been processed). The discrete form of EKF algorithm can be summarized as follows.

1) Prediction of states

$$\hat{x}_{k+1/k} = \hat{x}_k + \frac{t_{k+1}}{t_k} \int_{t_k}^{t_{k+1}} f(\hat{x}_t, t, u(t), \delta t) \mathrm{d}t.$$

(B2)

2) Prediction of the covariance matrix of states

$$P_{k+1/k} = \Phi(k+1, k)P_{k/k-1}\Phi^T(k+1, k) + Q_u(k)$$

(B3)

where

$$\Phi(k+1, k) = e^{(F[k]T_{k+1})}$$

(B4)

$$Q_d(k) = \int \Phi(t_{k+1}, \tau)G(\tau)Q(\tau)G^T(\tau)\Phi^T(t_{k+1}, \tau) \mathrm{d}\tau$$

(B5)

$$F[k] = \frac{\partial f(x(t), u(t), \delta t)}{\partial x} \bigg|_{x = \hat{x}_{k/k}}.$$

(B6)

3) Kalman gain matrix

$$K_{k+1} = P_{k+k}H_{k+1}^T [H_{k+1}P_{k+k}H_{k+1}^T + R_{k+1}]^{-1}$$

(B7)

where

$$H_{k+1} = \frac{\partial h(x(t), \delta t)}{\partial x} \bigg|_{x = \hat{x}_{k/k}}.$$

(B8)

4) Update the covariance matrix of states

$$P_{k+k+1} = [I - K_{k+1}H_{k+1}]P_{k+1/k}.$$

(B9)

5) Update of the state estimation

$$\hat{x}_{k+1/k+1} = \hat{x}_{k+1/k} + K_{k+1} \{ y_{k+1} - h(\hat{x}_{k+1/k}, k+1) \}.$$

(B10)

REFERENCES

