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A Lagrangian integration point finite element method for large 
deformation modeling of viscoelastic geomaterials 

L. Moresi, F. Dufour, H.­B. Mühlhaus 

Abstract 

We review the methods available for large­deformation 
simulations of geomaterials before presenting a La­
grangian integration point finite element method de­
signed specifically to tackle this problem. In our EL­
LIPSIS code, the problem domain is represented by an 
Eulerian mesh and an embedded set of Lagrangian in­
tegration points or particles. Unknown variables are 
computed at the mesh nodes and the Lagrangian parti­
cles carry history variables during the deformation pro­
cess. This method is ideally suited to model fluid­like 
behavior of continuum solids which are frequently en­
countered in geological contexts. We present bench­
mark examples taken from the geomechanics area. 

Introduction 

A long­term goal of geological modeling is to achieve 
the degree of simulation capability currently enjoyed 
by the engineering community. The routine ability 
to recreate the evolution of geological structures dur­
ing deformation and simultaneously compute stresses, 
temperatures, fluid flow vectors and chemical evolu­
tion would greatly enhance our ability to understand 
the Earth. Many questions in geology are formulated in 
terms of inverse analysis because of the very nature of 
the science but there is little hope of making significant 
progress until a reliable forward modeling capability is 
developed (Wijns et al., 2001 [20]). 
Unlike most engineering simulations, however, the ge­
ometry of the geological model is a result of the contin­
uously evolving non­linear interaction of the structure 
and the rheology at extremely large strains (Mühlhaus 
et al, 2001 [15]). Initially the geometry might be rela­
tively simple, e.g. flat layering, but during the course 
of the simulation very intricate patterns will develop 
and need to be accurately resolved by the numerical 
method. In many cases the complexity reflected in the 
geometry results from post­failure deformation of the 
material. 
To make matters worse, the rheological laws which 
govern particular geological materials at a given scale 
are often poorly determined ­ this is partly due to 
the difficulty in measuring behaviour at realistic strain 
rates, and partly due to the microstructural complex­
ity of the materials which make up a given rock suite. 
The fact that the materials also undergo metamorphic 

transformations and phase changes during the evolu­
tion of a geological structure is another complicating 
factor which makes simulation difficult. 

As an example, on a global scale, the continents drift as 
an integral part of the surface thermal boundary layer 
of the convecting mantle. They have retained a dis­
tinct identity within the mantle flow for billions of years 
while developing a strong physical and chemical fabric 
along the way. Motions in the mantle are described by 
the equations of fluid dynamics for very large deforma­
tion. The rheology needed to describe deformation in 
the lithosphere is highly non­linear, and near the sur­
face where temperatures are less than approximately 
600◦C it becomes necessary to consider the role of elas­
ticity (Watts et al, 1980 [19]). The strong correlation be­
tween seismicity and plate boundaries (e.g. Barazangi 
& Dorman, 1969 [1]) makes it seem likely that plate mo­
tions are associated with localization of deformation 
occuring when stresses reach the yield strength of the 
lithosphere. 

From a modeling point of view, it is necessary to 
consider the fluid convection of the mantle and the 
history­dependent viscoelastic/brittle behaviour of the 
continental crust as a single coupled system. At 
the same time, the precise structure and composi­
tion of the deep continental crust is not well known. 
The requirements for a geological simulation code are 
therefore an ability to track boundaries and interfaces 
through extremely large deformation, including fluid 
convection, of non­linear history dependent materi­
als. The wide range of physical and temporal scales, 
and the many coupled physical processes also impose 
a need for computational efficiency. The code should 
also be very flexible in the rheological laws which it can 
treat. 

Many different numerical methods have been devised 
for mechanical simulations of this kind. Some derive 
from standard engineering methods, while others were 
developed to handle specific problems in the physical 
sciences. We summarize a number of these methods 
in order to illustrate the difficulties involved in creating 
convincing, realistic simulations. We next present the 
ELLIPSIS Lagrangian Integration Point code: a method 
for simulating viscoelastic­brittle materials in fluid­like 
deformation. The method is tested on a number of very 
simple benchmark cases where analytic solutions are 
known, or where the accuracy can otherwise be quan­
tified in large deformation. 
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Figure 1: Different ways to discretize a problem pro­
vide a natural representation for systems with differ­
ent controlling physics. In fully Lagrangian FEM, SPH 
and DEM all the computational points are also material 
points. In the Lagrangian integration point method, 
computational points are not material points but a set 
of material points is also tracked. In ALE and Eulerian 
FEM there is no tracking of material points. 

modeling techniques 

The key to all these problems is to find a way to deal 
efficiently with the most general case: finite strain vis­
coelasticity. This is a specialized problem: most en­
gineering codes are optimized to study the modest 
strains which accumulate prior to failure. Neverthe­
less, an enormous amount of research has been done in 
developing numerical methods suited for large strain 
problems in different application areas. 

The principal difficulty in finite strain modeling is the 
tendency for any computational or logical connecting 
mesh between material points to become arbitrarily 
tangled during the simulation. 

Broadly speaking there have been two approaches to 
dealing with this problem. One approach is to retain 
the mesh, but to reorganize it periodically and, per­
haps, modify the method to cope with a less­than­
optimal distribution of discretization points, and the 

other is to dispense with the mesh entirely for com­
puting mechanical behavior and derive a formulation 
where the material points interact with each other di­
rectly. The approach used in Ellipsis is distinct from 
these methods in relaxing the requirement that mate­
rial points and computational points need to be the 
same (see Figure 1) 

Highly deforming mesh methods 

Mesh based Lagrangian methods are not particularly 
well suited to very large strain fluid flow applications as 
the mesh is subject to tangling and considerable effort 
is required to regrid or reconnect the mesh to prevent 
the computation of derivatives and shape functions 
from becoming inaccurate. The Arbitrary Lagrangian 
Eulerian method (Huerta and Liu 1987 [9]) avoids mesh 
tangling by allowing computational points to move in­
dependently from the underlying material. This strat­
egy makes it possible to prevent mesh points from ap­
proaching one another too closely, while still preserv­
ing important interface details. However, additional 
advection terms are required to handle transport of 
quantities relative to the mesh and these terms are dis­
persive. 
The Dynamical Lagrangian Remeshing method (Braun 
and Sambridge 1994 [6]) reconnects all mesh points af­
ter any deformation to ensure the mesh always remains 
optimally configured (in DLR this means the mesh is 
always a Delaunay triangulation). Stress histories can 
be compute at integration points and therefore need to 
be interpolated when new element connections occur. 
The extension to 3D is non­trivial and the method is 
limited to linear triangles/tetrahedra. 
An alternative approach, the Natural Element Method 
(NEM, Braun and Sambridge 1995 [7]) uses a natural­
neighbor interpolation scheme over a Delaunay trian­
gulation to develop finite­element­like shape functions 
associated with each computational, material point. 
The Natural Element Method (NEM) does not suffer 
from the same difficulties as FEM when elements are 
highly distorted and, although it uses a triangulated 
mesh, has the advantage that the interpolation func­
tions are continuously differentiable away from the 
computational points. NEM shares with DLR the dif­
ficulty associated with preserving tensor information 
at integration points after reconnection of the mesh. 
Braun and Sambridge ([7]) point out that the use of a 
standard gaussian integration scheme in NEM is not 
exact for natural neighbor interpolation functions. An­
other complication is that the shape functions overlap 
element boundaries, and therefore descriptions of flux 
boundary conditions is not trivial and may not be ac­
curate. 

Meshless methods 

Meshless methods include the Discrete Element 
Method (DEM, see for example Sakaguchi and 
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Mühlhaus 1997 [16]), Smoothed Particles Hydro­
dynamics (SPH, Monaghan 1992 [12]), Element Free 
Galerkin (EFG, Belytschko et al 1994 [2]), and the Point 
Integration Method (PIM, Liu & Gu, 2001 [11]). 
In the DEM, computational points are associated with 
a finite size and shape. Interaction between points 
(particles) occurs only where they are in contact or 
close neighbors ­ according to the specified interac­
tion rules. This is a genuinely discrete method with 
no homogenization of the particle­particle interactions 
through a continuum description. The DEM is very 
well suited to modeling of fracture since particle inter­
actions can take the form of breakable bonds. The in­
teraction of a particle with it’s neighbours varies with 
angle and time, since it is a function of the neighbours’ 
coordinates, and the interaction history. 
SPH and EFG are continuum methods in which the ma­
terial points are associated with a basis function which 
can be used as an interpolant for field variables, and 
to develop an expansion for PDEs. The basis func­
tions overlap other particles, making it more compli­
cated to apply constraints to values at individual ma­
terial points but allowing particles to pass arbitrarily 
close to one another during simulations of fluid motion 
with stagnation points. 
PIM is also a continuum method. In PIM, global basis 
functions are defined which can be combined to pro­
duce non­overlapping shape functions. The method 
therefore eliminates one of the principal obstacles in 
efficient formulation of meshless solvers. However, 
very little in the way of practical applications for the 
method has been published to date so the promise 
of the method is largely unexplored. SPH, EFG and 
PIM are formulated in such a way that implicit solution 
methods or explicit methods can be used. 

Lagrangian integration points 

The method used in Ellipsis is a hybrid mesh / parti­
cle code —­ the idea being to retain the generality and 
robustness of mesh­based FEM, and capture the geo­
metrical flexibility of a fully­Lagrangian set of particles 
for tracking material deformation. The computational 
points are a set of nodes fixed in space, connected by 
a mesh of finite elements. An independent set of ma­
terial points which carry material properties and the 
solution history is embedded in the mesh. Since the 
material and computational points have been formally 
separated, a strategy for coupling the two representa­
tions is needed. The usual finite element interpolation 
of nodal point values to element interiors is used to 
update the locations of particles and history variables. 
The particle properties are coupled to the computa­
tional mesh through a non­standard element quadra­
ture in which the particles which happen to be in a 
given element are used as integration points. Bound­
ary conditions constrain unknowns directly and there­
fore belong with the mesh points. 
This formulation is very close to the Material Point 

Method (MPM) developed by Sulsky, Schreyer and their 
coworkers (e.g. Sulsky & Schreyer, 1996 [18]) who use 
an Eulerian mesh with Lagrangian particles. Their for­
mulation was derived from problems where momen­
tum dominates: impacts between elastoviscoplastic 
materials, suspensions in fast­moving fluids, and fast 
granular flows. The strength of the method comes from 
the incremental way in which particle quantities (in­
cluding momentum) are updated from the mesh. In­
compressible creeping flow can be treated by introduc­
ing a ficticious inertial term, but this is not ideal for the 
long­duration experiments we wish to simulate. The 
implicit formulation in our approach requires consid­
erable modification to the method. However, when we 
introduce elasticity, there are strong parallels with the 
MPM. 

Finite elements with moving integra­
tion points 

In this section we describe the similarities and prin­
ciple differences between a standard finite element 
method and one with moving integration points. Prin­
cipally these differences are in the updating of inte­
gration points themselves, and in the formulation of 
a weak form based on particle­derived material prop­
erty matrices. In later sections we discuss efficient grid­
based solution methods which can be used with our 
formulation, and some implementation details. 

Updating integration points 

On one hand, we aim to build a finite element like for­
mulation then we need integration points to integrate 
some quantities. On the other hand material particles 
are used to track history variables and deformation. 
The essence of our formulation (like in PIC method) is 
to use particles as integration points. 
In a particle­in­cell method the grid generally remains 
fixed whereas particles move through the mesh during 
computations. Unlike most fixed grid­methods, how­
ever, the existence of a Lagrangian reference frame al­
lows the equations to be formulated in a Lagrangian 
sense (equating the material derivative with the time 
derivative, see (1)) provided all rates of change are com­
puted particle­by­particle and updated appropriately 
during the advection phase. This eliminates the diffi­
culty with numerical diffusion / dispersion of advected 
quantities. 

D ∂ 
Dt 
≡ 
∂t 

(1) 

Particle velocities are interpolated from nodal veloci­
ties and then particle position is updated using a suit­
able integration scheme such as: 

t+Δt x = x t + Δt vnNn(xp) (2)p p 
node 
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where v is the nodal velocity and N are the shape func­
tions associated with the nodes of the element in which 
the particle currently resides. In practice, a higher or­
der scheme such as the 4th order Runge­Kutta scheme 
gives a more accurate result. Particle updates can be 
done in a predictor­corrector fashion, initially updat­
ing particle locations to obtain velocity solutions and 
then repeatedly correcting the final locations to obtain 
a converged velocity. We have found that the improve­
ments in accuracy from iterating on the particle loca­
tions are generally too small to justify the increase in 
complexity, and, for non­linear rheological laws, the it­
erative scheme may become unstable. Our preference 
is therefore to use a 2nd order Runge­Kutta scheme ­
also known as the mid­point method­ and reduce the 
timestep whenever higher accuracy in the time integra­
tion is required. 

Variational form 

The governing equations in domain Ω bounded by Γ 
are standard for creeping fluids, a conservation equa­
tion for momentum: 

τij,j − δij p,j + fi = 0, (3) 

subject to a continuity requirement 

vi,i = 0, (4) 

In the above, v is the velocity, τ is the deviatoric Cauchy 
stress tensor, p its volumetric component (i.e. pres­
sure) and f is the specific body force. The notation 
p,j denotes differentiation of p with respect to xj . The 
boundary conditions are given as follows: 

τ · n − p = t ̄ on the natural boundary Γt (5) 

u = ū on the essential boundary Γu (6) 

in which the superposed bar denotes prescribed

boundary values and n is the unit outward normal to

domain Ω.

Inertial terms are not considered in (3); since the vis­

cosity associated with creeping flow in rocks is enor­

mous we can assume the Prandtl number is infinite.

This means that the strain rate instantaneously equili­

brates with the applied boundary conditions and body

forces — a factor which strongly influences the way we

approach the solution of the equations.

Body forces are assumed to arise through density dif­

ferences in the material. This may be due to composi­

tional differences between adjacent parcels of material,

or temperature variations within the fluid. The latter is

not addressed in this paper.


f = (0, −gρ) (7) 

where g is the acceleration due to gravity (downwards) 
and ρ is the material density. We assume the Boussi­
nesq approximation in only considering the density 
variations when they contribute to the body force term. 

The weak form is obtained in the usual way multiply­
ing (3) with the test functions Ni and (4) with Q. Inte­
gration over the volume and application of Gauss’ the­
orem yield: 

τij Ni,j dΩ− pQi,idΩ = fiNidΩ+ t̄  iNidΓ (8) 
Ω Ω Ω Γt 

and � 
Qvi,idΩ = 0 (9) 

Ω 

Equation (8) must hold for all admissible Ni vanishing 
on boundary Γu where displacements are prescribed. 
The notation Ni,j indicates the symmetrical form of the 
derivative: ∂Ni/∂xj + ∂Nj /∂xi. 

Solution strategy 

The particle in cell formulation produces a set of ma­
trix equations in nodal unknowns which have precisely 
the same form as the standard FEM formulation for the 
same mesh (though the coefficients in the matrices will 
be different in most cases). Our solution scheme is very 
similar to that detailed in Moresi & Solomatov (1995) 
[13]. 

Mixed formulation 

We use a mixed formulation in which nodal unknowns 
are velocity and pressure, and the incompressibility 
constraint is considered as an independent equation. 
This gives � �� � � � 

K 
GT 

G 
0 

v 
p 

= 
F 
0 

(10) 

where K is the global stiffness matrix, G is the discrete

gradient operator. K is built up from particle derived

material properties as well as shape function deriva­

tives, whereas G is purely geometrical and is associated

with the mesh.

In a mixed method, an arbitrary choice of shape func­

tions for pressure and velocity can produce unreli­

able results. The particle­in­cell formulation is no dif­

ferent in this respect, and we have found it neces­

sary to combine bilinear velocity shape functions with

constant, discontinuous pressures, for example. In

other words, despite generally being a lower order ap­

proximation than gaussian quadrature, the integration

scheme based on particles does not under­integrate

the pressure field in a way which avoids locking of the

elements.

Whereas in many fluid applications or elasticity formu­

lations it is common to eliminate the pressure equa­

tions through a penalty method, we have found that

this leads to very poor performance of iterative solvers

and cannot be used in this case. Instead we follow the
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Uzawa scheme in which we apparently eliminate the 
velocity by writing 

GT K−1Kv + GT K−1Gp = GT K−1F (11) 

and substituting the expression for GT p to obtain an 
expression entirely in the pressure: 

GT K−1Gp = GT K−1F (12) 

The procedure outlined in general by Cahouet & 
Chabard (1988 [8]) and for this specific system by 
Moresi & Solomatov (1995) [13] solves this pressure 
equation through a conjugate gradient series of solu­
tions for velocities which can be accumulated to give 
the full solution. Hence the notion that we solve the 
pressure equation alone is an illusion. 

Multigrid solver 

The static, regular grid makes it possible to use (un­
modified) a multigrid solver developed for purely Eu­
lerian flow problems (Moresi & Solomatov, 1995 [13]) 
The basis of the method is to build an approximate 
solution to the problem on a coarse grid by comput­
ing the stiffness matrix, boundary conditions and force 
terms at this resolution. The approximate solution is 
then interpolated to a finer mesh and used as a start­
ing guess in the iteration. By repeated transfer between 
coarse and fine meshes, and using an iterative scheme 
which reduces errors on a length scale defined by the 
mesh (such as Gauss­Seidel relaxation), reduction of 
errors on all length­scales occurs at the same rate. 
If carefully tuned, multigrid methods are capable of 
solving problems with n unknowns in a time propor­
tional to n, in contrast to n log n for conjugate gradient 
method and n2 or even n3 for direct solver. 
For non­linear problems, the solution rate is also 
greatly enhanced by using the coarse levels for numer­
ous fast iterations to approach the approximate solu­
tion before interpolating to finer meshes. For example, 
see Moresi & Solomatov (1998) [14]. In Ellipsis we use 
most of the time a full multigrid scheme with a direct 
solver scheme at the coarsest level. 

Numerical implementation 

Numerical integration 

At the heart of the finite element method is the con­
cept that the weak form of the equations can be split 
up into a number of sub­integrals over individual ele­
ments, and that these integrals can be computed ap­
proximately using a suitable quadrature scheme. � P

e 

Ωe 

ψdΩ ≈ wpψ(xp) (13) 
p=1 

where Ωe is an element volume, ψ is a field quantity 
which is evaluated at a set of sample points with co­
ordinates xp; wp are weights for each integration point. 

In standard FEM, the locations of the quadrature 
points, and their weights, are chosen to optimize the 
integration accuracy for a given set of interpolation 
functions. The criterion for choosing the quadrature 
scheme is usually computational efficiency: the mini­
mum number of locations required to achieve exact in­
tegration of a specific degree polynomial. 
In our formulation, we assume the sample points coin­
cide with the particles notionally attached to the fluid 
which therefore move with respect to the mesh. The lo­
cations of the quadrature points are, as a consequence, 
given for each element, and it is necessary to vary the 
weights in order to obtain the correct integral for a 
given element. The procedure is similar to the deter­
mination of weights for any quadrature rule: deriving a 
set of constraints based on the requirement that poly­
nomials of a certain order have to be integrated exactly, 
and then equating coefficients to obtain the set of wp 

values. 
We shall consider the one dimensional case in which 
ψ in (13) is a polynomial, and the integral is over the 
range ­1 to 1 (a typical “master element”). 

αnx nψ(x) = α0 + α1x + α2x (14)2 + · · ·

We integrate (14) algebraically over the domain, and 
equate coefficients with the quadrature expansion of 
the integral from (13) to obtain n + 1 constraints on the 
set of wp values: 

nep� 
wp = 2 (constant terms) 

p=1 

nep� 
wpxp = 0 (linear terms) 

p=1 

nep� 
wpx 2 

p = 
2 
3 

(quadratic terms) 

(15) 

p=1 

nep� 
wpx 3 

p = 0 (cubic terms) 
p=1 

and so on. 
In principle, we can imagine choosing a suitable num­
ber of constraints, and performing an inversion for the 
wp values, but in practice this would be very time­
consuming, and may produce very poor results if the 
particles are unevenly distributed within an element, 
including negative wp values. If we wish to associate 
the value of wp attributed to a particle with the rep­
resentative mass or volume of fluid which it occupies, 
then wp must be positive. 
The Material Point Method uses constant weights for 
the particles to ensure that mass is conserved exactly in 
the system. Although constant particle weights are not 
guaranteed to satisfy even the lowest order constraint 
once the particle’s positions evolve to a general con­
figuration (the numbers of particles per element may 
vary), the accuracy of the integration scheme is rela­
tively good for simulations where material strain is not 
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Figure 2: Geometry of the convection model at initial 
timestep (a) with velocity profiles, timestep = 150 (b), 
500 (c) and 800 (d). 

extreme (see benchmark section). With this in mind, 
we store the values of wp determined from the local 
volume occupied by the particle in the initial config­
uration. These reference values are adjusted to best fit 
the constraints up to a certain degree, and subject to 
the further constraint that no tracer should have a neg­
ative weight. For viscous flow using bilinear elements 
we can obtain optimal convergence rates, in the limit of 
an infinitely fine mesh, if only the constant and the lin­
ear constraint terms are used (e.g. , Hughes et al, 1987 
[10]) . 
To integrate a given order polynomial using particle lo­
cations, we generally need two to three times the num­
ber of particles per element (in 2D) than there would 
usually be Gaussian quadrature points. This is because 
the locations of the integration points cannot be op­
timized as they are in Gaussian or other integration 
schemes but are determined by where the particles 
happen to be within an element. 

Integration scheme 

In order to verify the integration scheme for dealing 
with large deformation problems, we model driven 
convection in an unit square box (Fig. 2). The default 
boundary condition is free­slip everywhere except on 
the top between x = 0.4 and x = 0.6 where a horizon­
tal velocity is applied towards the right. We track with a 
darker line the motion of the material along the vertical 
mid­line through time (Fig. 2). The velocity solution is 
uniquely determined by the boundary conditions and 
is independent of time. 
The flow carries particles around the box through time, 
however, which will stir any material interfaces, alter 
the distribution of particles within elements, and con­
sequently may disrupt the integration scheme. Intense 
deformation in the corners results in a need to intro­
duce new particles resulting in an increasing number 
of particles as a function of time (Fig.3). We treat the 
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Figure 3: Total number of particles versus timestep for 
the driven cavity benchmark. 

issue of particle splitting (a local remeshing step) in a 
subsequent section. 
We compute velocity errors by comparison with a very 
fine mesh solution. This solution is obtained at the 
first timestep for a regular square mesh of 192×192 el­
ements using a Gaussian integration scheme of 4 inte­
gration points per element. Our study model is a 48×48 
elements with either Gaussian integration points or 
evenly distributed and weighted points. The error due 
to the use of a coarser mesh is about 2.8% (Fig. 4.(a) 
and (c)), the remaining error is due to the integration 
scheme approximation. 
The error is computed as follows: 

Vz − vz 
2Vx − vxErr = 

| � 
|2 + | |

(16) 
V 2 + V 2 

x z 

where V is the reference velocity field obtained with 
the fine mesh and v is a coarse­grid velocity field. 
Firstly we compare results between a Gaussian integra­
tion scheme and a scheme with evenly distributed and 
weighted particles. The Gauss scheme does not allow 
for the particles to move, so is only applicable on the 
first timestep. The particle­based integration scheme 
was used over several tens of timesteps with two dif­
ferent numbers of integration points. At each step the 
particle weights are recomputed to satisfy constant and 
linear terms in the constraint equations (15). Although 
the particle based integration scheme is never better 
than a four­point Gauss scheme, the accuracy is com­
parable through time, particularly when larger num­
bers of particles are used (Fig. 4) 
Recomputing the particle weights is a computationally 
costly step not required in the Material Point Method 
which is a close ancestor of the scheme presented here. 
In Figure 5, we show the accuracy of integration for the 
driven convection problem when the weights are fixed, 
when they satisfy the constant terms of the constraints, 
and when the constant and linear terms are satisfied. 
We ran each model for hundreds of timesteps with ini­
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Figure 4: Error versus timestep for 4 Gaussian integra­
tion points (a), and for 4 (b) and 16 (c) particles ini­
tially evenly distributed within the element with equal 
weights. 

tially 16 particles per element and evaluated the accu­
racy of the results as well as the fluctuation of the so­
lution. Fluctuation was computed using a moving win­
dow of 15 point width to give the average error (Ave(t)) 
and its variance (V ar(t)). Then we plotted for each case 
Ave(t) + V ar(t) and Ave(t)− V ar(t). 
When we keep the particle weight constant so that 
the particle mass is conserved, an element mass may 
change when particles cross an element boundary. 
This simple scheme is associated with large errors 
with large fluctuations which becomes worse for very 
large deformation (Fig. 5.(a)) despite an ever increas­
ing number of particles. 
Modifying the weights stabilizes the error through time 
with a mean value close to that of the Gaussian inte­
gration scheme. The variation in the error is consider­
ably smaller when the constraint equation (15) for both 
constant and linear terms is applied (Fig. 5(b,c)). 
Another reason to include the constraints from (15) up 
to the linear terms comes from the typical problems 
we tackle in geological modeling. Invariably there are 
a strong vertical gravitational forces which are almost 
exactly balanced by vertical pressure gradients. These 
must be integrated very carefully to ensure that they do 
not produce a component of flow since even a small 
error contribution from these hydrostatic terms would 
easily dominate the solution. 
The Gaussian integration is the most efficient of the 
schemes we have implemented, but is not suited to 
large deformation particle­in­cell methods. We obtain 
reasonable results using four particles (initially) per el­
ement and adjusting their weights as they are moved 
with the flow. Sixteen particles are needed before we 
have enough degrees of freedom to achieve the same 
integration as a four point Gauss scheme in 2D, allow­
ing for the fact that some particles will be in the wrong 
position within an element to contribute to the inte­
grals. 
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Figure 5: Error versus time for different particle weight­
ing schemes: (a) particle weights are conserved exactly 
through time (except for particle splitting), (b) parti­
cle weights are adjusted to fit the constant terms of the 
constraints, (c) particle weights are adjusted to fit the 
constant and the linear terms of the constraints. 

Element matrices and particle properties 

In a standard finite element formulation, the stiffness 
matrix for an element, ke is built up in a segregated 
form, often written as: 

eke = BT DBbdΩ (17)ab a 
Ωe 

where Ba is a matrix comprising shape function 
derivatives (associated with node a) obtained from the 
constitutive relationship, and D is a matrix of material 
properties. For our formulation, the material property 
matrix is considered to be an attribute of an individual 
particle together with its current state and history and 
not a property of the mesh. Therefore, in the context of 
the numerical integration scheme discussed above, 

nep

ke = wpB
T 
a (xp)DpBb(xp) (18)ab


p=1


where nep is the number of particles which happen to 
be in an element. 

Particle splitting 

Fluid flow close to a stagnation point produces an elon­
gation in one direction and a corresponding shorten­
ing in the perpendicular direction. This has the effect 
of distorting the original volume local to each tracer 
into a narrow filament (Figure 6 (a) and (b)). This may 
mean that the fluid initially associated with a particle 
lies in several different elements, while the integration 
scheme simply lumps the entire amount into the ele­
ment containing the tracer itself. In the worst case this 
may leave some elements entirely empty of tracers and 
others considerably over represented. 
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The remedy is to ensure that the volume of fluid asso­
ciated with a particle never becomes too distorted. We 
keep track of a local measure of strain associated with 
each particle and use this to generate new particles 
nearby which occupy the extremities of the distorted 
local volume. This is illustrated in Figure 6(b) where 
the heavily shaded particles sitting at the centroid of 
the salami­shaped local regions represent the original 
occupants of the volumes from Figure 6(a). The ma­
terial within the element is poorly represented by the 
particles which actually contribute to the element in­
tegrals. The lightly shaded particles are later additions 
which aim to correct this problem. Local volumes cor­
responding to the new particle distributions are indi­
cated in Figure 6(c). 
When splitting particles, we attribute the same history 
variables to the copies as were held on the original par­
ticle. To ensure that this approximation is a reasonable 
one the particle splitting should occur when the distor­
tion is relatively small. 

Element inverse mapping 

It is usual to change variables in the element integrals 
such as (17) to a regular master element. This greatly 
simplifies the computation, but in our case there is an 
additional step required before we can map to a master 
element. The particle positions are known in the global 
coordinate system and must first be mapped into the 
element local coordinate system. Zhao et al (1999) [21] 
found an algebraic mapping for bilinear quadrilateral 
elements, but a more general approach is required for 
higher order elements and for 3D. 
The notation is given in Figure 7 for the 2D case — the 
extension to three dimensions is straightforward. eξ 

and eη are unit vectors in the ‘natural directions’ of the 
distorted element which map to the ξ and η axes re­
spectively in the master element. hξ and hη are char­
acteristic dimensions of the element in the appropriate 
directions. We wish to map the coordinates, xp of the 
particle p to the coordinates in the master element, ξp. 
The procedure takes the form of a predictor­corrector 
iteration: we first guess an initial value of ξp and use 

0this to predict the global coordinates xp, 

ξp = (0, 0) 
nen nen� � (19)

0 x = Nn(ξp)xn, Nn(ξp)ynp 
n=1 n=1 

where nen is the number of nodes in the element, and 
xn are their coordinates. We compute ξp through a 
number of corrector steps: 

iξp ← ξp + β eξxxp + eξyxp
i /hξ 

iηp ← ηp + β eηxxp + eηyxp
i /hη � � (20)

nen nen
i+1 =xp Nn(ξp)xn, Nn(ξp)yn 

n=1 n=1 

i is the iteration index, β is a relaxation parameter 
which we chose to be 1.0 for the first iteration and 0.9 
for subsequent iterations. When eξ and eη are orthog­
onal, the iteration completes in one step, otherwise it 
is necessary to repeat the correction step until the pre­

idicted xp is within a satisfactory tolerance of the known

value.

We use ξ within the element search algorithm since

the master element coordinates give an immediate de­

termination of whether the particle lies inside or out­

side the element even for highly distorted elements (if

the element is too distorted for this procedure to work,

then it is also too distorted to use to create the element

matrices)


Moving boundary conditions 

One major difficulty with the Eulerian mesh is in the 
application of velocity boundary conditions normal to 
the surface as the mesh does not automatically track 
the boundary position. If the sense of the boundary ve­
locity is into the domain, then the method requires the 
generation of new particles to represent the incoming 
material. If the sense is out of the domain then parti­
cles, and their stored history, will be lost. 
To avoid such difficulties, we recommend updating the 
mesh in between solution steps to follow any velocity 
boundary conditions normal to boundary surfaces. As 
pointed out by Sulsky et al (1994) [17], the formula­
tion is unaffected by changes to the mesh occurring af­
ter the particle positions have been updated since the 
mesh carries no information other than domain geom­
etry and boundary conditions: material configuration 
and history information is entirely determined by the 
particles. 
In general the mesh can be regenerated completely to 
have the optimal number of nodes and configuration 
for the updated geometry. In the compression and ex­
tension examples given here, however, the mesh topol­
ogy remains unchanged — the mesh is simply scaled 
in the appropriate direction to minimize the recompu­
tation of the connectivity matrices. It is important to 
use the same updating procedure for nodal points as 
particles to avoid the boundary nodes overtaking the 
particles, for example. 

Constitutive Relationships 

Viscoelastic formulation 

We use a Maxwell viscoelastic constitutive relationship 
which assumes that the deformation rate is the sum of 
viscous and elastic parts 

τ 
2µ 

+ 
τ 
2η 

= D̂v + D̂e = D̂ (21) 

�
where τ is the Jaumann corotational stress rate for an 
element of the continuum, µ is the shear modulus and 
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η is shear viscosity. D̂ is the deviatoric part of D.	 which we solve by substituting for τ t+Δte 
to give a set 

� 
τ 

of equations for velocity unknowns. 
= τ̇ + τ W − Wτ (22)	 In choosing a material timescale (Δte) independent of 

the numerical advection timestep (Δt), it is necessary where W is the material spin tensor, 
for a given particle to carry with it a stress history of 

− Wtτ t + τ tWt (24) Yielding 
t

1 ∂Vi ∂Vj several advection timesteps (corresponding to several 
(23)Wij = − complete solutions for the stress field). This is achieved 2 ∂xj ∂xi 

through an averaging procedure in which the stress 
tensor stored on a given particle is averaged with the 
newly calculated stress tensor (τ t) at the same location: 

τ t+Δt Δt Δt 
τ t + τ t+Δte 

(30)e eˆ = 1− 
Δt Δt

This stress is then advected and rotated with the parti­
cle to give the updated stored stresses τ t+Δt . 

The W terms account for material spin during advec­

tion which reorients the elastic stored­stress tensor.

As we are primarily interested in solutions where very

large deformations may occur — such as buoyancy

driven fluid convection, we prefer to work with a fluid­

like system of equations from the outset.

Hence we obtain a stress / strain­rate relation from (21)

by expressing the Jaumann stress­rate in a difference

form:


τ t+Δte − τ t 

e 

t+Δte
� 
τ ≈ 

Δ
ewhere the superscripts t, t + Δt indicate values at 

ethe current and future timestep respectively. Δt is a 
timestep which captures the relevant timescales of the 
changes in elastic stresses. This timestep could, in fact, 
differ from that chosen for updating the particle posi­
tions. 
(21) becomes 

e 

τ t+Δte 2ηΔt ˆ t+Δte α 
τ t= D +e	 eα + Δt α + Δt

eαΔt
+

Δte + α
(Wtτ t − τ tWt) (25) 

where α = η/µ is the shear relaxation time. 
We can simplify the above equations by defining an ef­
fective viscosity ηeff : 

eΔt
ηeff = η	 (26)

Δte + α 

Then the deviatoric stress is given by 

τ t+Δte 

= 

ηeff D + e +2 ˆ t+Δte τ t Wtτ t − τ tWt 

(27) 
µΔt µ 

Our system of equations is thus composed of a quasi­
viscous part with modified material parameters and 
a right­hand­side term depending on values from the 
previous timestep. This approach minimizes the modi­
fication to the viscous flow code. Instead of using phys­
ical parameters for viscosity we use an effective value 
(26) to take into account elasticity, then, during com­
putations for the force term, we add elastic internal 
stresses from the previous timestep or from initial con­
ditions. 

F e,t =
ηeff 

τ t	 (28)i e ij,j − 
µΔt

Therefore (3) becomes 

τ t+Δte 

− δij p,i + fi + F e,t = 0, (29)ij,j	 i 

In a geological context we frequently deal with situa­

tions where part of the system is subjected to very high

stresses. Under such conditions the material fails, but,

unlike many practical engineering simulations, we are

interested in simulating in the post­failure behavior up

to very large strains.

On the basis that the post yield deformation trends in­

creasingly to dominant, simple structures with increas­

ing strain (Ben­Zion and Sammis, 2001 [3]), our geo­

logical modeling at scales of tens to thousands of kilo­

meters uses very simple descriptions of yielding. Brit­

tle behavior is parameterized using a non­linear effec­

tive viscosity which is introduced whenever the stress

would otherwise exceed the yield value τ yield. This ap­

proach ignores details of individual faults, and treats

only the influence of fault systems on the large­scale

convective flow.

To determine the value of the effective viscosity at any

point we extend (21) by introducing a Prandtl­Reuss

flow rule for the plastic part of the stretching:


τ τ τ ˆ
2µ 

+
2η 

+ λ
2 |τ | 

= De + D̂v + D̂p = D̂ (31) 

where λ is a parameter to be determined such that 
the stress remains on the yield surface, and |τ | ≡
(τij τij /2)(1/2) . The plastic flow rule introduces a non­
linearity into the constitutive law which, in general, re­
quires iteration to determine the equilibrium state. 
The implementation is as follows, starting from equa­
tion (31), we again express the Jaumann stress rate in 
first order difference form (using the Lagrangian parti­
cle reference frame): 

τ t+Δte 1 1 λ 
+ + + = 

2µΔte 2η 2 |τ |


ˆ t+Δte 1 1

D +

2µΔte 
τ t +

2µ 
(Wtτ t − τ tWt) (32) 
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No modification to the isotropic part of the problem is sample (t = 0.227), and finally to a single location (t = 
required when the von Mises yield criterion is used. At 0.2359) which focussed all subsequent deformation un­
yield we use the fact that |τ | = τyield to write til the sample failed entirely (t ≥ 0.2404). The frames 

are not uniformly spaced in time since the post­failure 
t+Δte 1 1 behaviour occurred on a much shorter timescale than 

the gradual loading. Note, for example, that the neck­
τ t+Δte 

= η� 2D̂ τ t + (Wtτ t − τ tWt)+ 
µΔte µ 

(33) 
using an effective viscosity, η� given by 

ητyieldµΔte 

η� = 
ητyield + τyieldµΔte + ληµΔte 

(34) 

We determine λ by equating the value of |τ t+Δte | with 
the yield stress in (33). Alternatively, in this particular 
case, we can obtain η� directly as 

ing and separation of the two parts of the sample oc­
curred with barely any movement of the end boundary. 

Even with a material which has no strain softening, 
there is a tendency for deformation to localize in a 
particle­in­cell representation of the sample. This oc­
curs because the sample boundary is never perfectly 
flat (as in real life) due to numerical fluctuations in the 
particle locations, and to a mild interference (moiré) 
effect between the array of particles and the underly­
ing grid. These effects produce small fluctuations in 
the stress field which can result in early failure at cer­

η = τyield/ D̂eff (35) 

where 
tain points. Once nucleated, shear bands can propa­
gate from these points — ultimately resulting in neck­
ing and complete separation of the two halves of the 
sample. 

In Figure 10a, we plot the stress at each of the sam­
ple points in the material as a function of time for a 
fixed end velocity. The evolution of stress within the 
beam was close to linear ­ apart from the influence of 
the changing of the beam thickness during deforma­
tion. The yield stress of the material was 3 × 105 . The 
stress increased within the sample at the same rate for 
all the sample points until the yield stress was reached. 
At this stage, the stress was not able to increase any fur­
ther, and the material deformed uniformly at the yield 
stress. Once localization had occurred, however, points 
outside the necking area begin to unload, and the stress 
dropped dramatically. The rate at which stress drops 
from yield back to zero is governed by the viscous part 
of the rheology, and the presence of a low viscosity 
background material. 

The unloading is more clearly seen in the plots of the 
displacement of the sample points through time in Fig­
ure 10b. Before yielding, the displacement of each 
sample point increased monotonically. Once yielding 
occured, and the deformation localized, the sample 
points on the left of the break (a,b), under the action of 
stored elastic stresses, rapidly retreated towards their 
original locations. The sample point on the right of the 
break (c) moved rapidly to the right as the elastic defor­
mation relaxed. 

It is worth discussing at this point a consequence of the 
fact that the yield criterion only applies to the devia­
toric stress. During the separation of the layer, the pres­
sure becomes enormous at the constriction, which ob­
viously could not occur in a real material. To model this 
situation in a more realistic manner we would need to 
complement the yield criterion on the deviatoric stress 
with a suitable tension cutoff condition. 

ˆ D 
µΔte 

τ t + 
1

(Wtτ t − τ tWt) (36)Deff = 2 ˆ t+Δte 

+
1 

µ 

and |D = (2Dij Dij )1/2 .|
The value of λ or η� is iterated to allow stress to re­
distribute from points which become unloaded. The 
iteration is repeated until the velocity solution is un­
changed to within the error tolerance required for the 
solution as a whole. 

Applications 

Extension of a layer 

The yielding algorithm is benchmarked by measuring 
the second invariant of the stress and displacement at 
points within a viscoelastic beam which was extended 
or compressed at a fixed rate, v = 5, by an imposed 
velocity boundary condition at one end. Figure 8 in­
dicates the geometry of the numerical experiment: the 
mesh was initially 3 units long by 1 unit high. The sam­
ple was 0.5 units thick, occupying the central half of 
the mesh, and was surrounded by a low viscosity, com­
pressible material. Three sampling points (a,b,c) for 
recording the stress invariant and displacement were 
chosen within the sample initially placed along the 
mid­line at x = 0.2, 0.5, 0.8. 
The material parameters of the sample (η = 108 ,µ = 
106) were chosen such that the relaxation time was long 
(α = η/µ = 100 ) compared to the duration of the ex­
periment ( 0.25 ) so that the material behaved almost as 
an elastic solid (high Deborah number, De, defined as 
relaxation time / observation time). 
Figure 9 shows the progress of the experiment. Ini­
tially, deformation was uniform, resulting in gradual 
stretching of the sample (t ≤ 0.180). The entire sample 
reached the yield point at the same time (t = 0.212) and 
initially deformed uniformly with all points yielding. 
However, the deformation soon localized to a number 
of shear bands (t = 0.220), then to two places along the 



Folding of rock strata 

Geologists are intrigued by the formation of folds in 
sedimentary and metamorphic rocks on a large range 
of scales. Different conditions are necessary to create 
such buckling but it is often associated with tectonic 
compression. Other parameters are rock mineralogy, 
temperature, pressure, water content etc. We are pre­
dominantly interested in studying buckling as a func­
tion of elastic and viscous properties of the different 
layers. As a first step to show the capability of this new 
formulation to handle large deformation, we present 
in this analysis a folding problem of a competent layer 
embedded into two weaker purely viscous semi­ infi­
nite layers. 
The initial geometry (Fig. 11a) is perfectly linear which 
means that there is no trigger for the instability to 
start except numerical noise. An unit inward velocity 
boundary condition is set up on the right side of the 
mesh. All the others boundaries are free­slip. We model 
the strong layer as viscoelastic with a yield criteria to 
follow qualitatively the evolution of the folding and the 
failure. Figure 11b shows the evolution during the ho­
mogeneous shortening phase where numerical noise 
triggers the instability and internal elastic stresses are 
built up. Once the instability is triggered the folding of 
the competent layer starts (Fig. 11c) and show a wave­
length which is in accordance to the Biot theory (1965) 
[4]. If we keep compressing then bending stresses are 
built up in the beam with the largest tensile stress in 
the outer part where the curvature is the highest. Then 
due to tensile failure the beam breaks into a number 
of pieces (Fig. 11d) and the internal elastic stresses are 
released which straighten the layer. The final numeri­
cal plot is to be compared with what geologists can ob­
serve in situ (Fig. 11e). Even if the reason of such a mi­
crostructure is not perfectly understood (brittle failure, 
perpendicular shearing, anisotropy ... etc) the model 
presented in this paper looks reasonably accurate. 

Thermal convection with suspended ellipti­
cal crystals 

In addition to the set of equations described so far, an 
energy equation can be solved explicitly in conjunction 
with the time­marching scheme: 

∂T ∂T ∂2T 
+ vi 

∂xi 
= κ 

∂x2 
j 
, (37)

∂t 

where xi are the coordinates, vi is the velocity, T the

temperature and κ is the thermal diffusivity.

This thermomechanical formulation is applied to the

convection solution used as a benchmark by Blanken­

bach and coworkers in [[5]]

The convection solution in the absence of suspended

particles is uniquely described by a single dimension­

less number: the Rayleigh number, Ra = gραΔT/ηκ,

where g is the gravitational acceleration, ρ is the refer­

ence density, ΔT is the temperature contrast across the


layer, and η is viscosity. The density contrast in the fluid 
due to temperature variations is (αρΔT ), and the ratio 
of density between fluid and solid at equivalent tem­
perature is denoted by β. 

We suspended a set of solid crystals with β = 10 in a 
steady­state convecting viscous fluid with Ra = 105 in 
an initially regular pattern (see Fig.12 (a)), and let them 
settle (Fig.12 (b)). When the crystals had sunk to the 
bottom of the layer (Fig.12 (c)), the convective circula­
tion was mainly confined to the upper part of the layer 
where there were no crystals. Within the lower part of 
the layer, fluid percolated between the densely packed 
solid crystals. 

Once particles had settled (see Fig.12 (c)) β was ar­
bitrarily changed to 0.5 which immediately reversed 
the density contrast between fluid and crystals and re­
sulted in an full­scale overturn of the whole layer (see 
Fig.12 (d) and (e)). In the end particles reached a new 
equilibrium ( Fig.12 (f )) on top of the convecting fluid. 

This simple demonstration shows the promise of the 
method in simulating the dynamics of crystal­rich 
magmas, potentially accounting for evolving compo­
sition which would alter the density contrast between 
liquid and solid during the course of the simulation 

Conclusions 

We have presented a Lagrangian integration point fi­
nite element formulation designed to handle large de­
formation for viscoelastic materials. The scheme de­
rives from the Material Point Method but differs in a 
number of important aspects, including the fact that it 
is based on a fast­implicit solution method, and that it 
includes various particle reweighting steps which im­
prove accuracy in the fluid­deformation limit. 

We have demonstrated that the particle­in­cell finite 
element scheme is comparable in accuracy with tra­
ditional Eulerian finite element methods for fluid dy­
namical problems. 

The principal advantages over other methods are: The 
ability to continue to extremely large deformation 
without significant change in accuracy; The ability to 
track material history and interfaces through time with 
accuracy comparable to more specialized methods; the 
fact that a regular grid is preserved throughout the run 
which allows fast numerical solvers to be employed. 

Disadvantages include the fact that the hybrid 
mesh/particle approach does not allow particles 
to communicate directly, and therefore lacks some 
of the flexibility of pure­particle codes. Secondly, the 
resolution is related to the grid point spacing, not the 
finer particle spacing. Finally, while it is conceptu­
ally simple to retain the mesh, and computationally 
convenient, the storage requirement is very high. 
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(a)

(b)

(c)

Figure 6: Integration schemes become more compli­
cated when large material strains produce elongated 
“local volumes” for particles. (a) Initial configuration, 
(b) flow near a stagnation point elongates domains: 
solid circles are original particle points, open circles in­
dicate new locations within the original domain which 
have similar spacing to the original interparticle spac­
ing, (c) remapping the domains to the solid and open 
circles again allows the particles to contribute to the in­
tegrals of the correct element. The fact that this proce­
dure produces overlapping domains is an indication of 
the approximate nature of the integration scheme. 
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Figure 7: Coordinate systems in global mesh, distorted 
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Figure 8: Geometry for simulation of the extension of a 
viscoelastic bar with a yield stress. 
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Figure 9: Simulation of the extension of a viscoelastic 
bar with yield stress. Black shading indicates regions 
deforming at yield. Embedded marker points which 
follow the material deformation are indicated by a,b,c. 
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Figure 12: Numerical simulation of the settling of dense 
crystals and the uplift of light crystals in a convecting 

Figure 10: Stress, and displacement at sample points viscous fluid. (a) Initial setup, (b) settled crystals, (c) 
a,b,c as a function of time for the extension experiment time at which density is decreased, (d) and (e) light 
of figure 9 crystals rising, (f ) steady­state 
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Figure 11: (a) Initial configuration of the layers, (b) 
homogeneous shortening, (c) viscous­like folding, (d) 
failure of the layer and (e) Quartzo­feldspathic lay­
ers (light colors) defining asymmetric folds in Archean 
migmatitic gneiss, Simo, Northern Finland. 
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