Partial Difference Equations on Graphs for Mathematical Morphology Operators overs Images and Manifolds

Abstract : The main tools of Mathematical Morphology are a broad class of nonlinear image operators. They can be defined in terms of algebraic set operators or as Partial Differential Equations (PDEs). We propose a framework of partial difference equations on arbitrary graphs for introducing and analyzing morphological operators in local and non local configurations. The proposed framework unifies the classical local PDEsbased morphology for image processing, generalizes them for non local configurations and extends them to the processing of any discrete data living on graphs.
Type de document :
Communication dans un congrès
15th IEEE International Conference on Image Processing (ICIP), Oct 2008, San Diego, United States. pp.801-804, 2008, 〈10.1109/ICIP.2008.4711876〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00333382
Contributeur : Image Greyc <>
Soumis le : mardi 21 janvier 2014 - 13:31:11
Dernière modification le : jeudi 8 novembre 2018 - 15:26:02
Document(s) archivé(s) le : mardi 22 avril 2014 - 11:25:41

Fichier

Ta_Icip08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Vinh Thong Ta, Abderrahim Elmoataz, Olivier Lézoray. Partial Difference Equations on Graphs for Mathematical Morphology Operators overs Images and Manifolds. 15th IEEE International Conference on Image Processing (ICIP), Oct 2008, San Diego, United States. pp.801-804, 2008, 〈10.1109/ICIP.2008.4711876〉. 〈hal-00333382〉

Partager

Métriques

Consultations de la notice

157

Téléchargements de fichiers

78