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ABSTRACT

We define a simple transform able to map anymulti-valued

image into a space of patches, such that each existing im-

age patch is mapped into a single high-dimensional point.

We show that solving variational problems on this partic-

ular space is an elegant way of finding the natural patch-

based counterparts of classical image processing techniques,

such as the Tikhonov regularization and Lucas-Kanade reg-

istration methods. We end up with interesting variants of

already known (non-variational) patch-based algorithms,

namely the Non Local Means and Block Matching tech-

niques. The interest of considering variational approaches

on patch spaces is discussed and illustrated by comparison

results with corresponding non-variational and non-patch

methods.

1. INTRODUCTION

In the fields of Image Analysis, Processing and Synthe-

sis, patch-based techniques generally meet with success.

Defined as local square neighborhoods of image pixels,

patches are very simple objects to work with, but they

have the intrinsic ability to catch large-scale structures and

textures present in natural images. Patches provide one of

the simplest way to analyze, compare and copy textures,

as soon as the considered patch sizes are higher than the

so-called texel sizes (texture element, seen as the small-

est significant unit of a texture). Moreover, patch-based

methods are somehow intuitive : They indirectly repro-

duce the way humans are accomplishing some vision tasks

by comparing semi-local image neighborhoods together.

Proposed algorithms are often simple to implement, but

they give surprisingly good results.

For instance, it has been long since patches have been

used for solving the problem of estimating a displacement

field between two images. This alignment problem can

be classically (and partially) solved by the so-called Block

Matching algorithm [18, 35], which consists in compar-

ing each neighborhood (patch) of one image with all of

the other one, finding the best match for each pixel lo-

cation. Unfortunately, the regularity of the resulting mo-

tion field is not ensured by such a crude method and reg-

ularized techniques [5, 24] are sometimes needed. More

recently, patch-based algorithms have been proposed to

tackle the problem of synthesizing a texture similar to an

input model [1, 16, 34]. It has been shown that this quite

complicated task can be very well achieved by a simple

iterated copy-paste procedure of different patches com-

ing from the model, found to fit the best with the local

neighborhoods of the image to synthesize. Some variants

of these techniques have been also applied for transfer-

ring textures from an image to another one [2, 20], and

for textured inpainting [14, 19], i.e.the reconstruction of

missing textured regions in an image. Despite their rela-

tive simplicity, one must admit that these algorithms give

outstanding results. It is also worth to cite the set of recent

patch-based denoising methods, initiated with theNon Lo-

cal Means scheme [13] and continuedwith various deriva-

tives [4, 11, 12, 21]. Such methods are mainly based on an

iterative weighted average of image patches. Here again,

they have rapidly entered the hall of fame of image de-

noising techniques.

On the other side, variational methods for image pro-

cessing [3, 8, 29] are known to be mathematically well-

posed, flexible and competitive : They have the great abil-

ity to put complex a priori constraints (such as regular-

ity constraints) on the obtained solutions. While regu-

larity is desired for many applications (e.g.for motion es-

timation), it may sometimes avoid the reconstruction of

textured solutions (e.g.for denoising/inpainting), textures

being oscillating patterns by nature. Few attempts have

beenmade to incorporate textured features in specific vari-

ational denoising/inpainting formulations by putting ex-

plicit patches [4, 9, 22, 25] or various image transforms

[17] into the functionals to minimize, with few success.

Mixing the performance of patches and the flexibility of

variational methods is still a very exciting goal and an

open challenge.

In this paper, we are looking toward a more general strat-

egy to find patch-based counterparts of image processing

techniques expressed as variational problems. Mainly, the

idea lies on the construction of an alternate patch space

on which the image to process/analyze is mapped. Thus,

in this high-dimensional space, each existing image patch

is represented by a single point. Variational formulations

can be then defined and solved directly on the patch space,

projecting back the obtained solution to the original image

domain, if needed. So, instead of explicitly incorporating



image patches into ad-hoc energy functionals, we rather

consider the extension of existing classical (non-patch)

functionals to a higher-dimensional space of patches. This

is quite straightforward : Energy functionals are generally

expressed with terms that can be easily extended for an ar-

bitrary number of dimensions (e.g.gradients). As a result,

we obtain algorithms which are the natural patch-based

counterparts of “pointwise” variational techniques.

This paper is organized as follows : First, we define

the reversible mapping of a multi-valued image into its

patch space (section 2). Then, in this space, we consider

the minimization of the Tikhonov regularization functional

[10, 31] (section 3). We show that the natural patch-based

version of the resultingminimizing flow can be interpreted

as a variant of the Non Local Means filter [13]. In a sec-

ond attempt, we tackle the problem of image alignment

similarly, by minimizing an energy functional inspired by

the Lucas-Kanade method [5, 24]. We end up with an

interesting variational version of the Block Matching al-

gorithm, implemented by the evolution of semi-local non-

linear PDE’s. Application results and discussions on pos-

sible future applications of this general variational frame-

work on patch spaces conclude this paper (sections 5-6).

2. DEFINITION OF THE PATCH SPACE

Let us consider a 2D multi-valued image I : Ω → R
n de-

fined on a continuous domain Ω ⊂ R
2. In this paper, we

will mainly illustrate applications for n = 3, i.e.color im-
ages defined in the (R, G, B) color space. The ith compo-
nent of I is a scalar image, denoted by Ii : Ω → R, so that

∀(x, y) ∈ Ω, I(x,y) =
(

I1(x,y), I2(x,y), . . . , In(x,y)

)T
.

More generally, the ith component of a vector X will be
writtenXi and the restriction ofX to a set of consecutive

components i . . . j, asXi...j .

Patch definition : The patch PI
(x,y) located at (x, y) ∈ Ω

on the image I is defined as the set of all image values

belonging to a spatially discretized local p × p (square)
neighborhood of I centered at (x, y). The spatial dis-
cretization step, related to the analysis scale of the con-

sidered patches, is assumed to be 1 in order to simplify
notations, even though any step is possible. The size p is
considered as odd, i.e.p = 2q + 1 (q ∈ N

∗). Actually,
a patch PI

(x,y) can be ordered in a np2-dimensional vector

as :

PI
(x,y) =

(

I1(x−q,y−q), . . . , I1(x+q,y+q), I2(x−q,y−q),

. . . , In(x+q,y+q)

)T

One may see PI
(x,y) as the concatenation of the patch vec-

tors PIi

(x,y) for all image channels Ii, with

PIi

(x,y) =
(

Ii(x−q,y−q), . . . , Ii(x+q,y+q)

)T

An interesting mathematical study of the manifold formed

by the set of all these patches have been initiated in [27,

28]. This study is fascinating and share some ideas with

the current paper.

Mapping to the patch space : We define the (np2 + 2)-

dimensional patch space Γ = Ω × R
np2

. Each point p ∈
Γ is a high-dimensional vector whose coordinates may
contain informations of any (x, y) location in Ω, as well

as all values of any p × p patch P ∈ R
np2

. Obviously, in

this patch space Γ, we want to highlight all the points of
the form p = (x, y,PI

(x,y)), i.e.the points which precisely
correspond to existing patches in I. In this context, we

call p a located patch. We define then a function Ĩ in Γ
such that Ĩ(p) is non zero only for these particular located

patches of I :

Ĩ : Γ → R
np2+1, s.a. ∀p ∈ Γ,

Ĩ(p) =











(PI
(x,y)

T
, 1)T if p = (x, y,PI

(x,y))
T

~0 elsewhere

(1)

Thus, we call the applicationF such that Ĩ = F(I) a patch
transform. Note that the value space of Ĩ has an extra

component set to 1 for points at existing located image
patches of I. This dimension can be compared with the

one introduced when dealing with projective spaces : It

plays a role of weighting action when inverting the patch

transform F , i.e.retrieving back the multi-valued image I
from Ĩ. Intuitively, it defines how much a located patch in

Γ is meaningful, and by default, all existing patches of the
original image I have the same importance.

In this paper, we want to show that it is worth to solve

variational problems on Γ, expressed as the minimization
of energy functionals E(Ĩ) rather than energies E(I) on
the original image domain Ω. For this purpose, we have
to point out the fact that Ĩ is a highly discontinuous func-

tion. To avoid derivation problems of the energies E, we
will work on a continuous approximation Ĩǫ of Ĩ, where

each original located patch p is not mapped into a single

point, but into a normalized Gaussian function Gǫ with a

variance ǫ close to 0. From a mathematical point of view,
this defines the approximation as Ĩǫ = Ĩ ∗ Gǫ which is

C-infinite. In the sequels, with a slight abuse of notations
and when no confusions are possible, we will denote Ĩǫ

simply by Ĩ.

Back-projection on the image domain : Due to the high

dimensionality of Γ, there are of course no unique ways to
compute the inverse transform of the patch-based repre-

sentation Ĩ = F(I). We define a back-projection method
based on two steps : First, we retrieve for every location

(x, y) ∈ Ω, the most significant located patch P Ĩ
sig(x,y)

expressed in Ĩ. It is found to be the one with the maximum

weight, i.e.P Ĩ
sig(x,y) = Ĩ1...np2(x, y,P Ĩ

max(x,y)), with

P Ĩ
max(x,y) = argmax

q∈Rnp2 Ĩnp2+1(x, y,qT ) (2)

Note that if one perturbs only slightly the patch transform

Ĩ of an image I, there are very good chances to find the

most significant perturbed patches at the same locations



as the original ones, i.e.P Ĩ
max(x,y) = PI

(x,y), even though

the pixel values of the modified patches may be different,

i.e.P Ĩ
sig(x,y) 6= PI

(x,y).

In a second step, the back-projected image I is recon-

structed by combining these most significant patches to-

gether. Several strategies are possible : Here, we will

use the simplest one, which simply consists in copying

the center pixel of each significant patch P Ĩ
sig(x,y) at its

corresponding known location (x, y), normalizing it by its
weight : ∀i ∈ [1, n], ∀(x, y) ∈ Ω,

Ii(x,y) =
Ĩ
ip2+ p2+1

2

(x, y,P Ĩ
max(x,y))

Ĩnp2+1(x, y,P Ĩ
max(x,y))

(3)

More generally, we could have copied an entire sub-patch

ofP Ĩ
sig at (x, y), while blending overlapped neighborhood

patches according to their relative weights. This consid-

eration on how to copy image patches appears frequently

in the literature related to patch-based methods, and no

“best” solutions have appeared yet. It is interesting to see

that in our case, this choice is clearly delimited as a part

of an inverse transform only.

Now that the direct and inverse patch transforms are

clearly defined, we study the application of some varia-

tional methods on the patch space Γ rather than on the
original image domain Ω, for image denoising (section 3)
and registration (section 4).

3. IMAGE DENOISING BY PATCH-BASED

TIKHONOV REGULARIZATION

Suppose we have a multi-valued image Inoisy : Ω → R
n

corrupted by some kind of noise. So will be its patch

transform Ĩnoisy . We are looking for a patch-based min-

imizing flow able to regularize Ĩnoisy rather than process

directly Inoisy . For this purpose, we minimize the follow-

ing energy E1, classically denoted as the Tikhonov regu-

larization functional, which have been simply extended to

the high-dimensional space Γ :

E1(Ĩ) =

∫

Γ

‖∇Ĩ(p)‖2 dp (4)

where ‖∇Ĩ(p)‖ =
√

∑np2+1
i=1 ‖∇Ĩi(p)‖2 is the habitual

extension of the gradient norm for multi-valued datasets

[15]. Note that this multi-valued gradient includes also

the gradient ‖∇Ĩnp2+1‖ of the patch weights.

Minimizing flow : The PDE flow that minimizes (4) is

found by the derivation ofE1(Ĩ) using the Euler-Lagrange
equations and by the expression of the corresponding gra-

dient descent algorithm. It leads to the well known heat

flow equation, which is in our case performed on the high-

dimensional patch space Γ :







Ĩ[t=0] = Ĩnoisy

∂Ĩi

∂t
= ∆Ĩi

(5)

where∆ is the Laplacian operator on Γ.

Similarly to denoising techniques based on classical diffu-

sion PDE’s [3, 6, 7, 29, 30, 33], we are not particularly in-

terested by the steady-state solution of (5), since it would

roughly consist of a constant solution. We are rather look-

ing for a solution of this multi-dimensional heat flow at a

particular finite time t1. It has been already proven [23]
that this solution is the convolution of the initial estimate

Ĩnoisy with a normalized Gaussian kernelGσ with a stan-

dard deviation σ =
√

2 t1. Here, this convolution has to
be done on the high-dimensional patch space Γ :

Ĩ = Ĩnoisy ∗ Gσ , with

∀p ∈ Γ, Gσ(p) =
1

(2πσ2)
np2+2

2

e−
‖p‖2

2σ2 (6)

This is a quite straightforward way of defining the patch-

based counterpart of the Tikhonov regularization process.

Interpretation in the image domain : Interesting things

arise when one tries to interpret the result of this patch-

based heat flow (5) in the original image domain Ω. In
fact, the patch transform (1) tells us that Ĩnoisy vanishes

almost everywhere in Γ, excepted on the points

p = (x, y,PI
noisy

(x,y) )T corresponding to the locations of the

original image patches in Inoisy . So, the convolution (6)

can be simplified as : ∀(x, y,P) ∈ Γ,

Ĩ(x,y,P) =

∫

Ω

Ĩ
noisy

(p,q,PInoisy

(p,q)
)
G

σ(p−x,q−y,PInoisy

(p,q)
−P)

dp dq

We also notice that the locations of the most significant

patches in Ĩ, as defined in (2), will be the same as the ones

in Ĩnoisy , since the convolution (6) by a Gaussian kernel

leaves the maxima of the patch weights Ĩnp2+1 unchanged

[23]. So, the inverse patch transform (3) of Ĩ has a simple

closed-form expression in Ω, and can be written directly
from Inoisy , considering that we have

∀(x, y) ∈ Ω, P Ĩ
max(x,y) = P Ĩnoisy

max(x,y) = PInoisy

(x,y)

as well as Ĩnoisy

ip2+ p2+1
2

(x, y,PInoisy

(x,y) ) = Inoisy

i(x,y),

and Ĩnoisy

np2+1(x,y,P
Inoisy

(x,y)
)
= 1.

Using these relations together with (3), and after few cal-

culus, we end up with :

∀(x, y) ∈ Ω, I(x,y) =

∫

Ω I
noisy

(p,q) w(x,y,p,q)dp dq
∫

Ω
w(x,y,p,q) dp dq

(7)

with w(x,y,p,q) = ws
(x,y,p,q) wp

(x,y,p,q) and

ws
(x,y,p,q) =

1

2πσ2
e−

(x−p)2+(y−q)2

2σ2

wp

(x,y,p,q) =
1

(2πσ2)
np2

2

e−
‖PInoisy

(x,y)
−PInoisy

(p,q)
‖2

2σ2 (8)



Thus, each pixel value I(x,y) of the regularized image is

the result of a weighted averaging of all noisy pixels I
noisy

(p,q) ,

the weight depending both on the spatial distance between

points (x, y) and (p, q) (first term in (8)), as well as the
similarity between corresponding patches centered on (x, y)
and (p, q) (second term in (8)). Of course, this interpre-
tation as a filtering process in Ω greatly simplifies the im-
plementation step since it naturally suggests an algorithm

in a lower-dimensional space Ω. But we have to keep in
mind that it is actually the outcome of a classical Tikhonov

minimizing flow on the patch space Γ. Note that the Gaus-
sian functions in the spatial and patch-based terms of the

weighing function w(x,y,p,q) (8) have the same standard

deviation σ. Having different σ can be easily simulated
by pre-multiplying the image Inoisy by a ratio factor λ
before processing, being then equivalent than having two

different standard deviations σpatch = σspatial/λ.

Link with other filtering methods : The patch-based

Tikhonov regularization method (7) is actually quite simi-

lar to the Non Local Means technique, as defined in [13].

Differences are twofold : First, it is naturally defined as

the solution of a minimizing flow acting on multi-valued

images, while the original formulation has been expressed

as an explicit nonlinear filter acting on scalar images. Sec-

ond, the averaging weights wi,j of the Non Local Means

algorithm are only based on the similarity between patches.

Here, the weighting function (8) also considers the spa-

tial distances between patches to average. Also, in the

extreme case when the patch size p is reduced to 1 (so,
a patch is just one point), the regularization method (7)

becomes the natural multi-valued version of another well

know nonlinear image filter, namely the Bilateral Filter-

ing method [6, 7, 26, 32]. These filters are known to be

anisotropic in the image domain Ω. The benefit of mini-
mizing the Tikhonov functional on the patch space Γ rather
than on the image domain Ω is obvious in terms of regu-
larization quality : It avoids the typical isotropic smooth-

ing behavior of the Tikhonov regularization that usually

over-smoothes the important image structures, such as the

edges, corners and textures. A comparative figure of all

these regularization algorithms is shown and commented

in section 5.

4. IMAGE REGISTRATION BY PATCH-BASED

VARIATIONAL METHOD

Let us now consider the problemof estimating a displace-

ment field u : Ω → R
2 between two multi-valued images

It1 : Ω → R
n (the reference image) and It2 (the target

image). This image alignment problem can be typically

solved by a variational method, which aims at finding the

vector field u that minimizes the following energy :

E2(u) =

∫

Ω

α ‖∇u(p)‖2 + ‖D(p,p+u)‖2 dp (9)

The user-defined parameter α ∈ R
+ imposes a regularity

constraint on the estimated vector field u, if it chosen to be

non zero. D(p,q) is a measure of the dissimilarity between

image pixels It1
(p) and I

t2
(q). Lot of different expressions for

D have been already proposed in the literature [3, 5, 24].
One of the most common choice makes the assumption

that It1 and It2 are acquired under the same global illumi-

nation conditions (for instance, they are successive frames

of a video sequence) and then, that the constraint of the

Brightness Consistency holds.

In this case, D can be reasonably chosen to be :

D1(p,q) = It1
σ(p) − It2

σ(q) (10)

where Itk
σ = Itk ∗ Gσ are filtered versions of the images

Itk , convolved by a normalized Gaussian kernel Gσ . It

allows the consideration of regularized reference and tar-

get images instead of possibly noisy ones. The choice

D = D1 in (9) leads to a variational extension of the Lucas-

Kanademethod [5, 24] for multi-valued images.

Dissimilarity measure on the patch space : The dissim-

ilarity measure D1 can be naturally extended to deal with

patches, by expressing it with the patch transforms Ĩt1 and

Ĩt2 instead of the original images It1 and It2 . This is quite

straightforward : We just replace the pointwise intensities

by the most significant patches (2) present in the regular-

ized versions of the patch transforms Ĩtk
σ = Ĩtk ∗ Gσ :

D2(p,q) = Ĩ
t1

σ(p,P Ĩt1
max(p)

)
− Ĩ

t2

σ(q,P Ĩt2
max(q)

)
(11)

Here, the smoothed patch transforms Ĩtk
σ represent edge-

preserving filtered versions of the reference and target im-

ages Itk , as mentioned in section 3. It means also that the

localization of the most significant patches is known to be

P Ĩtk

σmax = PItk
.

In the particular case where σ = 0, the dissimilarity func-
tion D2 is the same as the one used for the classical Block

Matching method. Moreover, when α = 0 (no regulariza-
tion constraints are considered on u), the Block Matching

is a global minimizer of (9).

Minimizing flow : In a more general setting, the Euler-

Lagrange derivation of (9) gives the set of coupled PDE’s

which locally minimizes the energy functionalE2 :

∀j ∈ [1, 2], ∀x ∈ Ω,











































u[t=0] = ~0

∂uj(x)

∂t
= α ∆uj+

np2+1
∑

i=1

(

Ĩt1

σi(x,PIt1
(x)

)
− Ĩt2

σi(x+u,PIt2
(x+u)

)

)

[∇Gi]j(x+u)

(12)

where Gi(x) = Ĩt2

σi(x,PIt2
(x)

)
. Here again, this minimizing

flow (12) can be implemented directly in the image do-

main Ω, without having to explicitly compute and store
the patch transforms Ĩtk

σ . Indeed, it requires only the re-

trieval of the most significant patches in Ĩtk
σ , which can be



proven to be P Ĩtk

σsig = PI
tk
regul , where I

tk

regul is the nonlin-

ear filtered version of Itk by the Tikhonov regularization

flow on the patch space (7).

This patch-based registration PDE (12) is a local mini-

mizer of a Block Matching-like objective function. Dif-

ferences are twofold : First, it implicitly considers edge-

preserving filtered versions of the reference and target im-

ages, instead of isotropically smoothed ones. But most

of all, it is able to put an important a priori smoothness

constraint on the estimated field u. This method com-

bines then the significance of the patch description for the

matching of image structures, while keeping the aptitude

of the variational methods to impose useful constraints.

These interesting properties are discussed and illustrated

with a comparative figure in section 5.

5. APPLICATION RESULTS

We applied the different variational techniques on the

patch space presented in this paper, on different color im-

ages considered in their original (R, G, B) color space.

Color image denoising : The Tikhonov regularization flow

(7) on the patch space Γ can be used to enhance degraded
color images (or other multi-valued datasets). Fig.1 com-

pares it with the most connected algorithms, namely the

Non Local Means, the Bilateral Filtering and the classi-

cal Tikhonov regularization performed on the image do-

main Ω. Synthetic white Gaussian noise (σnoise = 20)
has been added to the original color image Barbara. For

the honesty of the comparison, we have not applied the

scalar versions of these related filters as defined in the pa-

pers [13, 32], but their multi-valued extensions. It gives

indeed better denoising results than applying them chan-

nel by channel. The PSNR between the noise-free and

restored images, as well as the parameters used for the

experiments are displayed. For each method, the parame-

ters have been manually tuned to optimize the obtained

PSNR. As our proposed flow (7) is actually very close

in its final expression to the Non Local Means and Bilat-

eral filters, the denoising results are of course very com-

parable in terms of quality. It seems to perform a little

bit better on certain regions (some edges are sharper in

the zoomed part). We believe it is due to the fact that

our weighting function (8) considers both the similarity as

well as the spatial distances between patches. The visual

improvement is very subtle anyway. Additional results of

our patch-based regularization technique are illustrated on

Fig.2. It is interesting to notice that in spite of its intrin-

sic isotropic nature, the Tikhonov flow on the patch space

(5) clearly competes against sophisticated anisotropic dif-

fusion PDE’s for the smoothing of multi-valued images,

such as the method proposed in [33].

Color image registration : The patch-based registration

PDE’s (12) allow to estimate a smooth displacement field

between two color images while considering a patch-based

dissimilarity measure. Such a displacement field can be

used then to generate a morphing video sequence, where

new synthetic frames are added between the reference and

target images (i.e.a re-timing process, where the reference

frame corresponds to t = 0 and the target to t = 1). Fig.3
shows a comparison of the re-timed results obtained by

our proposed registration method (12) and by the most re-

lated ones, i.e.theBlockMatching algorithm and the point-

wise version (10) of the variational registration technique

(9). For each method, the estimated displacement field

u is displayed as a colored image (first column). The

mid-interpolated frame (i.e.reconstructed at t = 0.5) and
a zoomed part of it are shown on the two last columns.

This is indeed the hardest frame to reconstruct since it

classically exhibits the largest ghosting artefacts due to

motion estimation errors. To be able to handle large dis-

placements, we considered a classical multiscale evolu-

tion scheme for the PDE’s that minimize the pointwise

and patch-based versions of the energy functional (9).

Without any surprise, the original Block Matching algo-

rithm fails in reconstructing a smooth motion field, result-

ing in a unpleasant mid-interpolated frame reconstruction.

The pointwise version of the variational registration tech-

nique (9) is quite competitive when the smoothness con-

straint is high enough (α = 0.1), but fails otherwise. Sur-
prisingly, our proposed patch-based variational formula-

tion (9) with the dissimilarity measure (11) outputs a quite

good reconstructed frame, even when α = 0. Consid-
ering a patch-based dissimilarity measure seems to have

a natural tendency to intrinsically regularize the registra-

tion problem. Anyway, best visual results are obtained

with our variational patch-based registrationmethodwhile

considering regularization constraints on the displacement

field u (last row).

6. CONCLUSIONS & PERSPECTIVES

In this paper, a reversible patch-based transform of multi-

valued images has been presented. More important, we

illustrated the fact that considering variational methods in

the corresponding patch space is a very nice way of de-

signing the natural patch-based counterparts of classical

image processing techniques. The obtained experimental

results seems to confirm this impression. We strongly be-

lieve that this effort is a first step in reconciling both patch

and variational worlds and that our proposed framework

can be used to translate many other “pointwise” varia-

tional formulations into their natural patch-based counter-

parts.
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(a) Noisy image (std=20) (b) Tikhonov regularization onΩ (c) Bilateral Filtering (d) Non Local Means

Result PSNR Parameters Reference

(b) 25.33 dB σ = 0.6 [10, 31]

(c) 26.97 dB σs = 10, σr = 25 [6, 26, 32]

(d) 26.98 dB σ = 21, patch 7 × 7 [13]

(e) 27.03 dB σ = 21, patch 7 × 7 .

(e) Tikhonov regularization on the patch space Γ (f) PSNR(Original/Denoised) and parameters used for experiments

Figure 1. Illustration of the Tikhonov regularization on the patch space (7), and comparisons with most related filtering

techniques.

(a) Original degraded image (b) Tikhonov regularization on the patch space Γ

(a) Original degraded image (b) Using anisotropic diffusion PDE’s [33] (c) Using Tikhonov on the patch space Γ

Figure 2. Additional results obtained by the Tikhonov regularization flow on the patch space (7).



(a) Reference and target color images

(b) 9 × 9 Block Matching registration

(c) Variational pointwise registration with smoothness constraints (α = 0.01)

(d) Variational pointwise registration with smoothness constraints (α = 0.1)

(e) Variational patch-based registration without smoothness constraints (α = 0)

(f) Variational patch-based registration with smoothness constraints (α = 0.01)

Figure 3. Illustration of the variational image registration method on the patch space (12), and comparisons with Block

Matching [18, 35] and pointwise variational registration (9) methods.


