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Abstract

In this paper we present a method for impulse noise

removal that makes use of spectral clustering and graph

regularization. The image is modeled as a graph and

local spectral analysis is performed to identify noisy

and noise free pixels. On the set of noise free pixels,

a topology adapted graph regularization is performed.

Experimental results show the benefits of the proposed

approach regarding the standard VMF when noise pro-

portion is high.

1. Introduction

Images are often corrupted by impulse noise due to

noisy sensors or channel transmission errors. There are

many works on the restoration of images corrupted by

impulse noise. The most popular approach for remov-

ing impulse noise is the Vector Median Filter (VMF) [1]

because of its good denoising power and computational

efficiency. Many improvements of the VMF have been

proposed to avoid the modification of pixels not affected

by impulse noise [7]. Various decision-based filters

have been proposed where noisy pixels are first iden-

tified and then replaced by using the VMF [6]. How-

ever, such approaches still have the same drawbacks of

the VMF: blurring and low performances when noise

ratio is high. In the spirit of [3], we propose an itera-

tive approach that, at each iteration, identifies corrupted

pixels by spectral clustering on the filtering window and

performs graph regularization by topology adaptation to

take only into account uncorrupted pixels.
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2. Preliminaries on graphs

We provide some basic definitions on graph theory.

A graph G is a couple G = (V,E) where V is a fi-

nite set of vertices and E is a set of edges included in a

subset of V × V . Two vertices u and v in a graph are

adjacent if the edge (u, v) exists in E. u ∼ v denotes

the set of vertices u connected to the vertex v via the

edges (u, v) ∈ E. In the rest of this paper, we con-

sider only simple graphs for which maximum one edge

can link two vertices. These simple graphs are always

assumed to be connected and undirected. A graph, as

defined above, is said to be weighted if it is associ-

ated with a weight function w : E → R
+ satisfying

w(u, v) > 0 if (u, v) ∈ E, w(u, v) = 0 if (u, v) /∈ E.

The volume of a set of vertices A can be computed by

vol(A) =
∑

vi∈A

d(vi) with d(vi) =
∑

u∼vi

w(u, vi) the

degree of a vertex.

3. Noise detection by spectral clustering

The transition probability from a vertex vi to a ver-

tex vj is provided by p(vi, vj) =
w(vi,vj)

d(vi)
. The associ-

ated transition matrix P is then defined by P = D−1S
where D is the degree matrix and S a similarity matrix

associated to the graph G. The eigenvectors v of P are

obtained by solving Pv = λv. The associated eigenval-

ues of P are λ1 = 1 ≥ λ2 ≥ · · ·λn ≥ −1 and one has

P =
yV y
∑

i=1

λiviv
T
i . The eigenvector v2 of P associated to

λ2 is known as the FIEDLER vector of P and provides

most of geometrical information. Indeed, according to

the sign of the FIEDLER vector, the graph can be par-

titioned into two sets. This type of analysis is known

as spectral clustering [8]. Spectral clustering can be

used to partition a filtering window into two sets to iden-

tify noisy pixels. Given an arbitrary graph G = (V,E)



that models an image where vertices correspond to pix-

els, the neighborhood set N (G, u) of a vertex u is de-

fined as N (G, u) = {v ∈ V : (v, u) ∈ E} ∪ {u}.

N (G, u) provides the set of vertices in a filter win-

dow centered on u. Then, we define the complete

graph associated to a filtering window centered on u
by F (G, u) = (N (G, u), N (G, u) × N (G, u)). A

spectral clustering of graph F (G, u) is performed and

according to the sign of the FIEDLER vector v2, the set

of vertices of F (G, u) is partitioned into two disjoint

sets N1(G, u) = {v ∈ N (G, u) : v2(v) ≥ 0} and

N2(G, u) = {v ∈ N (G, u) : v2(v) < 0}. This can

be considered as a natural nonparametric impulse noise

detector since we use a complete graph and noise free

pixel tend to form a single cluster while noisy pixels are

outliers. From these sets, we then want to obtain two

sets N c(G, u) and N uc(G, u) that respectively denote

noisy and noise free candidates for a filtering window

centered on u in a graph G that models an image. To

that aim, we apply the following rules:

• If N1(G, u) or N2(G, u) has a cardinality lower

or equal to 1, it is considered as being N c(G, u).
This corresponds to evident outliers.

• If
(

vol(N1(G,u))
vol(N (G,u)) ≤ vol(N2(G,u))

vol(N (G,u))

)

, N c(G, u) =

N1(G, u) and N c(G, u) = N2(G, u) otherwise.

N uc(G, u) is then obtained as the set N1(G, u) or

N2(G, u) that was not retained as N c(G, u). These

rules first treat the cases of one or less noisy pixels. Oth-

erwise, the noisy set is determined as the less coherent

set of vertices.

4. Topology adapted graph regularization

We consider a general function f0 : V ⊂ R
n → R

m

defined on graphs of the arbitrary topologies and we

want to regularize this function. The regularization of

such a function corresponds to an optimization prob-

lem which can be formalized by the minimization of a

weighted sum of two energy terms:

1

2

∑

u∈V

(

|∇wf(u)|2 + λ‖f(u) − f0(u)‖2
2

)

(1)

With the following definition of the weighted gradi-

ent |∇wf(u)| =
√

∑

v∼u w(u, v)(f(v) − f(u))2, this

problem (1) has a unique solution and can be solved

with the following algorithm ∀u ∈ V [4]:











f (0)(u) = f0(u)

f (t+1)(u) =
λf0(u) +

∑

v∼u w(u, v)f (t)(v)

λ +
∑

v∼u w(u, v)
.

(2)

Such a graph regularization enables local and non-

local [2] regularization by using appropriated graphs

topologies and edge weights [4]. However, it efficient

for Gaussian noise removal but not for impulse noise.

Therefore, we propose to combine graph regulariza-

tion with spectral clustering to obtain a general algo-

rithm of impulse noise removal. The key point is that

the topology of the graph changes along the iterations

and this is performed by retaining only noise free pix-

els (the N uc(G, u) set) on a given neighborhood cen-

tered on a vertex u. The major problem we have to

face with is the fact that the vertex u does not neces-

sarily belong to N uc(G, u) since it can be a corrupted

pixel and Algorithm (2) is not directly applicable. Once

we get the set N uc(G, u), an adapted neighborhood

graph G(u) is constructed with N uc(G, u) as vertices

and with {(v, vmed) : v ∈ N uc(G, u), v .= vmed} as

edges. vmed denotes the vertex that correspond to the

vector median of the set N uc(G, u). First part of Figure

2 illustrates these different steps on a toy filter window.

This corresponds to consider the following energy for

one vertex u:
8

>

>

<

>

>

:

1

2
y∇G(u)

w f(vmed)y2+
λ

2
‖f(u) − f

0
(u)‖2

2 if u ∈ Nuc
(G, u)

1

2
y∇G(u)

w f(vmed)y2 if u /∈ Nuc
(G, u)

(3)

where |∇
G(u)
w f(vmed)| denotes the weighted graph gra-

dient operator on the adapted neighborhood graph G(u).
One has to note that the data fitting term is taken into ac-

count only for noise free vertices. Finally we obtain the

following algorithm, ∀u ∈ V :

f
(t+1)

(u) =

χ(u ∈ G(u))λf0(u) +
P

(v,vmed)∈G(u)

w(v, vmed)f(t)(vmed)

χ(u ∈ G(u))λ +
P

(v,vmed)∈G(u)

w(v, vmed)

(4)

where χ : V → {0, 1} is the indicator function.

5. Experimental results

To test our algorithm, we have considered a part

of the Lena image that has been corrupted by impulse

noise expressed as [5]:

xi,j =

{

v with probability pv

oi,j with probability 1 − pv

where i, j characterize the sample position, oi,j is the

original sample, xi,j represents the sample from the

noisy image, pv is a corruption probability and v =
(vR, vG, vB) is a noise vector of intensity random val-

ues. For the experiments, the considered degree of the

impulse noise corruption pv has ranged from 5% to



90%. To evaluate the achieved results, objective crite-

ria as Peak Signal-to-Noise Ratio (PSNR) and Normal-

ized Color Difference (NCD) have been used [5]. Fig-

ure 1 presents these results for the standard VMF, the

proposed approach with 8-adjacency grid graphs (called

RSVMF for Regularized Spectral VMF) and with a 24-

adjacency grid graph (called NLRSVMF for Nonlocal

Regularized Spectral VMF). Second part of Figure 2

presents visual results of denoising. Weights are com-
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Figure 1. PSNR and NCD according to the

percentage of impulse noise.

puted according to a measure of similarity w(u, v) =

exp
(

−‖F (f0,u)−F (f0,v)‖2

σ2

)

. F (f0, u) ∈ R
q denotes a

feature vector associated to each vertex u ∈ V . The

feature vector associated to vertices F (f0, v) can be the

initial function value: F (f0, v) = f0(v) (classical local

processing: RSVMF) or a vector F (f0, v) = [f0(u) :
u ∈ Bv,s]

T (nonlocal processing: NLRSVMF). For this

latter case F (f0, v) is a patch where Bv,s denotes a

bounding box of size (2s + 1) × (2s + 1) centered at v

(3×3 in all our experiments). For all the experiments we

set λ = 0.05. Since the proposed filters are iterative, we

provide results at convergence. As depicted in Figure 1

and in the second part of Figure 2, our approach outper-

forms the VMF once the noise proportion is higher than

20%. Lower performances are obtained for lower noise

proportions since our approach tends to sharpen the im-

age while reducing the VMF blurry effect. For very

high proportions of noise, the nonlocal version of the

proposed approach is very effective. Moreover, nonlo-

cal results show its remarkable robustness as noise pro-

portion increases. Our approach is therefore very ef-

fective for removing very high proportions of impulse

noise in local or nonlocal configurations.

6. Conclusion

In this paper, a new algorithm for impulse noise re-

moval has been proposed. The image is modeled as a

graph and a regularization process is performed. The

latter has the property to locally adapt the topology of

the graph under study by a spectral analysis to retain

noise free pixels. Experimental results show that the

new filter outperforms the VMF when high proportions

of impulse noise should be eliminated.
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Figure 2. First part: spectral clustering and adapted graph neighborhood construction. Second

part: impulse noise removal results. First line presents corrupted images for different amounts

of noise. Next lines present filtering results with the standard VMF, the Regularized Spectral

VMF (RSVMF) on a 8-adjacency grid graph with F (f0, v) = f0(v) (local processing) and the

Nonlocal Regularized Spectral VMF (NLRSVMF) on a 24-adjacency grid graph with F (f0, v) =
[f0(u) : u ∈ Bv,2]

T (nonlocal processing).


