On Sums of Indicator Functions in Dynamical Systems

Abstract : In this paper, we are interested in the limit theorem question for sums of indicator functions. We show that in every aperiodic dynamical system, for every increasing sequence $(a_n)_{n\in\N}\subset\R_+$ such that $a_n\nearrow\infty$ and $\frac{a_n}{n}\to 0$ as $n\to\infty$, there exist a measurable set $A$ such that the sequence of the partial sums $\frac{1}{a_n}\sum_{i=0}^{n-1}(\ind_A-\mu(A))\circ T^i$ is dense in the set of the probability measures on $\R$. Further, in the ergodic case, we prove that there exists a dense $G_\delta$ of such sets.
Type de document :
Article dans une revue
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2010, 30 (5), pp.1419-1430. 〈10.1017/S0143385709000637〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00331667
Contributeur : Olivier Durieu <>
Soumis le : vendredi 17 octobre 2008 - 11:43:08
Dernière modification le : jeudi 11 janvier 2018 - 06:12:27

Lien texte intégral

Identifiants

Collections

Citation

Olivier Durieu, Dalibor Volny. On Sums of Indicator Functions in Dynamical Systems. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2010, 30 (5), pp.1419-1430. 〈10.1017/S0143385709000637〉. 〈hal-00331667〉

Partager

Métriques

Consultations de la notice

75