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TO WHICH EXTEND IS THE “NEURAL CODE” A METRIC ?
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ABSTRACT
Here is proposed a review of the different choices to

structure spike trains, using deterministic metrics. Tem-
poral constraints observed in biological or computational
spike trains are first taken into account The relation with
existing neural codes (rate coding, rank coding, phase cod-
ing, ..) is then discussed.

To which extend the “neural code” contained in spike
trains is related to a metric appears to be a key point, a gen-
eralization of the Victor-Purpura metric family being pro-
posed for temporal constrained causal spike trains.
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1 Global time constraints in spike trains

The output of a neural network is a set of events, defined
by their occurrence times, up to some precision:

F = {· · · tni · · · }, t1i < t2i < · · · < tni < · · · ,
wheretni corresponds to thenth spike time of the neu-

ron of indexi, with related inter-spike intervalsdn
i = tni −

tn−1
i . Suchspike train writesρi(t) =

∑

tn
i
∈Fi

δ(t − tni ),
using the Dirac symbolδ(.). See e.g. [1, 2, 3] for an intro-
duction.

In computational or biological contexts, not all multi-
time sequences correspond to spike trains since they are
constrained by the neural dynamic, while temporal con-
straints are also to be taken into account: Spike-times are:
- [C1] bounded by a refractory periodr, r < dn+1

i ,
- [C2] defined up to some absolute precision1 δt, while
- [C3] there is always a minimal delaydt for one spike to
influence another spike, and
- [C4] there is a maximal inter-spike intervalD such that

eitherdn+1
i < D or tn+1

i = +∞
(i.e. either neuron fires within a time delay< D or it re-
mains quiescent forever).

For biological neurons, orders of magnitude are typi-
cally, in milliseconds:

r δt dt D

1 0.1 10−[1,2] 10[3,4]

The [C1] constraint is well-known, limiting the max-
imal rate. See e.g. [4] for an extended discussion on abso-
lute / relative refractory periods.

1Here, [C2] has the following precise meaning: Two spike-times are
not synchronized if separated by more thanδt. On the contrary, two spike-
trains are synchronized if and only if they repetitively both spike in the
sameδt time window. Indeed, the fact that two isolated spike-timesoccur
in the sameδt time window is not significatove.

The [C2] constraint seems obvious but is sometimes
“forgotten” in model. In rank coding schemes for instance
[5] it is claimed that “all” spike-time permutations are sig-
nificant, which is not realistic since many of these permu-
tations are indistinguishable, because of the bounded pre-
cision, as discussed in e.g. [6]. Similarly, a few concepts
related to “reservoir computing” (e.g. [7]) assume implic-
itly an unrealistic unbounded time precision. [8].

Similarly, [C3] is also obvious and allows to avoid
any spurious effects2, and induce simplifications both at the
modelization and simulation level [9]. Here we considerdt
including for gap junctions [8].

The [C4] constraint is less obvious. The idea is that,
in the absence of any input (isolated neuron), the potential
decreases after a while and the neuron cannot fire anymore.
This is true for usual deterministic models, unless a con-
stant input current singular value is choosen. This seems
true for cortical neurons, but likely not for all neurons in
the brain [8].

As discussed in details in [10] whether the fact [C4]
is verified or not, completely changes the nature of the dy-
namics. In the latter case, a neuron can remain silent a
very long period of time, and then suddenly fire, inducing
a complete change in the futher state of the system. We
distinguish situations with and without [C4] in the sequel.

Considering C[1-3] and optionally [C4], let us now
review the related consequences regarding modeling

Simulation of time-constrained networks. The event-
based simulation (see e.g. [11] for a review) of neural
networks is strongly simplified by the fact that, thanks to
[C2] and [C4] spike times and precisions are bounded,
while thanks to [C3] spiking can not generate causal para-
doxes. Here the specification allows to use “histogram
based” methods and obtain3 with a smallO(1) complex-
ity [8].

Furthermore, the simulation kernel is minimal (a
10Kb C++ source code), using aO(D/dt + N) buffer size
and aboutO(1 + C + ǫ/dt) ≃ 10 − 50 operations/spike
(> 106 spike/sec on laptop), for a sizeN network with C
connections in average, whileǫ ≪ 1.

2If a neuron instantaneously fire after receiving a spike, this can gener-
ate avalanche effects (another neuron instantaneously fires and so on ..) or
even temporal paradoxes (another inhibitory neuron instantaneously fires
inhibiting this one, thus not supposed to fire any more).

3Source code available athttp://enas.gforge.inria.fr.



2 The maximal amount of information

Considering [C1-2], given a network of spiking neurons
observed during a finite period[0, T ], the number of possi-
ble spikes is obviously limited by the refractory periodr.
Furthermore, the information contained in all spike times is
strictly bounded, since two spike occurrences in aδt win-
dow are not distinguishable.

A rather simple reasoning [8] yields a roughupper
bound for the amount of information:

N T
r

log2

(

T
δt

)

bits duringT seconds
Taking the numerical values into account it means for large
T , about1Kbits/neuron.

In fact, the dynamics of a given network constraint
very much the the possible spike trains, and the real entropy
is lower, when not strongly lower, than this bound.

In the particular case of fast-brain mechanisms where
only “the first spike matters” [12], this amount of infor-
mation is not related to the permutations between neuron
spikes, i.e. of order ofo(log(N !)) = N log(N) but simply
proportional toN , in coherence to what is found in [6].

This bound is coherent with results presented in [13]
considering spike rate and using an information entropy
measure. For instance, considering a timing precision of
0.1 − 1ms as set here, the authors obtain an information
rate bounded around500bits/s for a neural receptor.

Note that this is not bad, but good news. For in-
stance, in statistical learning, this corresponds to a cod-
ing with large margins, thus as robust as support-vector
machines, explaining the surprisingly impressive perfor-
mances of fast-brain categorization [6].

3 Dynamics of time-constrained networks

A step further, taking [C1-3] into account, allows us to “dis-
cretize” the spike trains sequences: i.e. use “raster4”. The
sampling period∆T is taken smaller thanr, δt anddt.

In simple models such as basic leaky integrate and fire
neuron or integrate and fire neuron models with conduc-
tance synapses and constant input current, this discretiza-
tion allows a full characterization of dynamics. Thus, it has
been shown in these two cases that [14, 10]:

• [H1] The raster plot is generically5 periodic, but, de-
pending on parameters such as external current or
synaptic weights, periods can be larger than any ac-
cessible computational time;

• [H2] There is a one-to-one correspondence between
orbits6 and raster (i.e. raster plots provides a sym-
bolic coding for dynamics).

4 Formally, the spike train discretized raster, writes fork ≥ 0:
wi[k] = #{tni , k ∆T ≤ tni < (k + 1) ∆T} ∈ {0, 1} .

5Considering a basic leaky integrate and fire neuron network the result
is true except for a negligible set of parameters. Considering an integrate
and fire neuron model with conductance synapses the result istrue unless
the trajectory accumulates on the thresholds.

6Here we consider orbits, i.e. infinite trajectories, thus consider the
system in its asymptotic stage.

The fact [H1] allows to clearly understand to which
extends spike trains can code information: Periodic orbits
give the code. When the input changes, the orbits are still
periodic.

The fact [H2] means that, in these cases, the raster is
a “symbolic coding” in the sense that no information is lost
by considering spike times and not the membrane potential.
Both facts also allow one to deeply understand the network
dynamics: Fig. 1 sketches out some aspects.
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Figure 1. Describing the dynamic landscape of deterministic
time-constrained networks. [A] The phase space is partitioned
into bounded domainsBl and for each initial condition inBl the
initial trajectory is attracted to an attractor, here not a fixed point,
as in, e.g. Hopfield networks, but a periodic orbitAl. [B] If the
parameters (input, weights) change, the landscape is modified and
several phenomena can occur: change in the basins shape, number
of attractors, modification of the attractor as forA3 in this exam-
ple; A point belonging toA4 in Fig.1 A, can, after modification
of the parameters, converge either to attractorA′

2 or A′
3.

Remarks

Time is discretized, but without any constraint about
the “sampling period”. A reasonnable order of magnitude
for the sampling period isdt since in the discretized model,
a spike is propagated to efferent neurons at least one sam-
pling period latter. The [H1] and [H2] results are in fact
true at any precision.

In order to understand [H1], it might be important
to discuss how “obvious” it is. Time is discretized. If
the bounded neuron state (membrane potential) would have
been discretized also, we would have a finite state system.
In that case, only fixed points and periodic orbits could oc-
cur and the result would have been obvious. As a conse-
quence, [H1] reads: even if the neuron state takes continu-
ous values, orbits are still generically periodic.

In a conductance based model, with the additional
constraint that conductances depends on previous spikes
without a finite horizon, [H1] still holds.

To which extends such a “canonical situation” extends
to more complex models is an open question. We can eas-
ily conjecture [H1] is a model limitation for all integrate
and fire models, defined with an instantaneous reset to a
constant value.



However, since the period can be arbitrary large,
these models are able to simulate more general models,
such as Hodgkin-Huxley [15] neuron’s assemblies, dur-
ing a bounded period of time: Periodic orbits approximate
chaotic orbits (shadowing lemma). In this sense, they pro-
vide useful approximations of biological networks.

The previous conjecture can be explained as follows:
Changing the initial value of the membrane potential, one
may expect some variability in the evolution. But with the
reset, all trajectories collapse on the same point and have
obviously the same further evolution. Though this effect
can be considered as pathological, it has a great advantage.
After reset, the membrane potential evolution does not de-
pend on its past value. This induces an interesting property
used in all the Integrate and Fire models that we know: The
dynamical evolution is essentially determined by the firing
times of the neurons, instead of their membrane potential
values.

4 Neural coding and temporal constraints

Let us now introduce the central idea of this review.
As an illustrative example, let us consider the tempo-

ral order coding scheme [5, 12] (i.e. rank coding): only
the order of the events matters, not their absolute time val-
ues. This means that two spike trainsF1, F2 with the same
event ordering correspond to the same code. The key point
here, is that rank coding defines a partition of spike trains
set, each spike train with the same ordering being in the
same equivalence class of the partition, i.e. corresponding
to the same “code”. Choosing this code means we have
structured spike trains using an “equivalence relation”.

The same view can be given for other coding: rate
coding means that all spike trains with the same frequen-
cies are in the same equivalence class, irrespective of their
phase, etc..

Let us now introduce a “distance”d(.), which is0 if
F1 andF2 correspond to the same code, and1 otherwise.

The fact that spikes precision is not unbounded leads
to many indistinguishable orderings. This does not change
the rank coding concept, while the partition is now coarser.
Trains with two spikes with indistinguishable occurrence
times are in the same equivalence class.

A step further, how can we capture the fact that, e.g.
for rank coding, two spike times with a difference “about”
δt are “almost” indistinguishable ? The natural idea is to
use, not discrete distances (i.e. with binary 0/1 values) but
a “quantitative” distance. Two spike trains correspond ex-
actly to the same neural code if the distance is zero and the
distance increases with the difference between the trains.

This is the idea we wanted to highlight here. This
proposal is not a mathematical “axiomatic”, but a simple
modeling choice. It is far for being new, but surprisingly
enough not made explicit at this level of simplicity. In order
to see the interest of this idea, let us briefly review the two
main classes of spike train metrics.

As reviewed in details in [3, 16] spike trains determin-
istic metrics can be grouped in three classes:
-0- “Binned” metric, with spikes grouping in bins (e.g. rate
coding metrics), not discussed here.
-I- Convolution metrics, with a distance defined on some
convolution of spike train, including raster-plot metric.
-II- Spike time metrics, such as alignment distances [17]

5 Using convolution metrics

Linear representation. A large class of metrics is de-
fined through the choice of a convolution kernelK writing:

si(t) =
∑

tn
i
∈Fi

Ki(t − tni ) = Ki ∗ ρi ∈]0, 1],
easily normalized between0 (no spike) and, say,1 (burst
mode at the maximal frequency). The distance is then de-
fined on the signals = (· · · , si, · · · ) ∈ RN , e.g. using
Lp norms. The “code” here corresponds to the linear rep-
resentation metric. It allows us to link spike trains with a
quantitative signals.
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Figure 2. A few examples of spike train convolution: [A] The
spike train itself, [B] A causal local frequency measure estima-
tion (writing χ the indicatrix function), [C] A non-causal spike
density, uniformly equal to 1 in burst mode, [D] A normalized
causal exponential profile. Evoked post-synaptic potential pro-
files model are nothing but such causal convolution (using e.g.
double-exponential kernels to capture the synaptic time-constant
(weak delay) and potential decay). Similarly spike-trainsrepre-
sentations using Fourier or Wavelet Transforms are intrinsically
related to such convolutions.

The so-called “kernel methods” based on the Mercer
theorem [3] are in direct links with linear representation
since they are defined, as scalar products, writing:

k(F ,F ′) =
∑

i

∑

n,m K̂i(t
n
i − t

′m
i ) =

∫

t
si(t) s′i(t)

with direct correspondences for usual kernels with linear
convolutions, e.g.:

Triangular Exponential Gaussian

Ki(t)
q

λ
2 H

`

t
`

2
λ

− t
´´ √

2 λ H(t) e−λ t
q

2 λ√
π

e−2 λ2 t2

K̂i(d) max
`

1 − λ
2 |d|, 0

´

e−λ |d| e−λ2 d2

This also includes distances based on inter-spike in-
tervals as developed in e.g. [18].

Non static kernels of the formKi(t, t−tni ) or Kn
i (t−

tni ) can also be used (clock-dependent coding, raster plot,
1st spike coding, ..), while non-linear Volterra series al-
lows to represent “higher order” phenomena (see e.g. [13]).
Weighted spike trains (i.e. with quantitative values attached
to each spike) are also direct generalizations of these.



These linear representations not only provide tools to
compare different spike trains, but allows one to better un-
derstand the link between quantitative signals and spike
times. For instance [1, 7], writings(t) =

∑

i λisi(t) al-
lows to define some network readout to link spiking net-
works to “analog” sensory-motor tasks. Let us illustrate
this aspect by the following two results.

Kernel identification. Given a causal signal̄s generated
by spike trainF the problem of identifying the related ker-
nel is formally solved by the following program:

minK

∫

t>0 |s(t) − s̄(t)|2 ≡
∫

λ
|K(λ) ρ(λ) − s̄(λ)|2

using the Laplace transform Parseval theorem, thus:
K(λ) =

[

s̄(λ) ρ(λ)T
] [

ρ(λ) ρ(λ)T
]−1

i.e. the spike train cross-correlation / auto-correlationratio.
Non-causal estimation would consider the Fourier trans-
form. This setting corresponds to several identification
methods [1, 3].

Spike deconvolution. A step further, if we know the
convolution kernelKi. It is obvious to formally write:

ρi = Li ∗ si with Li = F−1
[

1
F [Ki]

]

E.g.:
Ki = exp Li ∗ si = 1

τ
s(t) + s′(t)

Ki = α Li ∗ si = 1
τ2 s(t) + 2

τ
s′(t) + s′′(t)

well defined and allowing to reconstruct the spike-train
from the continuous signal as illustrated in Fig. 3.

before after

Figure 3. A small experiment of spike deconvolution. On
the left the signal is the convolution of a spike-train usingan
α(t) = t/τe−t/τ profile, with addition of noise and of a spurious
sinusoid has been added as an outlier to the signal. Spikes are not
“visible” in the sense that they do not correspond to maxima of
the signal because the spike responses are mixed. On the right the
deconvolution is shown: the outlier is amplified, but spikesclearly
emerges from the signal.

Signal reconstruction. In order to further understand the
power of representation of spike trains in this case [19] has
generalized the well-known Shanon theorem, as follows: A
frequency range[−Ω, Ω] signal is entirely defined by irreg-
ular sampling valuessn

i at “spike time”tni
si(t) =

∑

n Kn
i (t − tni ) with Kn

i (t) = sn
i

sin(Ωt)
π t

providing thatmaxndn
i ≤ π

Ω . Thus providing an explicit
signal “decoding”.

Raster-plot metrics. A step further, it is easy to see, that
representing the spike time by a “raster4” corresponds to

non-static convolution kernel. Spike trains can be repre-
sented as the real number in[0..1[ which binary representa-
tion corresponds to the spike-train, inducing new metrics.
A useful related metric is of the form, forθ ∈]0, 1[:

dθ(ω, ω′) = θT , T = argmaxt ωt = ω′t

thus capturing the fact that two rasters are equal up to a cer-
tain rank. Such metrics are used to analyze the dynamics
of spiking networks and are typically used in the context of
symbolic coding in dynamical systems theory[14, 10].

6 Using alignment metrics

The original alignment metric. The second family of
metrics we want to review directly considers spike times
[17, 16].

The distance between two finite spike trainsF , F ′ is
defined in terms of the minimum cost of transforming one
spike train into the other. Two kinds of operations are de-
fined:
- spike insertion or spike deletion, the cost of each opera-
tion being set to1
- spike shift, the cost to shift fromtni ∈ F to t

′m
i ∈ F ′

being set to|tni − t
′m
i |/τ for a time constantτ .

For smallτ , the distance approaches the number of
non-coincident spikes, since instead of shifting spikes it
is cheaper to insert/delete non-coincident spikes, the dis-
tance being always bounded by the number of spikes in
both trains.

For highτ the distance basically equals the difference
in spike number (rate distance), while for two spikes trains
with the same number of spikes, there is always a time-
constantτ small enough such that the distance is equal to
∑

n |tni − t
′n
i |/τ .

Here, two spikes times are comparable if they oc-
cur within an interval of2 τ , otherwise they better are
deleted/inserted.

Although computing such distance seems subject to
a combinatorial complexity, it appears that quadratic algo-
rithms are available (i.e. with a complexity equal to the
product of the number of spikes).This is due to the fact that,
in a minimal path, each spike can be either deleted or shiftedonce
to coincide with a spike in the other spike train. Also, a spike
can be inserted only at a time that matches the occurrence of a
spike in the other spike train.It allows to calculate iteratively
the minimal distance considering the distancedn,n′(F ,F ′)
between a spike train composed of the firstn spikes ofF
and the firstn′ spikes ofF ′.

Figure 4. An example of minimal alignment from the upper to
the lower spike train, using from top to bottom an insertion,a
rightward shift, a leftward shift and a deletion respectively.



When considering spike trains with more than one
unit, one point of view is to sum the distances for each
alignment unit-to-unit. Another point of view is to consider
that a spike can “jump”, with some cost, from one unit inF
to another unit inF ′. The related algorithmic complexity is
no more quadratic but on the power of the number of units
[20].

This family of metrics include aligment not only on
spike times, but also on inter-spike intervals, or metrics
sensitive to motifs of spikes, etc.. They have been fruit-
fully applied in a variety of neural systems, to characterize
neuronal variability and coding [16]. For instance, neurons
that act as a coincidence detector with integration time (or
temporal resolution)τ , spike trains will have similar post-
synaptic effects if they are similar for this metric.

A generalized alignment metric. Let us remark, here,
that the previous metric generalizes to metric whith:
- [causality] At a given time the cost of previous spikes
alignment decreases with the obsolescence of the spike,
say, with an exponential time-constantτ ′.
- [non-linearity] The cost of a shift can be defined very
small, say quadratic, when lower that the time precision
and then, say, linear with the time difference.

This leads to an iterative definition of the distance
dn,n′ defined previously:dn,n′ =

min

0
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B

B

B
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with, e.g.,φ(d) = ((d τ/δt)2 ∧ d, again implementable
in quadratic time. It corresponds to the original alignment
metric iff φ() is the identity andτ ′ = +∞.

This modified metric illustrates how versatile is this
class of distance to represent the differences between spike
trains, considering temporal properties only.

Spike training. As a formal application, let us consider a
neuron spike response model [21] of the form:
Vi(t) = ν(t − tn−1

i ) +
P

jm wij α(t − tm
j ), tn−1

i < t ≤ tn
i ,

the spike time being defined byVi(t
n
i ) = θ, whereθ is the

spiking threshold, thus as an implicit equation.

Previous metrics on spike times allows to optimize the
neural weights in order to tune spike-times, deriving, e.g.,
rules of the form:

∆wij ≡
∑

n(tni − t̄ni ) ∂Vi

∂wij
(tni )

/

∂Vi

∂tn
i

(tni )

whereF̄ = {· · · , t̄ni , · · · } is the desired spike train

Such mechanisms of optimization is also applicable
to time-constants, delays or thresholds. Using spike train
metrics open the door to the formalization of such adapta-
tion rules, in order to “compute with spikes”.

7 Discussion

Although probabilistic measures of spike patterns such as
correlations [21] or entropy based pseudo-distances (e.g.
mutual information) provides a view of spike trains vari-
ability which is enriched by the information theory concep-
tual framework, it may be difficult to estimate them in prac-
tice, since such measures are robust only if a large amount
of samples is available. On the contrary, deterministic dis-
tances allow to characterize aspects of spike coding, with
efficient methods and without this curse of sampling size.

This review highlights some of these methods and
propose to consider that “choosing a coding” means “defin-
ing a metric”, in the deterministic case. Making explicit
that spikes do not contain that much information.
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