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ABSTRACT

Neurons receive a large number of excitatory and inhibitory

synaptic inputs whose temporal interplay determines the

spiking behavior. On average, excitation and inhibition

balance each other, such that spikes are elicited by fluc-

tuations [1]. In addition, it has been shown in vivo that

excitation and inhibition are correlated, with inhibition lag-

ging excitation only by few milliseconds (∼6 ms), creating

a small temporal integration window [2, 3, 4]. This correla-

tion structure could be induced by feed-forward inhibition

(FFI), which has been shown to be present at many sites in

the central nervous system.

To characterize the functional properties of feed-forward

inhibition, we constructed a simple circuit using spik-

ing neurons with conductance based synapses and applied

spike pulse packets with defined strength and width [5].

We found that the small temporal integration window, in-

duced by the FFI, changes the integrative properties of the

neuron. Only transient stimuli could produce a response

when the FFI was active, whereas without FFI the neuron

responded to both steady and transient stimuli. In addition,

the FFI increased the trial-by-trial precision.
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Introduction

Neurons receive a large number of excitatory and inhibitory

synaptic inputs whose temporal interplay determines the

spiking behavior. In vivo measurements have shown that,

on average, excitation and inhibition dynamically balance

each other [6]. Accepted single neuron models assume this

balance [7, 8], and it has been shown that it can exist in cor-

tical network models [1], creating an activity regime that

closely resembles cortical spiking activity in vivo.

In addition to the dynamic balance, it has been shown in

vivo that excitation and inhibition are correlated, with inhi-

bition lagging excitation only by few milliseconds (∼6 ms)

[2, 3, 4]. This correlation structure could be induced by

feed-forward inhibition (FFI). Here an excitatory projec-

tion directly synapses onto a neuron while inhibition is pro-

vided disynaptically by local inhibitory neurons which also

receive excitatory inputs from the same projection. This

type of connectivity pattern has been shown to be present

at many sites in the central nervous system.

To characterize the functional properties of feed-forward

inhibition, we constructed a minimal cortical circuit con-

taining the principal elements (shown in Figure 1). We then

applied spike pulse packets with defined width and size [5]

to investigate how the statistics of the stimulus interact with

the circuit, both in the case when FFI was present and in the

case it was not.

Method

The cortical circuit contained two major neuron types,

the excitatory (regular-spiking, RS) and inhibitory (fast-

spiking, FS) neurons. The neurons were modeled as

leaky-integrate-and-fire neurons with conductance based

synapses. In the circuit we included one RS neuron and

a pool of FS neurons. The size of the inhibition pool was

set to nFS = 20 when investigating the effect of FFI onto

the spiking response of the RS neuron. For the control con-

dition, in which excitation was not accompanied by inhibi-

tion, we set nFS = 0. The input to the circuit was a popula-

Figure 1. Schematic diagram of the model circuit.

tion of pre-synaptic neurons, whose spiking behavior was

drawn from a gaussian distribution, creating a pulse packet

[5] with strength (i.e. number of spikes in the packet) a

and temporal width σ. Each cortical neuron received 100

randomly chosen synapses from the pre-synaptic popula-

tion. Due to the limited size of the pre-synaptic popula-

tion, the cortical neurons received highly similar synaptic

inputs [9]). The unitary synaptic strength of the connec-



tion of each FS neuron onto the RS neuron was set to 2 nS.

The synapses from the pre-synaptic population onto the RS

neuron had a strength of 1 nS, whereas they were tree time

stronger onto the FS neurons [10].The delay between the

FS neurons and the RS neuron was set to 2 ms [2, 10].

See Figure 1 for a schematic diagram of the model.

The simulation was written in python [11] using pyNN [12]

as interface to the NEST simulator [13].

Results

Intracellular measurements

Example traces of the membrane potential and the conduc-

tances of the RS neuron, receiving a pulse packet of a = 2

spikes and σ = 10 ms, are shown in Figure 2. In the left

column (a,c,d) the FFI is not activated, such that impinging

excitation (red trace in c) can be freely integrated to pro-

duce multiple spikes. Spikes are shown here as a reset to

the resting potential after the membrane potential reached

the threshold (green dots in a,b). In this case, the cross-

correlation between excitation and inhibition is flat (e). By

contrast, with activated FFI, right column (b,d,f), the in-

coming excitation is quickly quenched by inhibition (blue

trace in d), eliciting only one spike (b). Here excitation and

inhibition are strongly correlated (f), similar to [3, 4].

Figure 2. Membrane potentials and conductances.

Shown are example traces of the membrane potentials

(a,b), the incoming conductances (c,d) and their cross-

correlations (e,f) for the circuit without (left) and with

(right) FFI. Details see text.

Spike counts and trial-by-trial precision

To systematically characterize the functional properties of

the circuit with and without FFI we varied the parameters

σ and a. σ was varied from 2 ms, to mimic transient inputs,

till 100 ms to mimic steady inputs. Note that we used a non-

linear scale for σ to zoom in on the small-σ regime. The

stimulus magnitude was varied by the parameter a, ranging

from 1 spike per synapse for weak stimuli to 10 spikes per

synapse for strong stimuli. For small σ, a might get unre-

alistic high, i.e. 10 spikes per synapse within 5 ms is not

physiologically realistic, however, our aim was to get an

overview of all combinations of σ and a, therefore, we did

not exclude such unrealistic combinations. We estimated

the spike count per stimulus of the RS neuron to assess

the sparseness/denseness of the response. To quantify the

trial-by-trial precision of the response we simulated multi-

ple trials and estimated the zero-lag correlation coefficient

of the binned spike trains (binwidth 1ms), excluding same

trials.

Figure 3. Spike count and precision.

Shown are the spike count per stimulus (a,b) and the trial-

by-trial precision (c,d) for the circuit without (left) and with

(right) FFI. Details see text.

Figure 3 shows the resulting spike counts and trial-by-trial

correlations for all tested σ and a, again, in the left column

without FFI and in the right column with FFI.

When stimulated with transient synchronous inputs (pulse

packets with σ < 10 ms), both circuits showed similar

responses (a,b). The spike count was sparse, with 1-3

spikes/stimulus for an a, a <4, which was biological real-

istic for this range of σ. Only for larger a did the response

of the circuit without FFI become more dense (top, left area

in a), whereas it remained sparse with FFI (b).

When stimulated with more steady inputs (pulse packets

with large σ), the effect of the FFI was distinct. Whereas

supra-threshold steady inputs elicited dense responses with

more then 10 spikes/stimulus without FFI (middle area in

a), the responses were suppressed with FFI (b). This non-

linear suppression is caused by the lagged inhibition. The

time-lag creates a small temporal integration window, en-



abling the RS neuron to act as high-pass filter. Therefore,

the responses to transient inputs remained relatively un-

changed, whereas the steady ones were suppressed [14]

(compare the probability of having sparse or dense re-

sponses with or without FFI in Figure 4 a).

By suppressing the responses to steady inputs, the FFI also

increased the precision of the response, effectively by re-

ducing multiple spiking, thereby prohibiting later, less pre-

cise spikes to occur (compare red and blue curves in Figure

4 b). Whereas transient inputs produced precise responses,

steady ones failed to do so [15]. (compare the trial-by-trial

correlation for pulse packets with small σ to pulse packets

with large σ, Figure 3 c,d).

Figure 4. Probability of spike count and precision.

Shown are the probabilities of spike counts and trial-by-

trial correlation for the circuit with and without FFI. Details

see text.

Conclusion

We characterized the consequences of correlated and

lagged inhibition, induced by the feed-forward inhibition

scheme (Figure 1,2). In agreement with the literature [14],

we found that the small temporal integration window in-

duced by the FFI changes the integrative properties of the

RS neuron such that only transient synchronous inputs can

produce a response (Figure 3). In addition, by suppress-

ing unprecise responses to steady inputs, the FFI increases

the precision of the response (Figure 4). In conclusion, the

functional property of the correlated and lagged inhibition,

which could be the result of feed-forward inhibition (how-

ever, see Fig. 4 in [16] for a similar effect of recurrent in-

hibition), support the idea that synchrony is important for

cortical processing.
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