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SEMIDEFINITE PROGRAMMING FOR MIN-MAX PROBLEMS

AND GAMES

R. LARAKI AND J.B. LASSERRE

Abstract. We consider two min-max problems: (1) minimizing the supre-
mum of finitely many rational functions over a compact basic semi-algebraic

set and (2) solving a 2-player zero-sum polynomial game in randomized strate-
gies with compact basic semi-algebraic sets of pure strategies. In both problems
the optimal value can be approximated by solving a hierarchy of semidefinite
relaxations, in the spirit of the moment approach developed in Lasserre [24, 26].
This provides a unified approach and a class of algorithms to compute Nash
equilibria and min-max strategies of several static and dynamic games. Each
semidefinite relaxation can be solved in time which is polynomial in its input
size and practice on a sample of experiments reveals that few relaxations are
needed for a good approximation (and sometimes even for finite convergence),
a behavior similar to what was observed in polynomial optimization.

1. Introduction

Initially, this paper was motivated by developing a unified methodology for solv-
ing several types of (neither necessarily finite nor zero-sum) N -player games. But
it is also of self-interest in optimization for minimizing the maximum of finitely
many rational functions (whence min-max) on a compact basic semi-algebraic set.
Briefly, the moment-s.o.s. approach developed in [24, 26] is extended to two large
classes of min-max problems. This allows to obtain a new numerical scheme based
on semidefinite programming to compute approximately and sometimes exactly (1)
Nash equilibria and the min-max of any finite game1 and (2) the value and the
optimal strategies of any polynomial two-player zero-sum game2. In particular, the
approach can be applied to the so-called Loomis games defined in [32] and to some
dynamic games described in Kolhberg [21].

Background. Nash equilibrium [33] is a central concept in non-cooperative game
theory. It is a profile of mixed strategies (a strategy for each player) such that each
player is best-responding to the strategies of the opponents. An important problem
is to compute numerically a Nash equilibrium, an approximate Nash equilibrium
for a given precision or all Nash equilibria in mixed strategies of a finite game.

Key words and phrases. N-player games; Nash equlibria; min-max optimization problems;
semidefinite programming.

We would like to thank Bernhard von Stengel and the referees for their comments. The work
of J.B. Lasserre was supported by the (French) ANR under grant NT05 − 3 − 41612.

1Games with finitely many players where the set of pure actions of each player is finite.
2Games with two players where the set of pure actions of each player is a compact basic

semi-algebraic-set and the payoff function is polynomial.
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It is well known that any two-player zero-sum finite game (in mixed strategies) is
reducible to a linear program (Dantzig [5]) and hence equilibria could be computed
in polynomial time (Khachiyan [20]).

Lemke and Howson [29] provided a famous algorithm that computes a Nash-
equilibrium (in mixed strategies) of any 2-player non-zero-sum finite game. The
algorithm has been extended to N -player finite games by Rosenmüller [39], Wilson
[50] and Govindan and Wilson [12].

An alternative to the Lemke-Howson algorithm for 2-player games is provided in
van den Elzen and Talman [9] and has been extended to n-player games by Herings
and van den Elzen [16]. As shown in the recent survey of Herings and Peeters
[17], all these algorithms (including the Lemke-Howson) are homotopy-based and
converge (only) when the game is non-degenerate.

Recently, Savani and von Stengel [41] proved that the Lemke-Howson algorithm
for 2-player games may be exponential. One may expect that this result extends to
all known homotopy methods. Daskalakis, Goldberg and Papadimitriou [4] proved
that solving numerically 3-player finite games is hard3. The result has been ex-
tended to 2-player finite games by Chen and Deng [6]. Hence, computing a Nash
equilibrium is as hard as finding a Brouwer-fixed point. For a recent and deep sur-
vey on the complexity of Nash equilibria see Papadimitriou [35]. For the complexity
of computing equilibria on game theory in general, see [34] and [40].

A different approach to solve the problem is to view the set of Nash equilibria as
the set of real nonnegative solutions to a system of polynomial equations. Methods
of computational algebra (e.g. using Gröbner bases) can be applied as suggested
and studied in e.g. Datta [8], Lipton [30] and Sturmfels [47]. However, in this
approach, one first computes all complex solutions to sort out all real nonnegative
solutions afterwards. Interestingly, polynomial equations can also be solved via
homotopy-based methods (see e.g. Verschelde [48]).

Another important concept in game theory is the min-max payoff of some player
i, vi. This is the level at which the team of players (other than i) can punish
player i. The concept plays an important role in repeated games and the famous
folk theorem of Aumann and Shapley [2]. To our knowledge, no algorithm in
the literature deals with this problem. However, it has been proved recently that
computing the min-max for 3 or more player games is NP-hard [3].

The algorithms described above concern finite games. In the class of polynomial
games introduced by Dresher, Karlin and Shapley (1950), the set of pure strategies
Si of player i is a product of real intervals and the payoff function of each player
is polynomial. When the game is zero-sum and Si = [0, 1] for each player i =
1, 2, Parrilo [37] showed that finding an optimal solution is equivalent to solving
a single semidefinite program. In the same framework but with several players,
Stein, Parrilo and Ozdaglar [46] propose several algorithms to compute correlated
equilibria, one among them using SDP relaxations. Shah and Parrilo [44] extended
the methodology in [37] to discounted zero-sum stochastic games in which the
transition is controlled by one of the two players. Finally, it is worth noticing recent
algorithms designed to solve some specific classes of infinite games (not necessarily
polynomial). For instance, Gürkan and Pang [13].

3More precisely, it is complete in the PPAD class of all search problems that are guaranteed
to exist by means of a direct graph argument. This class was introduced by Papadimitriou in [36]
and is between P and NP .



SEMIDEFINITE PROGRAMMING FOR MIN-MAX PROBLEMS AND GAMES 3

Contribution. In the first part we consider what we call the MRF problem which
consists of minimizing the supremum of finitely many rational functions over a com-
pact basic semi-algebraic set. In the spirit of the moment approach developed in
Lasserre [24, 26] for polynomial optimization, we define a hierarchy of semidefi-
nite relaxations (in short SDP relaxations). Each SDP relaxation is a semidefinite
program which, up to arbitrary (but fixed) precision, can be solved in polynomial
time and the monotone sequence of optimal values associated with the hierarchy
converges to the optimal value of MRF. Sometimes the convergence is finite and a
sufficient condition permits to detect whether a certain relaxation in the hierarchy
is exact (i.e. provides the optimal value), and to extract optimal solutions. It is
shown that computing the min-max or a Nash equilibrium in mixed strategies for
static finite games or dynamic finite absorbing games reduces to solving an MRF

problem. For zero-sum finite games in mixed strategies the hierarchy of SDP re-
laxations for the associated MRF reduces to the first one of the hierarchy, which
in turn reduces to a linear program. This is in support of the claim that the above
MRF formulation is a natural extension to the non linear case of the well-known
LP-approach [5] as it reduces to the latter for finite zero-sum games. In addition, if
the SDP solver uses primal-dual interior points methods and if the convergence is
finite then the algorithm returns all Nash equilibria (if of course there are finitely
many).

To compute all Nash equilibria, homotopy algorithms are developed in Kostreva
and Kinard [22] and Herings and Peeters [18]. They apply numerical techniques to
obtain all solutions of a system of polynomial equations.

In the second part, we consider general 2-player zero-sum polynomial games
in mixed strategies (whose action sets are basic compact semi-algebraic sets of
R
n and payoff functions are polynomials). We show that the common value of

max-min and min-max problems can be approximated as closely as desired, again
by solving a certain hierarchy of SDP relaxations. Moreover, if a certain rank
condition is satisfied at an optimal solution of some relaxation of the hierarchy,
then this relaxation is exact and one may extract optimal strategies. Interestingly
and not surprisingly, as this hierarchy is derived from a min-max problem over
sets of measures, it is a subtle combination of moment and sums of squares (s.o.s.)
constraints whereas the hierarchy for polynomial optimization is based on either
moments (primal formulation) or s.o.s. (dual formulation) but not both. This is a
multivariate extension of Parrilo’s [37] result for the univariate case where one needs
to solve a single semidefinite program (as opposed to a hierarchy). The approach
may be extended to dynamic absorbing games4 with discounted rewards, and in
the univariate case, one can construct a polynomial time algorithm that combines
a binary search with a semidefinite program.

Hence the first main contribution is to formulate several game problems as a par-
ticular instance of the MRF problem while the second main contribution extends
the moment-s.o.s. approach of [24, 26] in two directions. The first extension ( the
MRF problem) is essentially a non trivial adaptation of Lasserre’s approach [24]
to the problem of minimizing the sup of finitely many rational functions. Notice
that the sup of finitely many rational functions is not a rational function. However
one reduces the initial problem to that of minimizing a single rational function

4In dynamic absorbing games, transitions are controlled by both players, in contrast with
Parrilo and Shah [44] where only one player controls the transitions.
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(but now of n+ 1 variables) on an appropriate set of R
n+1. As such, this can also

be viewed as an extension of Jibetean and De Klerk’s result [19] for minimizing
a single rational function. The second extension generalizes (to the multivariate
case) Parrilo’s approach [37] for the univariate case, and provides a hierarchy of
mixed moment-s.o.s. SDP relaxations. The proof of convergence is delicate as one
has to consider simultaneously moment constraints as well as s.o.s.-representation
of positive polynomials. (In particular, and in contrast to polynomial optimization,
the converging sequence of optimal values associated with the hierarchy of SDP
relaxations is not monotone anymore.)

To conclude, within the game theory community the rather negative compu-
tational complexity results ([3], [4], [6], [40], [41]) have reinforced the idea that
solving a game is computationally hard. On a more positive tone our contribution
provides a unified semidefinite programming approach to many game problems. It
shows that optimal value and optimal strategies can be approximated as closely
as desired (and sometimes obtained exactly) by solving a hierarchy of semidefinite
relaxations, very much in the spirit of the moment approach described in [24] for
solving polynomial minimization problems (a particular instance of the Generalized
Problem of Moments [26]). Moreover, the methodology is consistent with previous
results of [5] and [37] as it reduces to a linear program for finite zero-sum games
and to a single semidefinite program for univariate polynomial zero-sum games.

Finally, even if practice from problems in polynomial optimization seems to
reveal that this approach is efficient, of course the size of the semidefinite relaxations
grows rapidly with the initial problem size. Therefore, in view of the present status
of public SDP solvers available, its application is limited to small and medium size
problems so far.

Quoting Papadimitriou [35]: “The PPAD-completeness of Nash suggests that any
approach to finding Nash equilibria that aspires to be efficient [...] should explicitly
take advantage of computationally beneficial special properties of the game in hand”.
Hence to make our algorithm efficient for larger size problems, one could exploit
possible sparsity and regularities often present in the data (which will be the case
if the game is the normal form of an extensive form game). Indeed specific SDP
relaxations for minimization problems that exploit sparsity efficiently have been
provided in Kojima et al. [49] and their convergence has been proved in [25] under
some condition on the sparsity pattern.

2. Notation and preliminary results

2.1. Notation and definitions. Let R[x] be the ring of real polynomials in the
variables x = (x1, . . . , xn) and let (Xα)α∈N be its canonical basis of monomials.
Denote by Σ[x] ⊂ R[x] the subset (cone) of polynomials that are sums of squares
(s.o.s.), and by R[x]d the space of polynomials of degree at most d. Finally let ‖x‖
denote the Euclidean norm of x ∈ R

n.
With y =: (yα) ⊂ R being a sequence indexed in the canonical monomial basis

(Xα), let Ly : R[x] → R be the linear functional

f (=
∑

α∈Nn

fα x
α) 7−→

∑

α∈Nn

fα yα, f ∈ R[x].

Moment matrix. Given y = (yα) ⊂ R, the moment matrix Md(y) of order d
associated with y, has its rows and columns indexed by (xα) and its (α, β)-entry is
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defined by:

Md(y)(α, β) := Ly(xα+β) = yα+β , |α|, |β| ≤ d.

Localizing matrix. Similarly, given y = (yα) ⊂ R and θ ∈ R[x] (=
∑

γ θγx
γ),

the localizing matrix Md(θ,y) of order d associated with y and θ, has its rows and
columns indexed by (xα) and its (α, β)-entry is defined by:

Md(θ,y)(α, β) := Ly(xα+βθ(x)) =
∑

γ

θγyγ+α+β, |α|, |β| ≤ d.

One says that y = (yα) ⊂ R has a representing measure supported on K if there is
some finite Borel measure µ on K such that

yα =

∫

K

xα dµ(x), ∀α ∈ N
n.

For later use, write

Md(y) =
∑

α∈Nn

yαBα(2.1)

Md(θ,y) =
∑

α∈Nn

yαB
θ
α,(2.2)

for real symmetric matrices (Bα, B
θ
α) of appropriate dimensions. Note that the

above two summations contain only finitely many terms.

Definition 2.1 (Putinar’s property). Let (gj)
m
j=1 ⊂ R[x]. A basic closed semi

algebraic set K := {x ∈ R
n : gj(x) ≥ 0, : j = 1, . . . ,m} satisfies Putinar’s property

if there exists u ∈ R[x] such that {x : u(x) ≥ 0} is compact and

(2.3) u = σ0 +

m∑

j=1

σj gj

for some s.o.s. polynomials (σj)
m
j=0 ⊂ Σ[x]. Equivalently, for some M > 0 the

quadratic polynomial x 7→M − ‖x‖2 has Putinar’s representation (2.3).

Obviously Putinar’s property implies compactness of K. However, notice that
Putinar’s property is not geometric but algebraic as it is related to the representa-
tion of K by the defining polynomials (gj)’s. Putinar’s property holds if e.g. the
level set {x : gj(x) ≥ 0} is compact for some j, or if all gj are affine and K is com-
pact (in which case it is a polytope). In case it is not satisfied and if for some known
M > 0, ‖x‖2 ≤M whenever x ∈ K, then it suffices to add the redundant quadratic
constraint gm+1(x) := M − ‖x‖2 ≥ 0 to the definition of K. The importance of
Putinar’s property stems from the following result:

Theorem 2.2 (Putinar [38]). Let (gj)
m
j=1 ⊂ R[x] and assume that

K := { x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m}

satisfies Putinar’s property.
(a) Let f ∈ R[x] be strictly positive on K. Then f can be written as u in (2.3).
(b) Let y = (yα). Then y has a representing measure on K if and only if

(2.4) Md(y) � 0, Md(gj ,y) � 0, j = 1, . . . ,m; d = 0, 1, . . .

We also have:



6 R. LARAKI AND J.B. LASSERRE

Lemma 2.3. Let K ⊂ R
n be compact and let p, q continuous with q > 0 on K. Let

M(K) be the set of finite Borel measures on K and let P (K) ⊂M(K) be its subset
of probability measures on K. Then

min
µ∈P (K)

∫
K
p dµ∫

K
q dµ

= min
ϕ∈M(K)

{

∫

K

p dϕ :

∫

K

q dϕ = 1}(2.5)

= min
µ∈P (K)

∫

K

p

q
dµ = min

x∈K

p(x)

q(x)
(2.6)

Proof. Let ρ∗ := minx{p(x)/q(x) : x ∈ K}. As q > 0 on K,
∫
K
p dµ∫

K
q dµ

=

∫
K

(p/q) q dµ∫
K
q dµ

≥ ρ∗.

Hence if µ ∈ P (K) then
∫
K

(p/q)dµ ≥ ρ∗
∫
K
dµ = ρ∗. On the other hand, with

x∗ ∈ K a global minimizer of p/q on K, let µ := δx∗ ∈ P (K) be the Dirac measure
at x = x∗. Then

∫
K
pdµ/

∫
K
qdµ = p(x∗)/q(x∗) =

∫
K

(p/q)dµ = ρ∗, and therefore

min
µ∈P (K)

∫
K
pdµ∫

K
qdµ

= min
µ∈P (K)

∫

K

p

q
dµ = min

x∈K
:
p(x)

q(x)
= ρ∗.

Next, for every ϕ ∈ M(K) with
∫
K
qdϕ = 1,

∫
K
p dϕ ≥

∫
K
ρ∗ q dϕ = ρ∗, and so

minϕ∈M(K){
∫
K
p dϕ :

∫
K
q dϕ = 1} ≥ ρ∗. Finally taking ϕ := q(x∗)−1δx∗ yields∫

K
qdϕ = 1 and

∫
K
p dϕ = p(x∗)/q(x∗) = ρ∗.

Another way to see why this is true is throughout the following argument. The

function µ →
R

K
p dµ

R

K
q dµ

is quasi-concave (and also quasi-convex) so that the optimal

value of the minimization problem is achieved on the boundary. �

3. Minimizing the max of finitely many rational functions

Let K ⊂ R
n be the basic semi-algebraic set

(3.1) K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . , p}

for some polynomials (gj) ⊂ R[x], and let fi = pi/qi be rational functions, i =
0, 1, . . . ,m, with pi, qi ∈ R[x]. We assume that:

• K satisfies Putinar’s property (see Definition 2.1) and,
• qi > 0 on K for every i = 0, . . . ,m.

Consider the following problem denoted by MRF:

(3.2) MRF : ρ := min
x

{f0(x) + max
i=1,...,m

fi(x) : x ∈ K },

or, equivalently,

(3.3) MRF : ρ = min
x,z

{f0(x) + z : z ≥ fi(x), i = 1, . . . ,m; x ∈ K }.

With K ⊂ R
n as in (3.1), let K̂ ⊂ R

n+1 be the basic semi algebraic set

(3.4) K̂ := {(x, z) ∈ R
n × R : x ∈ K; z qi(x) − pi(x) ≥ 0, i = 1, . . . ,m}

and consider the new infinite-dimensional optimization problem

(3.5) P : ρ̂ := min
µ

{

∫

K

(p0 + z q0) dµ :

∫

K

q0 dµ = 1, µ ∈M(K̂)}
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where M(K̂) is the set of finite Borel measures on K̂. Problem (3.5) is a particular
instance of the Generalized Problem of Moments for which a general methodology
(based on a hierarchy of semidefinite relaxations) has been described in [26]. To
make the paper self-contained we explain below how to apply this methodology in
the above specific context.

Proposition 3.1. Let K ⊂ R
n be as in (3.1). Then ρ = ρ̂.

Proof. The following upper and lower bounds

z := min
i=1,...,m

min
x∈K

fi(x); z := max
i=1,...,m

max
x∈K

fi(x),

are both well-defined since K is compact and qi > 0 on K for every i = 1, . . . ,m.

Including the additional constraint z ≤ z ≤ z in the definition of K̂ makes it
compact without changing the value of ρ. Next observe that

(3.6) ρ = min
(x,z)

{
p0(x) + zq0(x)

q0(x)
: (x, z) ∈ K̂

}
.

Applying Lemma 2.3 with K̂ in lieu of K, and with (x, z) 7→ p(x, z) := p0(x)+zq0(x)
and (x, z) 7→ q(x, z) := q0(x), yields the desired result. �

Remark 3.2. (a) When m = 0, that is when one wishes to minimize the rational
function f0 on K, then P reads minµ{

∫
K
f0dµ :

∫
K
q0dµ = 1; µ ∈ M(K)}. Using

the dual problem P∗ : max {z : p0(x) − zq0(x) ≥ 0 ∀x ∈ K}, Jibetean and
DeKlerk [19] proposed to approximate the optimal value by solving a hierarchy of
semidefinite relaxations. The case m ≥ 2 is a nontrivial extension of the case m = 0
because one now wishes to minimize on K a function which is not a rational function.
However, by adding an extra variable z, one obtains the moment problem (3.5),

which indeed is the same as minimizing the rational function (x, z) 7→ p0(x)+z q0(x)
q0(x)

on a domain K̂ ⊂ R
n+1. And the dual of P now reads max {ρ : p0(x) + zq0(x) −

ρq0(x) ≥ 0 ∀(x, z) ∈ K̂}. Hence if K̂ is compact and satisfies Putinar’s property
one may use the hierarchy of semidefinite relaxations defined in [19] and adapted
to this specific context; see also [26].

(b) The case m = 1 (i.e., when one wants to minimize the sum of rational
functions f0 + f1 on K) is also interesting. One way is to reduce to the same
denominator q0 × q1 and minimize the rational function (p0q1 + p1q0)/q0q1. But
then the first SDP relaxation of [26, 19] would have to consider polynomials of
degree at least d := max[deg p0 + deg q1, deg p1 + deg q0, deg q0 + deg q1], which
may be very penalizing when q0 and q1 have large degree (and sometimes it may
even be impossible!). Indeed this SDP relaxation has as many as O(nd) variables
and a linear matrix inequality of size O(n⌈d/2⌉). In contrast, by proceeding as
above in introducing the additional variable z, one now minimizes the rational
function (p0 + zq0)/q0 which may be highly preferable since the first relaxation
only considers polynomials of degree bounded by max[deg p0, 1 + deg q0] (but now
in n + 1 variables). For instance, if deg pi = deg qi = v, i = 1, 2, then one has
O(nv+1) variables instead of O(n2v) variables in the former approach.

We next describe how to solve the MRF problem via a hierarchy of semidefinite
relaxations.
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SDP relaxations for solving the MRF problem. As K is compact and qi > 0
on K, for all i, let

(3.7) M1 := max
i=1,...,m

{
max{|pi(x)|, x ∈ K}

min{qi(x), x ∈ K}

}
,

and

(3.8) M2 := min
i=1,...,m

{
min{pi(x), x ∈ K}

max{qi(x), x ∈ K}

}
.

Redefine the set K̂ to be

(3.9) K̂ := {(x, z) ∈ R
n × R : hj(x, z) ≥ 0, j = 1, . . . p+m+ 1}

with

(3.10)





(x, z) 7→ hj(x, z) := gj(x) j = 1, . . . , p
(x, z) 7→ hj(x, z) := z qj(x) − pj(x) j = p+ 1, . . . , p+m
(x, z) 7→ hj(x, z) := (M1 − z)(z −M2) j = m+ p+ 1

.

Lemma 3.3. Let K ⊂ R
n satisfy Putinar’s property. Then the set K̂ ⊂ R

n+1

defined in (3.9) satisfies Putinar’s property.

Proof. Since K satisfies Putinar’s property, equivalently, the quadratic polynomial
x 7→ u(x) := M − ‖x‖2 can be written in the form (2.3), i.e., u(x) = σ0(x) +∑p
j=1 σj(x)gj(x) for some s.o.s. polynomials (σj) ⊂ Σ[x]. Next, consider the

quadratic polynomial

(x, z) 7→ w(x, z) = M − ‖x‖2 + (M1 − z)(z −M2).

Obviously, its level set {x : w(x, z) ≥ 0} ⊂ R
n+1 is compact and moreover, w can

be written in the form

w(x, z) = σ0(x) +

p∑

j=1

σj(x) gj(x) + (M1 − z)(z −M2)

= σ′
0(x, z) +

m+p+1∑

j=1

σ′
j(x, z)hj(x, z)

for appropriate s.o.s. polynomials (σ′
j) ⊂ Σ[x, z]. Therefore K̂ satisfies Putinar’s

property in Definition 2.1, the desired result. �

We are now in position to define the hierarchy of semidefinite relaxations for solv-
ing the MRF problem. Let y = (yα) be a real sequence indexed in the monomial
basis (xβzk) of R[x, z] (with α = (β, k) ∈ N

n × N).
Let h0(x, z) := p0(x)+zq0(x), and let vj := ⌈(deg hj)/2⌉ for every j = 0, . . . ,m+

p + 1. For r ≥ r0 := max
j=0,...,p+m+1

vj , introduce the hierarchy of semidefinite pro-

grams:

(3.11) Qr :






min
y

Ly(h0)

s.t. Mr(y) � 0
Mr−vj

(hj ,y) � 0, j = 1, . . . ,m+ p+ 1
Ly(q0) = 1,

with optimal value denoted inf Qr (and minQr if the infimum is attained).
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Theorem 3.4. Let K ⊂ R
n (compact) be as in (3.1). Let Qr be the semidefinite

program (3.11) with (hj) ⊂ R[x, z] and M1,M2 defined in (3.10) and (3.7)-(3.8)
respectively. Then:

(a) inf Qr ↑ ρ as r → ∞.
(b) Let yr be an optimal solution of the SDP relaxation Qr in (3.11). If

(3.12) rankMr(y
r) = rankMr−r0(y

r) = t

then minQr = ρ and one may extract t points (x∗(k))tk=1 ⊂ K, all global minimizers
of the MRF problem.

(c) Let yr be a nearly optimal solution of the SDP relaxation (3.11) (with say
inf Qr ≤ Lyr ≤ inf Qr + 1/r. If (3.6) has a unique global minimizer x∗ ∈ K then
the vector of first-order moments (Lyr(x1), . . . , Lyr(xn)) converges to x∗ as r → ∞.

Proof. As already mentioned in Remark 3.2, convergence of the dual of the semidef-
inite relaxations (3.11) was first proved in Jibetean and de Klerk [19] for minimizing
a rational function on a basic compact semi-algebraic set (in our context, for mini-

mizing the rational function (x, z) 7→ (p0(x)+ zq0(x))/q0(x) on the set K̂ ⊂ R
n+1).

See also [26, §4.1] and [28, Theor. 3.2]. In particular to get (b) see [28, Theor. 3.4].
The proof of (c) is easily adapted from Schweighofer [43]. �

Remark 3.5. Hence, by Theorem 3.4(b), when finite convergence occurs one may
extract t := rankMr(y) global minimizers. On the other hand, a generic MRF

problem has a unique global minimizer x∗ ∈ K and in this case, even when the
convergence is only asymptotic, one may still obtain an approximation of x∗ (as
closely as desired) from the vector of first-order moments (Lyr(x1), . . . , Lyr(xn)).
For instance, one way to have a unique global minimizer is to ǫ-perturb the objec-
tive function of the MRF problem by some randomly generated polynomial of a
sufficiently large degree, or to slightly perturb the coefficients of the data (hi, gj)
of the MRF problem.

To solve (3.11) one may use e.g. the Matlab based public software GloptiPoly
3 [15] dedicated to solve the generalized problem of moments described in [26]. It
is an extension of GloptiPoly [14] previously dedicated to solve polynomial opti-
mization problems. A procedure for extracting optimal solutions is implemented
in Gloptipoly when the rank condition (3.12) is satisfied5. For more details the
interested reader is referred to [15] and www.laas.fr/∼henrion/software/.

Remark 3.6. If gj is affine for every j = 1, . . . , p and if pj is affine and qj ≡ 1 for
every j = 0, . . . ,m, then hj is affine for every j = 0, . . . ,m. One may also replace
the single quadratic constraint hm+p+1(x, z) = (M1 − z)(z − M2) ≥ 0 with the
two equivalent linear constraints hm+p+1(x, z) = M1 − z ≥ 0 and hm+p+2(x, z) =
z −M2 ≥ 0. In this case, it suffices to solve the single semidefinite relaxation Q1,

5In fact GloptiPoly 3 extracts all solutions because most SDP solvers that one may call in
GloptiPoly 3 (e.g. SeDuMi) use primal-dual interior points methods with the self-dual embedding

technique which find an optimal solution in the relative interior of the set of optimal solutions;
see [27, §4.4.1, p. 663]. In the present context of (3.11) this means that at an optimal solution
y∗, the moment matrix Mr(y∗) has maximum rank and its rank corresponds to the number of
solutions.



10 R. LARAKI AND J.B. LASSERRE

which is in fact a linear program. Indeed, for r = 1, y = (y0, (x, z), Y ) and

M1(y) =




y0 | (x z)
− −(
x
z

)
| Y


 .

Then (3.11) reads

Q1 :






min
y

h0(x)

s.t. M1(y) � 0
hj(x, z) ≥ 0, j = 1, . . . ,m+ p+ 2
y0 = 1.

.

As vj = 1 for every j, M1−1(hj ,y) � 0 ⇔ M0(hj ,y) = Ly(hj) = hj(x, z) ≥ 0, a
linear constraint. Hence the constraint M1(y) � 0 can be discarded as given any
(x, z) one may always find Y such that M1(y) � 0. Therefore, (3.11) is a linear
program. This is fortunate for finite zero-sum games applications since computing
the value is equivalent to minimizing a maximum of finitely many linear functions
(and it is already known that it can be solved by Linear Programming).

4. Applications to finite games

In this section we show that several solution concepts of static and dynamic finite
games reduce to solving the MRF problem (3.2). Those are just examples and one
expects that such a reduction also holds in a much larger class of games (when they
are described by finitely many scalars).

4.1. Standard static games. A finite game is a tuple (N,
{
Si

}
i=1,...,N

,
{
gi

}
i=1,...,N

)

where N ∈ N is the set of players, Si is the finite set of pure strategies of player i
and gi : S → R is the payoff function of player i, where S := S1 × ...× SN . The set

∆i =

{
(
pi(si)

)
si∈Si : pi(si) ≥ 0,

∑

si∈Si

pi(si) = 1

}

of probability distributions over Si is called the set of mixed strategies of player i.
Notice that ∆i is a compact basic semi-algebraic set. If each player j chooses the
mixed strategy pj(·), the vector denoted p =

(
p1, ..., pN

)
∈ ∆ : = ∆1 × ...× ∆N is

called a profile of mixed strategies and the expected payoff of a player i is

gi(p) =
∑

s=(s1,...,sN)∈S

p1(s1) × ...× pi(si) × ...× pN (sN )gi(s).

This is nothing but the multi-linear extension of gi. For a player i, and a
profile p, let p−i be the profile of the other players except i: that is p−i =
(p1, ..., pi−1, pi+1, ..., pN). Let S−i = S1 × ...× Si−1 × Si+1 × ...× SN and define

gi(si, p−i) =
∑

s−i∈S−i

p1(s1) × ...× pi−1(si−1) × pi+1(si+1) × ...× pN(sN )gi(s),

where s−i := (s1, ..., si−1, si+1, ..., sN ) ∈ S−i.
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A profile p0 is a Nash [33] equilibrium if and only for all i = 1, ..., N and all
si ∈ Si, gi(p0) ≥ gi(si, p−i0 ) or equivalently if:

(4.1) p0 ∈ arg min
p∈∆

{
max

i=1,...,N
max
si∈Si

{
gi(si, p−i0 ) − gi(p0)

}}
.

Since each finite game admits at least one Nash equilibrium [33], the optimal
value of the min-max problem (4.1) is zero. Notice that (4.1) is a particular instance
of the MRF problem (3.2) (with a set K = ∆ that satisfies Putinar’s property
and with qi = 1 for every i = 0, . . . ,m), and so Theorem 3.4 applies. Finally,
observe that the number m of polynomials in the inner double ”max” of (4.1) (or,
equivalently, m in (3.2)) is just m =

∑n
i=1 |S

i|, i.e., m is just the total number of
all possible actions.

Hence by solving the hierarchy of SDP relaxations (3.11), one can approximate
the value of the min-max problem as closely as desired. In addition, if (3.12) is
satisfied at some relaxation Qr, then one may extract all the Nash equilibria of the
game.

If there is a unique equilibrium p∗ then by Theorem 3.4(c), one may obtain a so-
lution arbitrary close to p∗ and so obtain an ǫ-equilibrium in finite time. Since game
problems are not generic MRF problems, they have potentially several equilibria
which are all global minimizers of the associated MRF problem. Also, perturbing
the data of a finite game still leads to a non generic associated MRF problem
with possibly multiple solutions. However, as in Remark 3.5, one could perturb the
MRF problem associated with the original game problem to obtain (generically)
an ǫ-perturbed MRF problem with a unique optimal solution. Notice that the
ǫ-perturbed MRF is not necessarily coming from a finite game. Doing so, by The-
orem 3.4(c), one obtains a sequence that converges asymptotically (and sometimes
in finitely many steps) to an ǫ-equilibrium of the game problem. Recently, Lipton,
Markakis and Mehta [31] provided an algorithm that computes an ǫ-equilibrium

in less than exponential time but still not polynomial (namely n
logn

ǫ2 where n is
the total number of strategies). This promising result yields Papadimitriou [35] to
argue that “finding a mixed Nash equilibrium is PPAD-complete raises some inter-
esting questions regarding the usefulness of Nash equilibrium, and helps focus our
interest in alternative notions (most interesting among them the approximate Nash
equilibrium)”.

Example 4.1. Consider the simple illustrative example of a 2 × 2 game with data

s2
1 s1

2

s1
1 (a, c) (0, 0)

s1
2 (0, 0) (b, d)

for some scalars (a, b, c, d). Denote x1 ∈ [0, 1] the probability for player 1 of playing s1
1

and x2 ∈ [0, 1] the probability for player 2 of playing s2
1. Then one must solve

min
x1,x2∈[0,1]

max

8

>

>

<

>

>

:

ax1 − ax1x2 − b(1 − x1)(1 − x2)
b(1 − x2) − ax1x2 − b(1 − x1)(1 − x2)
cx1 − cx1x2 − d(1 − x1)(1 − x2)
d(1 − x1) − cx1x2 − d(1 − x1)(1 − x2)

.
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We have solved the hierarchy of semidefinite programs (3.11) with GloptiPoly 3 [15]. For
instance, the moment matrix M1(y) of the first SDP relaxation Q1 reads

M1(y) =

2

6

6

4

y0 y100 y010 y001

y100 y200 y010 y001

y010 y110 y020 y011

y001 y101 y011 y002

3

7

7

5

,

and Q1 reads

Q1 :

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

min
y

y001

s.t. M1(y) � 0
y001 − ay100 + ay110 + b(y0 − y100 − y010 + y110) ≥ 0
y001 − by0 + by010 + ay110 + b(y0 − y100 − y010 + y110) ≥ 0
y001 − cy100 + cy110 + d(y0 − y100 − y010 + y110) ≥ 0
y00 − dy0 + dy100 + cy110 + d(y0 − y100 − y010 + y110) ≥ 0
y100 − y200 ≥ 0; y010 − y020 ≥ 0; 9 − y002 ≥ 0
y0 = 1

.

With (a, b, c, d) = (0.05, 0.82, 0.56, 0.76), solving Q3 yields the optimal value 3.93.10−11

and the three optimal solutions (0, 0), (1, 1) and (0.57575, 0.94253). With randomly gen-

erated a, b, c, d ∈ [0, 1] we also obtained a very good approximation of the global optimum

0 and 3 optimal solutions in most cases with r = 3 (i.e. with moments or order 6 only)

and sometimes r = 4.
We have also solved 2-player non-zero-sum p×q games with randomly generated reward

matrices A,B ∈ R
p×q and p, q ≤ 5. We could solve (5, 2) and (4, q) (with q ≤ 3) games

exactly with the 4th (sometimes 3rd) SDP relaxation, i.e. inf Q4 = O(10−10) ≈ 0 and
one extracts an optimal solution 6. However, the size is relatively large and one is close
to the limit of present public SDP solvers like SeDuMi. Indeed, for a 2-player (5, 2) or
(4, 3) game, Q3 has 923 variables and M3(y) ∈ R

84×84, whereas Q4 has 3002 variables
and M4(y) ∈ R

210×210 . For a (4, 4) game Q3 has 1715 variables and M3(y) ∈ R
120×120

and Q3 is still solvable, whereas Q4 has 6434 variables and M4(y) ∈ R
330×330 .

Finally we have also solved randomly generated instances of 3-player non-zero sum
games with (2, 2, 2) actions and (3, 3, 2) actions. In all (2, 2, 2) cases the 4th relaxation Q4

provided the optimal value and the rank-test (3.12) was passed (hence allowing to extract
global minimizers). For the (3, 3, 2) games, the third relaxation Q3 was enough in 30% of
cases and the fourth relaxation Q4 in 80% of cases.

Another important concept in game theory is the min-max payoff vi which plays
an important role in repeated games (Aumann and Shapley [2]):

vi = min
p−i∈∆−i

max
si∈Si

gi(si, p−i)

where ∆−i = ∆1× ...×∆i−1×∆i+1× ...×∆N . This is again a particular instance of
the MRF problem (3.2). Hence, it seems more difficult to compute the approximate
min-max strategies compared to approximate Nash equilibrium strategies because
we do not know in advance the value of vi while we know that the min-max value
associated to the Nash problem is always zero. This is not surprising: in theory,
computing a Nash-equilibrim is PPAD-complete [35] while computing the min-max

6In general, it is not known which relaxation suffices to solve the min-max problem. Also, as

already mentioned, GloptiPoly 3 extracts all solutions because most SDP solvers that one may
call in GloptiPoly 3 (e.g. SeDuMi) use primal-dual interior points methods with the self-dual
embedding technique which find an optimal solution in the relative interior of the set of optimal
solutions. This is explained in [27, §4.4.1, p. 663]
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is NP-hard [3]. In the case of two players, the function gi(si, p−i) is linear in p−i.
By remark 3.6 it suffices to solve the first relaxation Q1, a linear program.

Remark 4.2. The Nash equilibrium problem may be reduced to solving a system
of polynomial equations (see e.g. [8]). In the same spirit, an alternative for the
Nash-equilibrium problem (but not for the MRF problem in general) is to apply
the moment approach described in Lasserre et al. [27] for finding real roots of poly-
nomial equations. If there are finitely many Nash equilibria then its convergence
is finite and in contrast with the algebraic methods [8, 30, 47] mentioned above, it
provides all real solutions without computing all complex roots.

4.2. Loomis games. Loomis [32] extended the min-max theorem to zero-sum
games with a rational fraction. His model may be extended to N -player games
as follows. Our extension is justified by the next section.

Associated with each player i ∈ N are two functions gi : S → R and f i : S → R

where f i > 0 and S := S1 × ...×SN . With same notation as in the last section, let
their multi-linear extension to ∆ still be denoted by gi and f i. That is, for p ∈ ∆,
let:

gi(p) =
∑

s=(s1,...,sN)∈S

p1(s1) × ...× pi(si) × ...× pN (sN )gi(s).

and similarly for f i.

Definition 4.3. A Loomis game is defined as follows. The strategy set of player i

is ∆i and if the profile p ∈ ∆ is chosen, his payoff function is hi(p) = gi(p)
fi(p) .

One can show the following new lemma7.

Lemma 4.4. A Loomis game admits a Nash equilibrium8.

Proof. Note that each payoff function is quasi-concave in pi (and also quasi-convex
so that it is a quasi-linear function). Actually, if hi(pi1, p

−i) ≥ α and hi(pi2, p
−i) ≥ α

then for any δ ∈ [0, 1],

gi(δpi1 + (1 − δ)pi2, p
−i) ≥ f i(δpi1 + (1 − δ)pi2, p

−i)α,

so that hi(δpi1 + (1− δ)pi2, p
−i) ≥ α. One can now apply Glicksberg’s [11] theorem

because the strategy sets are compact, convex, and the payoff functions are quasi-
concave and continuous. �

Corollary 4.5. A profile p0 ∈ ∆ is a Nash equilibrium of a Loomis game if and
only if

(4.2) p0 ∈ argmin
p∈∆

{
max

i=1,...,N
max
si∈Si

{
hi(si, p−i) − hi(p)

}}
.

7As far as we know, non-zero sum Loomis games are not considered in the literature. This
model could be of interest in situations where there are populations with many players. A mixed
strategy for a population describes the proportion of players in the population that uses some
pure action. gi(p) is the non-normalized payoff of population i and f i(p) may be interpreted as

the value of money for population i so that hi(p) = gi(p)

fi(p)
is the normalized payoff of population

i.
8Clearly, the lemma and its proof still hold in infinite games where the sets Si are convex-

compact-metric and the functions f i and gi are continuous. The summation in the multi-linear
extension should be replaced by an integral.
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Proof. Clearly, p0 ∈ ∆ is an equilibrium of the Loomis game if and only if

p0 ∈ arg min
p∈∆

{
max

i=1,...,N
max
epi∈∆i

{
g(p̃i, p−i)

f i(p̃i, p−i)
−
gi(p)

f i(p)

}}
.

Using the quasi-linearity of the payoffs or Lemma 2.3, one deduces that:

max
epi∈∆i

gi(p̃i, p−i)

f i(p̃i, p−i)
= max

si∈Si

gi(si, p−i)

f i(si, p−i)

which is the desired result. �

Again, the min-max optimization problem (4.2) is a particular instance of the
MRF problem (3.2) and so can be solved via the hierarchy of semidefinite relax-
ations (3.11). Notice that in (4.2) one has to minimize the supremum of rational
functions (in contrast to the supremum of polynomials in (4.1)).

4.3. Finite absorbing games. This subclass of stochastic games has been intro-
duced by Kohlberg [21]. The following formulas are established in [23]. It shows
that absorbing games could be reduced to Loomis games. An N -player finite ab-
sorbing game is defined as follows.

As above, there are N finite sets (S1, ..., SN). There are two functions gi : S → R

and f i : S → R associated to each player i ∈ {1, ..., N} and a probability transition
function q : S → [0, 1].

The game is played in discrete time as follows. At each stage t = 1, 2, ..., if the
game has not been absorbed before that day, each player i chooses (simultaneously)
at random an action sit ∈ Si. If the profile st = (s1t , ..., s

N
t ) is chosen, then:

(i) the payoff of player i is gi(st) at stage t.
(ii) with probability 1−q(st) the game is terminated (absorbed) and each player

i gets at every stage s > t the payoff f i(st), and
(iii) with probability q(st) the game continues (the situation is repeated at stage

t+ 1).
Consider the λ-discounted game G (λ) (0 < λ < 1). If the payoff of player i at

stage t is ri(t) then its λ-discounted payoff in the game is
∑∞

t=1 λ(1 − λ)t−1ri(t).
Hence, a player is optimizing his expected λ-discounted payoff.

Let g̃i = gi × q and f̃ i = f i× (1− q) and extend g̃i, f̃ i and q multilinearly to ∆

(as above in Nash and Loomis games).
A profile p ∈ ∆ is a stationary equilibrium of the absorbing game if (1) each

player i plays iid at each stage t the mixed strategy pi until the game is absorbed
and (2) this is optimal for him in the discounted absorbing game if the other players
do not deviate.

Lemma 4.6. A profile p0 ∈ ∆ is a stationary equilibrium of the absorbing game
if and only if it is a Nash equilibrium of the Loomis game with payoff functions

p→ λegi(p)+(1−λ) efi(p)
λq(p)+(1−q(p)) , i = 1, ..., N .

Proof. See Laraki [23]. �

As shown in [23], the min-max of a discounted absorbing game satisfies:

vi = min
p−i∈∆−i

max
si∈Si

λg̃i(si, p−i) + (1 − λ)f̃ i(si, p−i)

λq(si, p−i) + (1 − q(si, p−i))
.
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Hence solving a finite absorbing game is equivalent to solving a Loomis game (hence
a particular instance of the MRF problem (3.2)) which again can be solved via
the hierarchy of semidefinite relaxations (3.11). Again one has to minimize the
supremum of rational functions.

5. Zero-sum polynomial games

Let K1 ⊂ R
n1 and K2 ⊂ R

n2 be two basic and closed semi-algebraic sets (not
necessarily with same dimension):

K1 := {x ∈ R
n1 : gj(x) ≥ 0, j = 1, . . . ,m1}(5.1)

K2 := {x ∈ R
n2 : hk(x) ≥ 0, k = 1, . . . ,m2}(5.2)

for some polynomials (gj) ⊂ R[x1, . . . xn1
] and (hk) ⊂ R[x1, . . . xn2

].
Let P (Ki) be the set of Borel probability measures on Ki, i = 1, 2, and consider

the following min-max problem:

(5.3) P : J∗ = min
µ∈P (K1)

max
ν∈P (K2)

∫

K2

∫

K1

p(x, z) dµ(x) dν(z)

for some polynomial p ∈ R[x, z].
If K1 and K2 are compact, it is well-known that

J∗ = min
µ∈P (K1)

max
ν∈P (K2)

∫

K2

∫

K1

p(x, z) dµ(x) dν(z)(5.4)

= max
ν∈P (K2)

min
µ∈P (K1)

∫

K1

∫

K2

p(x, z) dν(z) dµ(x),

that is, there exist µ∗ ∈ P (K1) and ν∗ ∈ P (K2) such that:

(5.5) J∗ =

∫

K2

∫

K1

p(x, z) dµ∗(x) dν∗(z).

The probability measures µ∗ and ν∗ are the optimal strategies of players 1 and 2
respectively.

For the univariate case n = 1, Parrilo [37] showed that J∗ is the optimal value
of a single semidefinite program, namely the semidefinite program (7) in [37, p.
2858], and mentioned how to extract optimal strategies since there exist optimal
strategies (µ∗, ν∗) with finite support. In [37] the author mentions that extension
to the multivariate case is possible. We provide below such an extension which, in
view of the proof of its validity given below, is non trivial. The price to pay for this
extension is to replace a single semidefinite program with a hierarchy of semidefinite
programs of increasing size. But contrary to the polynomial optimization case in
e.g. [24], proving convergence of this hierarchy is more delicate because one has
(simultaneously in the same SDP) moment matrices of increasing size and an s.o.s.-
representation of some polynomial in Putinar’s form (2.3) with increasing degree
bounds for the s.o.s. weights. In particular, the convergence is not monotone
anymore. When we do n = 1 in this extension, one retrieves the original result of
Parrilo [37], i.e., the first semidefinite program in the hierarchy (5.9) reduces to (7)
in [37, p. 2858] and provides us with the exact desired value.
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Semidefinite relaxations for solving P. With p ∈ R[x, z] as in (3.2), write

p(x, z) =
∑

α∈Nn2

pα(x) zα with(5.6)

pα(x) =
∑

β∈Nn1

pαβ x
β , |α| ≤ dz

where dz is the total degree of p when seen as polynomial in R[z]. So, let pαβ := 0
for every β ∈ N

n1 whenever |α| > dz.

Let rj := ⌈deg gj/2⌉, for every j = 1, . . . ,m1, and consider the following semi-
definite program:

(5.7)






min
y,λ,Zk

λ

s.t. λ Iα=0 −
∑

β∈Nn1

pαβ yβ = 〈Z0, Bα〉 +

m2∑

k=1

〈Zk, Bhk
α 〉, |α| ≤ 2d

Md(y) � 0
Md−rj

(gj,y) � 0, j = 1, . . . ,m1

y0 = 1

Zk � 0, k = 0, 1, . . .m2,

where y is a finite sequence indexed in the canonical basis (xα) of R[x]2d. Denote
by λ∗d its optimal value. In fact, with h0 ≡ 1 and py ∈ R[z] defined by:

(5.8) z 7→ py(z) :=
∑

α∈Nn2




∑

β∈Nn1

pαβ yβ


 zα,

the semidefinite program (5.7) has the equivalent formulation:

(5.9)





min
y,λ,σk

λ

s.t. λ − py(·) =

m2∑

k=0

σk hk

Md(y) � 0
Md−rj

(gj ,y) � 0, j = 1, . . . ,m1

y0 = 1

σk ∈ Σ[z]; : deg σk + deg hk ≤ 2d, k = 0, 1, . . . ,m2,

where the first constraint should be understood as an equality of polynomials.
Observe that for any admissible solution (y, λ) and py as in (5.8),

(5.10) λ ≥ max
z

{py(z) : z ∈ K2}.
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Similarly, with p as in (3.2), write

p(x, z) =
∑

α∈Nn1

p̂α(z)xα with(5.11)

p̂α(z) =
∑

β∈Nn2

p̂αβ z
β, |α| ≤ dx

where dx is the total degree of p when seen as polynomial in R[x]. So, let p̂αβ := 0
for every β ∈ N

n2 whenever |α| > dx.

Let lk := ⌈deg hk/2⌉, for every k = 1, . . . ,m2, and with

(5.12) x 7→ p̂y(x) :=
∑

α∈Nn1




∑

β∈Nn2

p̂αβ yβ


 xα,

consider the following semidefinite program (with g0 ≡ 1):

(5.13)





max
y,γ,σj

γ

s.t. p̂y(·) − γ =

m1∑

j=0

σj gj

Md(y) � 0
Md−lk(hk,y) � 0, k = 1, . . . ,m2

y0 = 1

σj ∈ Σ[x]; deg σj + deg gj ≤ 2d, j = 0, 1, . . . ,m1.

where y is a finite sequence indexed in the canonical basis (zα) of R[z]2d. Denote
by γ∗d its optimal value. In fact, (5.13) is the dual of the semidefinite program (5.7).

Observe that for any admissible solution (y, γ) and p̂y as in (5.12),

(5.14) γ ≤ min
x

{p̂y(x) : x ∈ K1}.

Theorem 5.1. Let P be the min-max problem defined in (3.2) and assume that
both K1 and K2 are compact and satisfy Putinar’s property (see Definition 2.1).
Let λ∗d and γ∗d be the optimal values of the semidefinite program (5.9) and (5.13)
respectively. Then λ∗d → J∗ and γ∗d → J∗ as d→ ∞.

We also have a test to detect whether finite convergence has occurred.

Theorem 5.2. Let P be the min-max problem defined in (3.2).
Let λ∗d be the optimal value of the semidefinite program (5.9), and suppose that

with r := maxj=1,...,m1
rj, the condition

(5.15) rankMd−r(y) = rankMd(y) (=: s1)

holds at an optimal solution (y, λ, σk) of (5.9).
Let γ∗t be the optimal value of the semidefinite program (5.13), and suppose that

with r := maxk=1,...,m2
lk, the condition

(5.16) rankMt−r(y
′) = rankMt(y

′) (=: s2)

holds at an optimal solution (y′, γ, σj) of (5.13).
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If λ∗d = γ∗t then λ∗g = γ∗t = J∗ and an optimal strategy for player 1 (resp. player
2) is a probability measure µ∗ (resp. ν∗) supported on s1 points of K1 (resp. s2
points of K2).

For a proof the reader is referred to §8.

Remark 5.3. In the univariate case, when K1,K2 are (not necessarily bounded)
intervals of the real line, the optimal value J∗ = λ∗d (resp. J∗ = γ∗d) is obtained by
solving the single semidefinite program (5.9) (resp. (5.13)) with d = d0, which is
equivalent to (7) in Parrilo [37, p. 2858].

6. Zero-sum polynomial absorbing games

As in the previous section, consider two compact basic semi-algebraic sets K1 ⊂
R
n1 , K2 ⊂ R

n2 and polynomials g, f and q : K1 × K2 → [0, 1]. Recall that
P (K1) (resp. P (K2)) denotes the set of probability measures on K1 (resp. K2).
The absorbing game is played in discrete time as follows. At stage t = 1, 2, ...
player 1 chooses at random xt ∈ K1 (using some mixed action µt ∈ P (K1)) and,
simultaneously, Player 2 chooses at random yt ∈ K2 (using some mixed action
νt ∈ P (K2)).

(i) player 1 receives g (xt, yt) at stage t;
(ii) with probability 1 − q (xt, yt) the game is absorbed and player 1 receives

f (xt, yt) in all stages s > t;
and
(iii) with probability q (xt, yt) the game continues (the situation is repeated at

step t+ 1).
If the stream of payoffs is r(t), t = 1, 2, ..., the λ-discounted-payoff of the game

is
∑∞

t=1 λ(1 − λ)t−1r(t).

Let g̃ = g × q and f̃ = f × (1 − q) and extend g̃, f̃ and q multilinearly to
P (K1) × P (K2).

Player 1 maximizes the expected discounted-payoff and player 2 minimizes that
payoff. Using an extension of the Shapley operator [45] one can deduce that the
game has a value v (λ) that uniquely satisfies,

v (λ) = max
µ∈P (K1)

min
ν∈P (K2)

∫

Θ

(
λg̃ + (1 − λ)v(λ)p + (1 − λ)f̃

)
dµ⊗ ν

= min
ν∈P (K2)

max
µ∈P (K1)

∫

Θ

(
λg̃ + (1 − λ)v(λ)p + (1 − λ)f̃

)
dµ⊗ ν

with Θ := K1 × K2. As in the finite case, it may be shown [23] that the problem
may be reduced to a zero-sum Loomis game, that is:

(6.1) v (λ) = max
µ∈P (K1)

min
ν∈P (K2)

∫
Θ P dµ⊗ ν∫
ΘQdµ⊗ ν

= min
ν∈P (K2)

max
µ∈P (K1)

∫
Θ P dµ⊗ ν∫
ΘQdµ⊗ ν

where

(x, y) 7→ P (x, y) := λg̃(x, y) + (1 − λ)f̃(x, y)

(x, y) 7→ Q(x, y) := λq(x, y) + 1 − q(x, y)
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Or equivalently, as it was originally presented by Loomis [32], v (λ) is the unique
real t such that

0 = max
µ∈P (K1)

min
ν∈P (K2)

[∫

Θ

(P (x, y) − tQ(x, y)) dµ(x)dν(y)

]

= min
ν∈P (K2)

min
ν∈P (K1)

[∫

Θ

(P (x, y) − tQ(x, y)) dµ(x)dν(y)

]
.

Actually, the function s : R → R defined by:

t→ s(t) := max
µ∈P (K1)

min
ν∈P (K2)

[∫

Θ

(P (x, y) − tQ(x, y)) dµ(x)dν(y)

]

is continuous, strictly decreasing from +∞ to −∞ as t increases in (−∞,+∞).
In the univariate case, if K1 and K2 are both real intervals (not necessarily

compact), then evaluating s(t) for some fixed t can be done by solving a single
semidefinite program; see Remark 5.3. Therefore, in this case, one may approximate
the optimal value s∗ (= s(t∗)) of the game by binary search on t and so, the problem
can be solved in a polynomial time. This extends Shah and Parrilo [44].

7. Conclusion

We have proposed a common methodology to approximate the optimal value
of games in two different contexts. The first algorithm, intended to compute (or
approximate) Nash equilibria in mixed strategies for static finite games or dynamic
absorbing games, is based on a hierarchy of semidefinite programs to approximate
the supremum of finitely many rational functions on a compact basic semi-algebraic
set. Actually this latter formulation is also of self-interest in optimization. The
second algorithm, intended to approximate the optimal value of polynomial games
whose action sets are compact basic semi-algebraic sets, is also based on a hierarchy
of semidefinite programs. Not surprisingly, as the latter algorithm comes from a
min-max problem over sets of measures, it is a subtle combination of moment and
s.o.s. constraints whereas in polynomial optimization it is entirely formulated either
with moments (primal formulation) or with s.o.s. (dual formulation). Hence the
above methodology illustrates the power of the combined moment-s.o.s. approach.
A natural open question arises: how to adapt the second algorithm to compute
Nash equilibria of a non-zero-sum polynomial game?

8. Appendix

8.1. Proof of Theorem 5.1. We first need the following partial result.

Lemma 8.1. Let (yd)d be a sequence of admissible solutions of the semidefinite
program (5.7). Then there exists ŷ ∈ R

∞ and a subsequence (di) such that ydi → ŷ

pointwise as i→ ∞, that is,

(8.1) lim
i→∞

ydi
α = ŷα, ∀α ∈ N

n.

The proof is omitted because it is exactly along the same lines as the proof of
Theorem 3.4 as among the constraints of the feasible set, one has

yd0 = 1, Md(y
d) � 0, Md(gj , y

d) � 0, j = 1, . . . ,m1.
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Proof of Theorem 5.1. Let µ∗ ∈ P (K1), ν
∗ ∈ P (K2) be optimal strategies of player

1 and player 2 respectively, and let y∗ = (y∗α) be the sequence of moments of µ∗

(well-defined because K1 is compact). Then

J∗ = max
ν∈P (K2)

∫

K2

(∫

K1

p(x, z)dµ∗(x)

)
dν(z)

= max
ν∈P (K2)

∫

K2

∑

α∈Nn2




∑

β∈Nn1

pαβ

∫

K1

xβ dµ∗(x)


 zαdν(z)

= max
ν∈P (K2)

∫

K2

∑

α∈Nn2




∑

β∈Nn1

pαβy
∗
αβ


 zαdν(z)

= max
ν∈P (K2)

∫

K2

py∗(z) dν(z)

= max
z

{py∗(z) : z ∈ K2}

= min
λ,σk

{λ : λ− py∗(·) = σ0 +

m2∑

k=1

σk hk; (σj)
m2

j=0 ⊂ Σ[z]}

with z 7→ py∗(z) defined in (5.8). Therefore, with ǫ > 0 fixed arbitrary,

(8.2) J∗ − py∗(·) + ǫ = σǫ0 +

m2∑

k=1

σǫk hk,

for some polynomials (σǫk) ⊂ Σ[z] of degree at most 2d1
ǫ . So (y∗, J∗ + ǫ, σǫk) is an

admissible solution for the semidefinite program (5.9) whenever d ≥ maxj rj and
d ≥ d1

ǫ + maxk lk, because

(8.3) 2d ≥ deg σǫ0 ; 2d ≥ deg σǫk + deg hk, k = 1, . . . ,m2.

Therefore,

(8.4) λ∗d ≤ J∗ + ǫ, ∀d ≥ d̃1
ǫ := max

[
max
j
rj , d

1
ǫ + max

k
lk

]
.

Now, let (yd, λd) be an admissible solution of the semidefinite program (5.9)
with value λd ≤ λ∗d + 1/d. By Lemma 8.1, there exists ŷ ∈ R

∞ and a subsequence
(di) such that ydi → ŷ pointwise, that is, (8.1) holds. But then, invoking (8.1)
yields

Md(ŷ) � 0 and Md(gj , ŷ) � 0, ∀j = 1, . . . ,m1; d = 0, 1, . . .

By Theorem 2.2, there exists µ̂ ∈ P (K1) such that

ŷα =

∫

K1

xα dµ̂, ∀α ∈ N
n.

On the other hand,

J∗ ≤ max
ν∈P (K2)

∫

K2

(∫

K1

p(x, z)dµ̂(x)

)
dν(z)

= max
z

{pŷ(z) : z ∈ K2}

= min{λ : λ− pŷ(·) = σ0 +

m2∑

k=1

σk hk; (σj)
m2

j=0 ⊂ Σ[z]}
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with

z 7→ pŷ(z) :=
∑

α∈Nn




∑

β∈Nn

pαβ ŷβ


 zα.

Next, let ρ := maxz∈K2
pŷ(z) (hence ρ ≥ J∗), and consider the polynomial

z 7→ pyd(z) :=
∑

α∈Nn




∑

β∈Nn

pαβ y
d
β



 zα.

It has same degree as pŷ, and by (8.1), ‖pŷ(·) − pydi (·)‖ → 0 as i→ ∞.
Hence, maxz∈K2

pydi (z) → ρ as i→ ∞, and by construction of the semidefinite
program (5.9), λ∗di

≥ maxz∈K2
pydi (z).

Therefore, λ∗di
≥ ρ−ǫ for all sufficiently large i (say di ≥ d2

ǫ ) and so, λ∗di
≥ J∗−ǫ

for all di ≥ d2
ǫ . This combined with λ∗di

≤ J∗ + ǫ for all di ≥ d̃1
ǫ , yields the desired

result that limi→∞ λ∗di
= J∗ because ǫ > 0 fixed was arbitrary;

Finally, as the converging subsequence (ri) was arbitrary, we get that the entire
sequence (λ∗d) converges to J∗. The convergence γ∗d → J∗ is proved with similar
arguments. �

8.2. Proof of Theorem 5.2. By the flat extension theorem of Curto and Fialkow
(see e.g. [26]), y has a representing s1-atomic probability measure µ∗ supported on
K1 and similarly, y′ has a representing s2-atomic probability measure ν∗ supported
on K2. But then from the proof of Theorem 5.1,

J∗ ≤ max
ψ∈P (K2)

∫

K2

(∫

K1

p(x, z)dµ∗(x)

)
dψ(z)

= max
ψ∈P (K2)

∫

K2

py(z)dψ(z) = max
z

{ py(z) : z ∈ K2} ≤ λ∗d.

J∗ ≥ min
ψ∈P (K1)

∫

K1

(∫

K2

p(x, z)dν∗(z)

)
dψ(x)

= min
ψ∈P (K1)

∫

K1

p̂y′(x)dψ(x) = min
x

{ p̂y′(x) : x ∈ K1} ≥ γ∗t ,

and so as λ∗d = γ∗t one has J∗ = λ∗d = γ∗t . This in turn implies that µ∗ (resp. ν∗)
is an optimal strategy for player 1 (resp. player 2). �
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