
HAL Id: hal-00331332
https://hal.science/hal-00331332v3

Preprint submitted on 21 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stein’s method and stochastic analysis of Rademacher
functionals

Ivan Nourdin, Giovanni Peccati, Gesine Reinert

To cite this version:
Ivan Nourdin, Giovanni Peccati, Gesine Reinert. Stein’s method and stochastic analysis of Rademacher
functionals. 2009. �hal-00331332v3�

https://hal.science/hal-00331332v3
https://hal.archives-ouvertes.fr


Stein’s method and stochastic analysis of Rademacher
functionals

by Ivan Nourdin∗, Giovanni Peccati† and Gesine Reinert‡

Université Paris VI, Université Paris Ouest and Oxford University

Abstract: We compute explicit bounds in the Gaussian approximation of functionals of infinite Rade-

macher sequences. Our tools involve Stein’s method, as well as the use of appropriate discrete Malliavin

operators. Although our approach does not require the classical use of exchangeable pairs, we employ

a chaos expansion in order to construct an explicit exchangeable pair vector for any random variable

which depends on a finite set of Rademacher variables. Among several examples, which include random

variables which depend on infinitely many Rademacher variables, we provide three main applications: (i)

to CLTs for multilinear forms belonging to a fixed chaos, (ii) to the Gaussian approximation of weighted

infinite 2-runs, and (iii) to the computation of explicit bounds in CLTs for multiple integrals over sparse

sets. This last application provides an alternate proof (and several refinements) of a recent result by Blei

and Janson.
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Rademacher sequences; Sparse sets; Stein’s method; Walsh chaos.
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1 Introduction

The connection between Stein’s method (see e.g. [7, 33, 38, 39]) and the integration by parts
formulae of stochastic analysis has been the object of a recent and quite fruitful study. The
papers [22, 23, 24] deal with Stein’s method and Malliavin calculus (see e.g. [26]) in a Gaussian
setting; in [25] one can find extensions involving density estimates and concentration inequali-
ties; the paper [28] is devoted to explicit bounds, obtained by combining Malliavin calculus and
Stein’s method in the framework of Poisson measures. Note that all these references contain
examples and applications that were previously outside the scope of Stein’s method, as they in-
volve functionals of infinite-dimensional random fields for which the usual Stein-type techniques
(such as exchangeable pairs, zero-bias transforms or size-bias couplings), which involve picking
a random index from a finite set, seem inappropriate.

The aim of this paper is to push this line of research one step further, by combining Stein’s
method with an appropriate discrete version of Malliavin calculus, in order to study the normal
approximation of the functionals of an infinite Rademacher sequence. By this expression we
simply mean a sequence X = {Xn : n > 1} of i.i.d. random variables, such that P (X1 = 1) =
P (X1 = −1) = 1/2. A full treatment of the discrete version of Malliavin calculus adopted in
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this paper can be found in [31] or [32]; Section 2.5 below provides a short introduction to the
main objects and results.

The main features of our approach are the following:

(i) We will be able to deal directly with the normal approximation of random variables possibly
depending on the whole infinite sequence X. In particular, our results apply to random
elements not necessarily having the form of partial sums.

(ii) We will obtain bounds expressed in terms of the kernels appearing in the chaotic decom-

position of a given square-integrable random variable. Note that every square-integrable
functional of X admits a chaotic decomposition into an orthogonal sum of multiple inte-
grals.

(iii) We employ the chaotic expansion in order to construct an explicit exchangeable pair vec-
tor for any random variable which depends on a finite set of Rademacher variables. In
particular, this exchangeable pair satisfies a linearity condition in conditional expectation
exactly, which allows the normal approximation results from Reinert and Röllin [34] to be
applied.

(iv) In the particular case of random variables belonging to a fixed chaos, that is, having the
form of a (possibly infinite) series of multilinear forms of a fixed order, we will express our
bounds in terms of norms of contraction operators (see Section 2.2). These objects also
play a central role in the normal and Gamma approximations of functionals of Gaussian
fields (see [22, 23, 24, 27]) and Poisson measures (see [28, 29, 30]). In this paper, we
shall consider kernels defined on discrete sets, and the corresponding contraction norms
are integrals with respect to appropriate tensor products of the counting measure.

The use of contraction operators in the normal approximation of Rademacher functionals
seems to us a truly promising direction for further research. One striking application of these
techniques is given in Section 6, where we deduce explicit bounds (as well as a new proof)
for a combinatorial central limit theorem (CLT) recently proved by Blei and Janson in [4],
involving sequences of multiple integrals over finite “sparse” sets. In the original Blei and
Janson’s proof, the required sparseness condition emerges as an efficient way of re-expressing
moment computations related to martingale CLTs. In contrast, our approach does not involve
martingales or moments and (quite surprisingly) the correct sparseness condition stems naturally
from the definition of contraction. This yields moreover an explicit upper bound on an adequate
distance between probability measures.

Another related work is the paper by Mossel et al. [21], where the authors prove a general
invariance principle, allowing to compare the distribution of polynomial forms constructed from
different collections of i.i.d. random variables. In particular, in [21] a crucial role is played
by kernels “with low influences”: we will point out in Section 4 that influence indices are an
important component of our bounds for the normal approximation of elements of a fixed chaos.
In Section 6.3, we also show that the combination of the findings of the present paper with those
of [21] yields an elegant answer to a question left open by Blei and Janson in [4].

A further important point is that our results do not hinge at all on the fact that N is an
ordered set. This is one of the advantages both of Stein’s method and of the Malliavin-type,
filtration-free stochastic analysis. It follows that our findings can be directly applied to i.i.d.
Rademacher families indexed by an arbitrary discrete set.
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The reader is referred to Chatterjee [5] for another Stein-type approach to the normal ap-
proximation of functionals of finite i.i.d. vectors. Some connections between our findings and
the results proved in [5] (in the special case of quadratic functionals) are pointed out in Section
4.2.

The paper is organized as follows. Section 2 contains results on multiple integrals, Stein’s
method and discrete Malliavin calculus (in particular, a new chain rule is proved). Section 3
provides general bounds for the normal approximation of Rademacher functionals; it gives first
examples and the exchangeable pair construction. In Section 4 we are interested in random
variables belonging to a fixed chaos. Section 5 focuses on sums of single and double integrals
and related examples. Section 6 is devoted to further applications and refinements, mainly
involving integrals over sparse sets. Technical proofs are deferred to the Appendix.

2 Framework and main tools

2.1 The setup

As before, we shall denote by X = {Xn : n > 1} a standard Rademacher sequence. This means
that X is a collection of i.i.d. random variables, defined on a probability space (Ω,F , P ) and
such that P [X1 = 1] = P [X1 = −1] = 1/2. To simplify the subsequent discussion, for the rest
of the paper we shall suppose that Ω = {−1, 1}N and P = [12{δ−1 + δ1}]N. Also, X will be
defined as the canonical process, that is: for every ω = (ω1, ω2, ...) ∈ Ω, Xn(ω) = ωn. Starting
from X, for every N > 1 one can build a random signed measure µ(X,N) on {1, ..., N}, defined
for every A ⊂ {1, ..., N} as follows:

µ(X,N) (A) =
∑

j∈A

Xj .

It is clear that σ{X} = σ{µ(X,N) : N > 1}. We shall sometimes omit the index N and write
µ(X,N) = µX , whenever the domain of integration is clear from the context.

We define the set D =
{
(i1, i2) ∈ N2 : i1 = i2

}
to be the diagonal of N2. For n > 2, we put

∆n = {(i1, ..., in) ∈ Nn : the ij’s are all different} , (2.1)

and, for N,n > 2,

∆N
n = ∆n ∩ {1, ..., N}n (2.2)

(so that ∆N
n = ∅ if N < n). The random signed measures µ(X,N) satisfy that, for every

A,B ⊂ {1, ..., N},

µ⊗2
(X,N) ([A × B] ∩ D) =

∑

j

X2
j 1{j∈A}1{j∈B} = κ (A ∩ B) = ♯ {j : j ∈ A ∩ B} , (2.3)

where κ is the counting measure on N. The application A 7→ µ⊗2
(X,N) ([A × A] ∩ D) is called

the diagonal measure associated with µ(X,N). The above discussion simply says that, for
every N > 1, the diagonal measure associated with µ(X,N) is the restriction on {1, ..., N} of the
counting measure κ. Note that, for finite sets A,B one has also

E[µX(A)µX(B)] = κ(A ∩ B).
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Remark 2.1 In the terminology e.g. of [30] and [40], the collection of random variables

{µ(X,N)(A) : A ⊂ {1, ..., N}, N > 1}

defines an independently scattered random measure (also called a completely random measure)
on N, with control measure equal to κ. In particular, if A1, ..., Ak is a collection of mutually
disjoint finite subsets of N, then the random variables µX(A1), ..., µX(Ak) are mutually inde-
pendent.

2.2 The star notation

For n > 1, we denote by ℓ2 (N)n the class of the kernels (= functions) on Nn that are square
integrable with respect to κ⊗n; ℓ2 (N)◦n is the subset of ℓ2 (N)n composed of symmetric kernels;
ℓ2
0 (N)n is the subset of ℓ2 (N)n composed of kernels vanishing on diagonals, that is, vanishing on

the complement of ∆n ; ℓ2
0 (N)◦n is the subset of ℓ2

0 (N)n composed of symmetric kernels.

For every n,m > 1, every r = 0, ..., n ∧ m, every l = 0, ..., r, and every f ∈ ℓ2
0 (N)◦n and

g ∈ ℓ2
0 (N)◦m, we denote by f ⋆l

r g the function of n + m − r − l variables obtained as follows:
r variables are identified and, among these, l are integrated out with respect to the counting
measure κ. Explicitly,

f ⋆l
r g (i1, ..., in+m−r−l)

=
∑

a1,...,al

f (i1, ..., in−r ; in−r+1, ..., in−l; a1, ..., al)

× g (in−l+1, ..., in+m−r−l; in−r+1, ..., in−l; a1, ..., al) ;

note that, since f and g vanish on diagonals by assumption, the sum actually runs over all
vectors (a1, ..., al) ∈ ∆l. For instance,

f ⋆0
0 g (i1, ..., in+m) = f ⊗ g (i1, ..., in+m) = f (i1, ..., in) g (in+1, ..., in+m) ,

and, for r ∈ {1, . . . , n ∧ m},

f ⋆r
r g (i1, ..., in+m−2r)

=
∑

a1,...,ar

f (i1, ..., in−r; a1, ..., ar) g (in−r+1, ..., in+m−2r ; a1, ..., ar) .

In particular, if r = m = n

f ⋆m
m g =

∑

a1,...,am

f (a1, ..., am) g (a1, ..., am) = 〈f, g〉ℓ2(N)⊗m .

Example 2.2 If n = m = 2, one has

f ⋆0
0 g (i1, i2, i3, i4) = f (i1, i2) g (i3, i4) ; f ⋆0

1 g (i1, i2, i3) = f (i1, i2) g (i3, i2) ;

f ⋆1
1 g (i1, i2) = Σaf (i1, a) g (i2, a) ; f ⋆0

2 g (i1, i2) = f (i1, i2) g (i1, i2) ;

f ⋆1
2 g (i) = Σaf (i, a) g (i, a) ; f ⋆2

2 g = Σa1,a2f (a1, a2) g (a1, a2) .

Remark 2.3 In general, a kernel of the type f ⋆l
r g may be not symmetric and may not vanish

on diagonal sets.
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The next two lemmas collect some useful facts for subsequent sections. Their proofs are
postponed in the appendix.

Lemma 2.4 Let f ∈ ℓ2
0 (N)◦n, g ∈ ℓ2

0 (N)◦m (n,m > 1) and 0 6 l 6 r 6 n ∧ m. Then:

1. f ⋆l
r g ∈ ℓ2 (N)⊗(n+m−r−l) and ‖f ⋆l

r g‖
ℓ2(N)⊗(n+m−r−l) 6 ‖f‖ℓ2(N)⊗n‖g‖ℓ2(N)⊗m;

2. if n > 2 then

max
j∈N




∑

(b1,...,bn−1)∈Nn−1

f2(j, b1, ..., bn−1)




2

6 ‖f ⋆n−1
n f‖2

ℓ2(N)

6 ‖f‖2
ℓ2(N)⊗n×max

j∈N

∑

(b1,...,bn−1)∈Nn−1

f2(j, b1, ..., bn−1)

and, if l = 1, . . . , n,

‖f ⋆l−1
l g‖2

ℓ2(N)⊗(n+m−2l+1) =
∞∑

j=1

‖f(j, ·) ⋆l−1
l−1 g(j, ·)‖2

ℓ2(N)⊗(n+m−2l)

6 ‖f ⋆n−1
n f‖ℓ2(N) × ‖g‖2

ℓ2(N)⊗m . (2.4)

3. ‖f ⋆0
1 f‖ℓ2(N)⊗(2n−1) = ‖f ⋆n−1

n f‖ℓ2(N) and, for every l = 2, ..., n (n > 2),

‖f ⋆l−1
l f‖ℓ2(N)⊗(2n−2l+1) 6 ‖f ⋆l−1

l−1 f × 1∆c
2(n−l+1)

‖ℓ2(N)⊗(2n−2l+2) 6 ‖f ⋆l−1
l−1 f‖ℓ2(N)⊗(2n−2l+2) .

Here, ∆c
q stands for the complement of the set ∆c

q, that is, ∆c
q is the collection of all vectors

(i1, ..., iq) such that ik = il for at least one pair (l, k) such that l 6= k.

Remark 2.5 1. According e.g. to [21], the quantity

∑

(b1,...,bn−1)∈Nn−1

f2(j, b1, ..., bn−1)

is called the influence of the jth coordinate on f .

2. When specializing Lemma 2.4 to the case n = 2, one gets

max
j∈N

[
∑

i∈N

f2(i, j)

]2

6 ‖f ⋆1
2 f‖2

ℓ2(N) (2.5)

= ‖f ⋆1
1 f × 1∆c

2
‖2

ℓ2(N)⊗2 6 ‖f ⋆1
1 f‖2

ℓ2(N)⊗2 = Trace{[f ]4}.

Here, [f ] denote the infinite array {f(i, j) : i, j ∈ N} and [f ]4 stands for the fourth power
of [f ] (regarded as the kernel of a Hilbert-Schmidt operator).

Lemma 2.6 Fix n,m > 1, and let fk ∈ ℓ2
0(N)◦n and gk ∈ ℓ2

0(N)◦m, k > 1, be such that
fk −→

k→∞
f and gk −→

k→∞
g, respectively, in ℓ2

0(N)◦n and ℓ2
0(N)◦m. Then, for every r = 0, ..., n ∧m,

fk ⋆r
r gk −→

k→∞
f ⋆r

r g in ℓ2(N)⊗m+n−2r.
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2.3 Multiple integrals, chaos and product formulae

Following e.g. [32], for every q > 1 and every f ∈ ℓ2
0 (N)◦q we denote by Jq (f) the multiple

integral (of order q) of f with respect to X. Explicitly,

Jq(f) =
∑

(i1,...,iq)∈Nq

f(i1, ..., iq)Xi1 · · · Xiq =
∑

(i1,...,iq)∈∆q

f(i1, ..., iq)Xi1 · · · Xiq (2.6)

= q!
∑

i1<...<iq

f(i1, ..., iq)Xi1 · · · Xiq ,

where the possibly infinite sum converges in L2(Ω). Note that, if f has support contained in
some finite set {1, ..., N}q , then Jq (f) is a true integral with respect to the product signed
measure µ⊗q

(X,N)
, that is,

Jq (f) =

∫

{1,...,N}q

f dµ⊗q
(X,N) =

∫

∆N
q

f dµ⊗q
(X,N).

One customarily sets ℓ2 (N)◦0 = R, and J0(c) = c, ∀c ∈ R. It is known (see again [32]) that, if
f ∈ ℓ2

0 (N)◦q and g ∈ ℓ2
0 (N)◦p, then one has the isometric relation

E[Jq(f)Jp(g)] = 1{q=p}q!〈f, g〉ℓ2(N)⊗q . (2.7)

In particular,

E[Jq(f)2] = q!‖f‖2
ℓ2(N)⊗q . (2.8)

The collection of all random variables of the type Jn(f), where f ∈ ℓ2
0 (N)◦q, is called the qth

chaos associated with X.

Remark 2.7 Popular names for random variables of the type Jq(f) are Walsh chaos (see e.g.
[19, Ch. IV]) and Rademacher chaos (see e.g. [4, 11, 18]). In Meyer’s monograph [20] the
collection {Jq(f) : f ∈ ℓ2

0 (N)◦q , q > 0} is called the toy Fock space associated with X.

Recall (see [32]) that one has the following chaotic decomposition: for every F ∈ L2(σ{X})
(that is, for every square integrable functional of the sequence X) there exists a unique sequence
of kernels fn ∈ ℓ2

0 (N)◦n, n > 1, such that

F = E(F ) +
∑

n>1

Jn(fn) = E(F ) +
∑

n>1

n!
∑

i1<i2<...<in

fn(i1, ..., in)Xi1 · · · Xin , (2.9)

where the second equality follows from the definition of Jn(fn), and the series converge in L2.

Remark 2.8 Relation (2.9) is equivalent to the statement that the set

{1} ∪
⋃

n>1

{Xi1 . . . Xin : 1 6 i1 < . . . < in} (2.10)

is an orthonormal basis of L2(σ{X}). An immediate proof of this fact can be deduced from
basic harmonic analysis. Indeed, it is well-known that the set Ω = {−1,+1}N, when endowed
with the product structure of coordinate multiplication, is a compact Abelian group (known
as the Cantor group), whose unique normalized Haar measure is the law of X. Relation (2.9)
then follows from the fact that the dual of Ω consists exactly in the mappings ω 7→ 1 and
ω 7→ Xi1(ω) · · · Xin(ω), in > ... > i1 > 1, n > 1. See e.g. [3, Section VII.2].
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Given a kernel f on Nn, we denote by f̃ its canonical symmetrization, that is:

f̃ (i1, ..., in) =
1

n!

∑

σ

f(iσ(1), ..., iσ(n)),

where σ runs over the n! permutations of {1, ..., n}. The following result is a standard multi-
plication formula between multiple integrals of possibly different orders. Since we did not find
this result in the literature (see, however, [32, formula (15)]), we provide a simple combinatorial
proof in Section 6.3.

Proposition 2.9 For every n,m > 1, every f ∈ ℓ2
0 (N)◦n and g ∈ ℓ2

0 (N)◦m, one has that

Jn (f)Jm (g) =

n∧m∑

r=0

r!

(
n

r

)(
m

r

)
Jn+m−2r

[(
f̃ ⋆r

r g
)
1∆n+m−2r

]
. (2.11)

Remark 2.10 Proposition 2.9 yields that the product of two multiple integrals is a linear
combination of square-integrable random variables. By induction, this implies in particular
that, for every f ∈ ℓ2

0 (N)◦n and every k > 1, E|Jn(f)|k < ∞, that is, the elements belonging
to a given chaos have finite moments of all orders. This fact can be alternatively deduced from
standard hypercontractive inequalities, see e.g. Theorem 3.2.1 in [11] or [18, Ch. 6]. Note that
similar results hold for random variables belonging to a fixed Wiener chaos of a Gaussian field
(see e.g. [16, Ch. V]).

2.4 Finding a chaotic decomposition

The second equality in (2.9) clearly implies that, for every i1 < ... < in,

n!fn(i1, ..., in) = E(F × Xi1 · · · Xin).

In what follows, we will point out two alternative procedures yielding an explicit expression for
the kernels fn.

(i) Möbius inversion (Hoeffding decompositions). We start with the following observation: if
F = F (X1, ...,Xd) is a random variable that depends uniquely on the first d coordinates of the
Rademacher sequence X, then necessarily F admits a finite chaotic decomposition of the form

F = E(F ) +
d∑

n=1

∑

16i1<...<in6d

n!fn(i1, . . . , in)Xi1 · · · Xin . (2.12)

Note that the sum in the chaotic decomposition (2.12) must stop at d: indeed, the terms of
order greater than d are equal to zero since, if not, they would involve e.g. products of the
type Xj1 · · · Xjd+1

with all the ja’s different, which would not be consistent with the fact
that F is σ{X1, . . . ,Xd}-measurable. Now note that one can rewrite (2.12) as F = E(F ) +∑

I⊂{1,...,d} G(I), where, for I := {i1, . . . , ia},

G(I) = a!fa(i1, . . . , ia)Xi1 . . . Xia .
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By exploiting the independence, one obtains also that, for every J := {j1, ..., jn} ⊂ {1, . . . , d},

H(J) := E[F − E(F )|Xj1 , . . . ,Xjn ] =
∑

I⊂J

G(I),

thus yielding that, by inversion (see e.g. [37, p. 116]), for every n = 1, ..., d,

n!fn(j1, ..., jn)Xj1 · · · Xjn =
∑

{i1,...,ia}⊂{j1,...,jn}
(−1)n−aE[F − E(F )|Xi1 , ...,Xia ]. (2.13)

Formula (2.13) simply means that, for a fixed n, the sum of all random variables of the type
n!fn(j1, ..., jn)Xj1 · · · Xjn coincides with the nth term in the Hoeffding-ANOVA decomposition
of F (see e.g. [17]). By a density argument (which is left to the reader), representation (2.13)
extends indeed to random variables depending on the whole sequence X.

(ii) Indicators expansions. Assume that we can write F = F (X1, . . . ,Xd) with F : {−1,+1}d →
R. Taking into account all the possibilities, we have

F =
∑

(ε1,...,εd)∈{−1,+1}d

F (ε1, . . . , εd)

d∏

i=1

1{Xi=εi}.

Now, the crucial point is the identity 1{Xi=εi} = 1
2(1 + εiXi). Hence

F = 2−d
∑

(ε1,...,εd)∈{−1,+1}d

F (ε1, . . . , εd)

d∏

i=1

(1 + εiXi). (2.14)

But

d∏

i=1

(1 + εiXi) = 1 +
∑

16i16d

εi1Xi1 +
∑

16i1<i26d

εi1εi2Xi1Xi2

+
∑

16i1<i2<i36d

εi1εi2εi3Xi1Xi2Xi3 + . . . + εi1 . . . εidXi1 . . . Xid ;

inserting this in (2.14) one can deduce the chaotic expansion of F .

2.5 Discrete Malliavin calculus and a new chain rule

We will now define a set of discrete operators which are the analogues of the classic Gaussian-
based Malliavin operators (see e.g. [16, 26]). The reader is referred to [31] and [32] for any
unexplained notion and/or result.

The operator D, called the gradient operator, transforms random variables into random
sequences. Its domain, noted domD, is given by the class of random variables F ∈ L2(σ{X})
such that the kernels fn ∈ ℓ2

0(N)◦n in the chaotic expansion F = E(F )+
∑

n>1 Jn(fn) (see (2.9))
verify the relation ∑

n>1

nn!‖fn‖2
ℓ2(N)⊗n < ∞.
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In particular, if F = F (X1, . . . ,Xd) depends uniquely on the first d coordinates of X, then
F ∈ domD. More precisely, D is an operator with values in L2(Ω × N, P ⊗ κ), such that, for
every F = E(F ) +

∑
n>1 Jn(fn) ∈ domD,

DkF =
∑

n>1

nJn−1(fn(·, k)), k > 1, (2.15)

where the symbol fn(·, k) indicates that the integration is performed with respect to n − 1
variables. According e.g. to [31, 32], the gradient operator admits the following representation.
Let ω = (ω1, ω2, . . .) ∈ Ω, and set

ωk
+ = (ω1, ω2, . . . , ωk−1,+1, ωk+1, . . .)

and
ωk
− = (ω1, ω2, . . . , ωk−1,−1, ωk+1, . . .)

to be the sequences obtained by replacing the kth coordinate of ω, respectively, with +1 and
−1. Write F±

k instead of F (ωk
±) for simplicity. Then, for every F ∈ domD,

DkF (ω) =
1

2

(
F+

k − F−
k

)
, k > 1. (2.16)

Remark 2.11 It is easily seen that, if the random variable F ∈ L2(σ{X}) is such that the
mapping (ω, k) 7→ 1

2(F+
k −F−

k )(ω) is an element of L2(Ω×N, P ⊗κ), then necessarily F ∈ domD.

We write δ for the adjoint of D, also called the divergence operator. The domain of δ is
denoted by domδ, and is such that domδ ⊂ L2(Ω × N, P ⊗ κ). Recall that δ is defined via the
following integration by parts formula: for every F ∈ domD and every u ∈ domδ

E[Fδ(u)] = E[〈DF, u〉ℓ2(N)] = 〈DF, u〉L2(Ω×N,P⊗κ). (2.17)

Now set L2
0(σ{X}) to be the subspace of L2(σ{X}) composed of centered random variables.

We write L : L2(σ{X}) → L2
0(σ{X}) for the Ornstein-Uhlenbeck operator, which is defined as

follows. The domain domL of L is composed of random variables F = E(F ) +
∑

n>1 Jn(fn) ∈
L2(σ{X}) such that ∑

n>1

n2n!‖fn‖2
ℓ2(N)⊗n < ∞,

and, for F ∈ domL,

LF = −
∑

n>1

nJn(fn). (2.18)

With respect to [31, 32], note that we choose to add a minus in the right-hand side of (2.18), in
order to facilitate the connection with the paper [22]. One crucial relation between the operators
δ, D and L is that

δD = −L. (2.19)

The inverse of L, noted L−1, is defined on F ∈ L2
0(σ{X}), and is given by

L−1F = −
∑

n>1

1

n
Jn(fn). (2.20)

9



Lemma 2.12 Let F ∈ domD be centered, and f : R → R be such that f(F ) ∈ domD. Then
E
[
Ff(F )

]
= E

[
〈Df(F ),−DL−1F 〉ℓ2(N)

]
.

Proof. Using (2.19) and (2.17) consecutively, we can write

E
[
Ff(F )

]
= E

[
LL−1Ff(F )

]
= −E

[
δDL−1Ff(F )

]
= E

[
〈Df(F ),−DL−1F 〉ℓ2(N)

]
.

Finally, we define {Pt : t > 0} = {etL : t > 0} to be the the semi-group associated with L,
that is,

PtF =
∞∑

n=0

e−ntJn(fn), t > 0, for F = E(F ) +
∞∑

n=1

Jn(fn) ∈ L2(σ{X}). (2.21)

The next result will be useful throughout the paper.

Lemma 2.13 Let F ∈ domD and fix k ∈ N. Then:

1. The random variables DkF , DkL
−1F , F+

k and F−
k are independent of Xk.

2. It holds that |F+
k − F | 6 2|DkF | and |F−

k − F | 6 2|DkF |, P -almost surely.

3. If F has zero mean, then E‖DL−1F‖2
ℓ2(N) 6 E‖DF‖2

ℓ2(N) with equality if and only if F is
an element of the first chaos.

Proof. 1. One only needs to combine the definition of F±
k with (2.16).

2. Use F±
k − F = ±(F+

k − F−
k )1{Xk=∓1} = ±2DkF1{Xk=∓1}.

3. Let us consider the chaotic expansion of F :

F =
∑

n>1

Jn(fn).

Then −DkL
−1F =

∑
n>1 Jn−1

(
fn(·, k)

)
and DkF =

∑
n>1 nJn−1

(
fn(·, k)

)
. Therefore, using the

isometric relation (2.7),

E‖DL−1F‖2
ℓ2(N) = E

∑

k∈N



∑

n>1

Jn−1

(
fn(·, k)

)



2

=
∑

n>1

(n − 1)!‖fn‖2
ℓ2(N)⊗n

6
∑

n>1

n2(n − 1)!‖fn‖2
ℓ2(N)⊗n

= E
∑

k∈N



∑

n>1

nJn−1

(
fn(·, k)

)



2

= E‖DF‖2
ℓ2(N).

Moreover, the previous equality shows that we have equality if and only if fn = 0 for all n > 2,
that is, if and only if F is an element of the first chaos.

We conclude this section by proving a chain rule involving deterministic functions of random
variables in the domain of D. It should be compared with the classic chain rule of the Gaussian-
based Malliavin calculus (see e.g. [26, Prop. 1.2.2]).
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Proposition 2.14 (Chain Rule). Let F ∈ domD and f : R → R be thrice differentiable with
bounded third derivative. Assume moreover that f(F ) ∈ domD. Then, for any integer k, P -a.s.:

∣∣∣∣Dkf(F ) − f ′(F )DkF +
1

2

(
f ′′(F+

k ) + f ′′(F−
k )
)
(DkF )2Xk

∣∣∣∣ 6
10

3
|f ′′′|∞|DkF |3.

Proof. By a standard Taylor expansion,

Dkf(F ) =
1

2

(
f(F+

k ) − f(F−
k )
)

=
1

2

(
f(F+

k ) − f(F )
)
− 1

2

(
f(F−

k ) − f(F )
)

=
1

2
f ′(F )(F+

k − F ) +
1

4
f ′′(F )(F+

k − F )2 + R1

−1

2
f ′(F )(F−

k − F ) − 1

4
f ′′(F )(F−

k − F )2 + R2

= f ′(F )DkF +

1

8

(
f ′′(F+

k ) + f ′′(F−
k )
)(

(F+
k − F )2 − (F−

k − F )2
)

+ R1 + R2 + R3

= f ′(F )DkF − 1

2

(
f ′′(F+

k ) + f ′′(F−
k )
)
(DkF )2Xk + R1 + R2 + R3,

where, using Lemma 2.13,

|R1| 6
1

12
|f ′′′|∞

∣∣F+
k − F

∣∣3 6
2

3
|f ′′′|∞|DkF |3

|R2| 6
1

12
|f ′′′|∞

∣∣F−
k − F

∣∣3 6
2

3
|f ′′′|∞|DkF |3

|R3| 6
1

8
|f ′′′|∞

(∣∣F+
k − F

∣∣3 +
∣∣F−

k − F
∣∣3
)

6 2|f ′′′|∞|DkF |3.

By putting these three inequalities together, the desired conclusion follows.

2.6 Stein’s method for normal approximation

Stein’s method is a collection of probabilistic techniques, using differential operators in order to
assess quantities of the type ∣∣E[h(F )] − E[h(Z)]

∣∣,
where Z and F are generic random variables, and the function h is such that the two expectations
are well defined. In the specific case where Z ∼ N (0, 1), with N (0, 1) a standard Gaussian law,
one is led to consider the so-called Stein equation associated with h, which is classically given
by

h(x) − E[h(Z)] = f ′(x) − xf(x), x ∈ R. (2.22)

A solution to (2.22) is a function f , depending on h, which is Lebesgue a.e.-differentiable, and
such that there exists a version of f ′ verifying (2.22) for every x ∈ R. The following result
collects findings by Stein [38, 39], Barbour [2], Daly [8] and Götze [13]. Precisely, the proof of
Point (i) (which is known as Stein’s lemma) involves a standard use of the Fubini theorem (see
e.g. [7, Lemma 2.1]). Point (ii) is proved e.g. in [39, Lemma II.3] (for the estimates on the first
and second derivative), in [8, Theorem 1.1] (for the estimate on the third derivative) and in [2]
and [13] (for the alternative estimate on the first derivative). From here onwards, denote by Ck

b

the set of all real-valued bounded functions with bounded derivatives up to kth order.

11



Lemma 2.15 (i) Let W be a random variable. Then, W
Law
= Z ∼ N (0, 1) if and only if for

every continuous, piecewise continuously differentiable function f such that E|f ′(Z)| < ∞,

E[f ′(W ) − Wf(W )] = 0. (2.23)

(ii) If h ∈ C2
b , then (2.22) has a solution fh which is thrice differentiable and such that ‖f ′

h‖∞ 6

4‖h‖∞, ‖f ′′
h‖∞ 6 2‖h′‖∞ and ‖f ′′′

h ‖∞ 6 2‖h′′‖∞. We also have ‖f ′
h‖ 6 ‖h′′‖∞.

Now fix a function h ∈ C2
b , consider a Gaussian random variable Z ∼ N (0, 1), and let F be

a generic square integrable random variable. Integrating both sides of (2.22) with respect to the
law of F gives

∣∣E[h(F )] − E[h(Z)]
∣∣ =

∣∣E[f ′
h(F ) − Ffh(F )]

∣∣ (2.24)

with fh the function given in Lemma 2.15. In the following sections we will show that, if F is a
functional of the infinite Rademacher sequence X, then the quantity in the RHS of (2.24) can
be successfully assessed by means of discrete Malliavin operators.

Remark 2.16 Plainly, if the sequence Fn, n > 1, is such that
∣∣E[h(Fn)] − E[h(Z)]

∣∣ → 0 for

every h ∈ C2
b , then Fn

Law→ Z.

3 General Bounds for Rademacher functionals

3.1 Main bound

The following result combines Proposition 2.14 with Lemma 2.15-(ii) and Relation (2.24) in
order to estimate expressions of the type |E[h(F )] − E[h(Z)]|, where F is a square integrable
functional of the infinite Rademacher sequence X, and Z ∼ N (0, 1).

Theorem 3.1 Let F ∈ domD be centered and such that
∑

k E
∣∣DkF

∣∣4 < ∞. Consider a function
h ∈ C2

b and let Z ∼ N (0, 1). Then,

|E[h(F )] − E[h(Z)]| 6 min(4‖h‖∞, ‖h′′‖∞)B1 + ‖h′′‖∞B2, (3.25)

where

B1 = E
∣∣1 − 〈DF,−DL−1F 〉ℓ2(N)

∣∣ 6
√

E
[
(1 − 〈DF,−DL−1F 〉ℓ2(N))

2
]
;

B2 =
20

3
E
[〈
|DL−1F |, |DF |3

〉
ℓ2(N)

]
. (3.26)

Proof. Since h ∈ C2
b , Equality (2.24) holds. Observe that, since the first two derivatives of fh

are bounded, one has that fh(F ) ∈ domD (this fact can be proved by using a Taylor expansion,
as well as the assumptions on DF and the content of Remark 2.11). Using Lemma 2.12, one
deduces that

E
[
f ′

h(F ) − Ffh(F )
]

= E
[
f ′

h(F ) − 〈Dfh(F ),−DL−1F 〉ℓ2(N)

]
.

12



We now use again the fact that f ′′
h is bounded: as an application of the first point of Lemma

2.13, we deduce therefore that

E
[
DkL

−1F ×
(
f ′′

h (F+
k ) + f ′′

h(F−
k )
)
(DkF )2Xk

]
= 0, k > 1;

in particular, the boundedness of f ′′
h , along with the fact that E|DkF |4 < ∞ and Lemma 2.13-

(3), ensure that the previous expectation is well-defined. Finally, the desired conclusion follows
from the chain rule proved in Proposition 2.14, as well as the bounds on ‖f ′

h‖∞ and ‖f ′′′
h ‖∞

stated in Lemma 2.15-(ii).

Remark 3.2 1. The requirement that
∑

k E
∣∣DkF

∣∣4 < ∞ is automatically fulfilled whenever
F belongs to a finite sum of chaoses. This can be deduced from the hypercontractive
inequalities stated e.g. in [18, Ch. 6].

2. Since we are considering random variables possibly depending on the whole sequence X
and having an infinite chaotic expansion, the expectation in (3.26) may actually be infinite.

3. Fix q > 1 and let F have the form of a multiple integral of the type F = Jq(f), where
f ∈ ℓ2

0(N)◦q. Then, one has that

〈DF,−DL−1F 〉ℓ2(N) =
1

q
‖DF‖2

ℓ2(N), (3.27)

〈|DL−1F |, |DF |3〉ℓ2(N) =
1

q
‖DF‖4

ℓ4(N). (3.28)

4. Let G be an isonormal Gaussian process (see [16] or [26]) over some separable Hilbert space
H, and assume that F ∈ L2(σ{G}) is centered and differentiable in the sense of Malliavin.
Then the Malliavin derivative of F , noted DF , is a H-valued random element, and in [22]
the following upper bound is established (via Stein’s method) between the laws of F and
Z ∼ N (0, 1):

dTV (F,Z) 6 2E|1 − 〈DF,−DL−1F 〉H|,
where L−1 is here the inverse of the Ornstein-Uhlenbeck generator associated with G and
dTV is the total variation distance between the laws of F and Z.

5. Let N be a compensated Poisson measure over some measurable space (A,A), with σ-finite
control measure given by µ. Assume that F ∈ L2(σ{N}) is centered and differentiable in
the sense of Malliavin. Then the derivative of F is a random processes which a.s. belongs
to L2(µ). In [28, Section 3] the following upper bound for the Wasserstein distance (see
Section 3.4 ) between the laws of F and Z ∼ N (0, 1) is proved (again by means of Stein’s
method):

dW (F,Z) 6 E|1 − 〈DF,−DL−1F 〉L2(µ)| + E

∫

A
|DaF |2 × |DaL

−1F |µ(da).
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3.2 First examples: Rademacher averages

A (possibly infinite) Rademacher average is just an element of the first chaos associated with
X, that is, a random variable of the type

F =

∞∑

i=1

αiXi, with α ∈ ℓ2(N). (3.29)

See e.g. [19, Ch. IV] for general facts concerning random variables of the type (3.29). The next
result is a consequence of Theorem 3.1 and of the relations (3.27)–(3.28). It yields a simple and
explicit upper bound for the Gaussian approximation of Rademacher averages.

Corollary 3.3 Let F have the form (3.29), let Z ∼ N (0, 1) and consider h ∈ C2
b . Then

∣∣E[h(F )] − E[h(Z)]
∣∣ 6 min(4‖h‖∞, ‖h′′‖∞)

∣∣∣∣∣1 −
∞∑

i=1

α2
i

∣∣∣∣∣+
20

3
‖h′′‖∞

∞∑

i=1

α4
i . (3.30)

The proof of Corollary 3.3 (whose details are left to the reader) is easily deduced from the
fact that, for F as in (3.29), one has that (3.27)-(3.28) with q = 1 hold, and DiF = αi for
all i > 1. We now describe two applications of Corollary 3.3. The first one provides a faster
than Berry-Esséen rate for partial sums of Rademacher random variables, using smooth test
functions.

Example 3.4 Let Fn, n > 1, be given by

Fn =
1√
n

n∑

i=1

Xi.

Then, Relation (3.30) in the special case αi = 1{i6n} × n−1/2 yields the bound

∣∣E[h(F )] − E[h(Z)]
∣∣ 6

20

3n
‖h′′‖∞,

where Z ∼ N (0, 1), implying a faster rate than in the classical Berry-Esséen estimates. This
faster rate arises from our use of smooth test functions; a related result is obtained in [15] using
a coupling approach.

The next example demonstrates that our techniques allow to easily tackle some problems
which, due to their non-finite description, have previously escaped the Stein’s method treatment.

Example 3.5 For every r > 2, we set

Fr =
√

r
∑

i>r

Xi

i
.

The random variable Fr has the form (3.29), with αi = 1{i>r}
√

r/i. We have that

∣∣∣∣∣1 −
∑

i∈N

α2
i

∣∣∣∣∣ =

∣∣∣∣∣∣
1 − r

∑

i>r

1

i2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
r
∑

i>r

(
1

i
− 1

i + 1
− 1

i2

)∣∣∣∣∣∣
= r

∑

i>r

1

i2(i + 1)
6
∑

i>r

1

i(i + 1)
=

1

r

14



and also

∑

i∈N

α4
i =

∑

i>r

r2

i4
6
∑

i>r

1

i(i − 1)
=

1

r − 1
.

It follows from Relation (3.30) that, for Z ∼ N (0, 1),

|E[h(Fr)] − E[h(Z)]| 6
min(4‖h‖∞, ‖h′′‖∞)

r
+

20‖h′′‖∞
3(r − 1)

.

In particular, Fr
Law→ Z as r → ∞.

Remark 3.6 (A Mehler-type representation) Take an independent copy of X, noted X∗ =
{X∗

1 ,X∗
2 , ...}, fix t > 0, and consider the sequence Xt = {Xt

1,X
t
2, ...} defined as follows: Xt is

a sequence of i.i.d. random variables such that, for every k > 1, Xt
k = Xk with probability e−t

and Xt
k = X∗

k with probability 1 − e−t (we stress that the choice between X and X∗ is made
separately for every k, so that one can have for instance Xt

1 = X1, Xt
2 = X∗

2 , ... and so on). Then
Xt is a Rademacher sequence and one has the following representation: for every F ∈ L2(σ(X))
and every ω = (ω1, ω2, ...) ∈ Ω = {−1,+1}N

PtF (ω) = E[F (Xt)|X = ω], (3.31)

where Pt is the Ornstein-Uhlenbeck semigroup given in (2.21). To prove such a representation of
Pt, just consider a random variable of the type Xj1 ×·· ·×Xjd

, and then use a density argument.
Now observe that, for a centered F =

∑
n>1 Jn(fn) ∈ L2

0(σ{X}), Equation (2.20) holds, and
consequently

−DkL
−1F =

∑

n>1

Jn−1(fn(k, ·)) =

∫ ∞

0
e−tPtDkFdt =

∫ ∞

0
e−tE[DkF (Xt)|X]dt,

so that

〈DF,−DL−1F 〉ℓ2(N) =

∫ ∞

0
e−t
∑

k>1

DkFE[DkF (Xt)|X] dt =

∫ ∞

0
e−t〈DF,E[DF (Xt)|X]〉ℓ2(N) dt.

Note that the representation (3.31) of the Ornstein-Uhlebeck semigroup is not specific of Rade-
macher sequences, and could be e.g. extended to the case where X is i.i.d. standard Gaussian
(see for instance [21, Section 2.2]). This construction would be different from the one leading
to the usual Mehler formula (see e.g. [26, Formula (1.67)]). See Chatterjee [6, Lemma 1.1]
and Nourdin and Peccati [22, Remark 3.6] for further connections between Mehler formulae and
Stein’s method in a Gaussian setting.

3.3 A general exchangeable pair construction

Remark 3.6 uses a particular example of exchangeable pair of infinite Rademacher sequences.
We shall now show that the chaos decomposition approach links in very well with the method
of exchangeable pairs. Let us assume that F = F (X1, ...,Xd) is a random variable that depends
uniquely on the first d coordinates Xd = (X1, . . . ,Xd) of the Rademacher sequence X, with
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finite chaotic decomposition of the form (2.12). Now assume that E(F ) = 0 and E(F 2) = 1 so
that

F =

d∑

n=1

∑

16i1<...<in6d

n!fn(i1, ..., in)Xi1 · · · Xin =

d∑

n=1

Jn(fn). (3.32)

A natural exchangeable pair construction is as follows. Pick an index I at random, so that
P (I = i) = 1

d for i = 1, . . . , d, independently of X1, ...,Xd, and if I = i replace Xi by an
independent copy X∗

i in all sums in the decomposition (3.32) which involve Xi. Call the resulting
expression F ′. Also denote the vector of Rademacher variables with the exchanged component
by X′

d. Then (F,F ′) forms an exchangeable pair.
In [34] an embedding approach is introduced, which suggests enhancing the pair (F,F ′) to

a pair of vectors (W,W′) which then ideally satisfy the linearity condition

E(W′ − W|W) = −ΛW (3.33)

with Λ being a deterministic matrix. In our example, choosing as embedding vector W =
(J1(f1), . . . , Jd(fd)), we check that

E(J ′
n(fn) − Jn(fn)|W)

= −1

d

d∑

i=1

∑

16i1<...<in6d

1{i1,...,in}(i) n!fn(i1, ..., in)E(Xi1 · · · Xin |W)

= −n

d
Jn(fn).

Thus, with W′ = (J ′
1(f1), . . . , J

′
d(fd)), the condition (3.33) is satisfied, with Λ = (λi,j)16i,j6d

being zero off the diagonal and λn,n = n
d for n = 1, . . . , d. Our random variable of interest F is

a linear combination of the elements in W, and we obtain the simple expression

E(F ′ − F |W) =
1

d
LF = −1

d
δDF. (3.34)

This coupling helps to assess the distance to the normal distribution, as follows.

Theorem 3.7 Let F ∈ domD be centered and such that E(F 2) = 1. Let h ∈ C1
b , let Z ∼

N (0, 1), and let (F,F ′) form the exchangeable pair constructed as above, which satisfies (3.34).
Denote by L′ the Ornstein-Uhlenbeck operator for the exchanged Rademacher sequence X′

d, and
denote by (L′)−1 its inverse. Then,

|E[h(F )] − E[h(Z)]| 6 4‖h‖∞

√
Var

[
d

2
E
(
(F ′ − F ) ×

(
(L′)−1F ′ − L−1F

)∣∣W
)]

+
d

2
‖h′‖∞E

[
(F ′ − F )2 × |(L′)−1F ′ − L−1F |

]
.

Proof. Let h ∈ C1
b , and let g denote the solution of the Stein equation (2.22) for h. Using

antisymmetry, we have that for all smooth g,

0 = E
[(

g(F ) + g(F ′)
)
×
(
(L′)−1F ′ − L−1F

)]

= 2E
[
g(F )

(
(L′)−1F ′ − L−1F

)]
+ E

[(
g(F ′) − g(F )

)
×
(
(L′)−1F ′ − L−1F

)]

=
2

d
E
[
Fg(F )

]
+ E

[(
g(F ′) − g(F )

)
×
(
(L′)−1F ′ − L−1F

)]
; (3.35)
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the last equality coming from (3.34) as well as the definitions of (L′)−1 and L−1. Hence

E
[
g′(F ) − Fg(F )

]
= E

[
g′(F )

(
1 +

d

2
E
[
(F ′ − F ) ×

(
(L′)−1F ′ − L−1F

)∣∣W
])]

+ R,

where by Taylor expansion

|R| 6
d

4
‖g′′‖∞E

[
(F ′ − F )2 × |(L′)−1F ′ − L−1F |

]
.

From (3.35) with g(x) = x we obtain

E
[
E
(
(F ′ − F ) ×

(
(L′)−1F ′ − L−1F

)∣∣W)
]

= E
[
(F ′ − F ) ×

(
(L′)−1F ′ − L−1F

)]
= −2

d

by our assumption that EF 2 = 1. We now only need to apply the Cauchy-Schwarz inequality
and use the bounds from Lemma 2.15 to complete the proof.

Equation (3.33) is key to answering the question on how to construct an exchangeable pair in
the case of a random variable which admits a finite Rademacher chaos decomposition. Indeed,
one can proceed as follows. Firstly, use W = (J1(f1), . . . , Jd(fd)), where the components come
from the chaos decomposition. Then the results from [34] can be applied to assess the distance of
W to a normal distribution with the same covariance matrix. Note that due to the orthogonality
of the integrals, the covariance matrix will be zero off the diagonal.

Finally, note that formally, using (3.34) and that LF = limt→0
PtF−F

t ,

E(F (X′
d) − F (Xd)|W) =

1

d
lim
t→0

PtF (Xd) − F (Xd)

t
=

1

d
lim
t→0

1

t
[E(F (Xt

d)|Xd) − F (Xd)],

where the notation is the same as in Remark 3.6. In this sense, our exchangeable pair can be
viewed as the limit as t → 0 of the construction in Remark 3.6.

3.4 From twice differentiable functions to the Wasserstein distance

Although many of our results are phrased in terms of smooth test functions, we can also obtain
results in Wasserstein distance by mimicking the smoothing in [35] used for Kolmogorov distance,
but now apply it to Lipschitz functions. Recall that the Wasserstein distance between the laws
of Y and Z is given by

dW (Y,Z) = sup
h∈Lip(1)

|E[h(Y )] − E[h(Z)]| ,

where Lip(1) is the class of all Lipschitz-continuous functions with Lipschitz constant less or
equal to 1. Rademacher’s Theorem states that a function which is Lipschitz continuous on the
real line is Lebesgue-almost everywhere differentiable. For any h ∈ Lip(1) we denote by h′ its
derivative, which exists almost everywhere.

Corollary 3.8 Let Z ∼ N (0, 1) and let F ∈ domD be centered. Suppose that (3.25) holds for
every function h ∈ C2

b and that 4(B1 + B2) 6 5. Then

dW (F,Z) 6
√

2(B1 + B2)(5 + E|F |).
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Proof. Let h ∈ Lip(1) and, for t > 0, define

ht(x) =

∫ ∞

−∞
h(
√

ty +
√

1 − tx)φ(y)dy,

where φ denotes the standard normal density. Then we may differentiate and integrate by parts,
using that φ′(x) = −xφ(x), to get

h′′
t (x) =

1 − t√
t

∫ ∞

−∞
yh′(

√
ty +

√
1 − tx)φ (y) dy.

Hence for 0 < t < 1 we may bound

‖h′′
t ‖∞ 6

1 − t√
t
‖h′‖∞

∫ ∞

−∞
|y|φ(y)dy 6

1√
t
. (3.36)

Taylor expansion gives that for 0 < t 6 1
2 so that

√
t 6

√
1 − t,

|E[h(F )] − E[ht(F )]| 6

∣∣∣∣E
∫ {

h(
√

ty +
√

1 − tF ) − h(
√

1 − tF )
}

φ(y)dy

∣∣∣∣

+E
∣∣h(

√
1 − tF ) − h(F )

∣∣

6 ‖h′‖∞
√

t

∫
|y|φ(y)dy + ‖h′‖∞

t

2
√

1 − t
E|F | 6

√
t

{
1 +

1

2
E|F |

}
.

Here we used that ‖h′‖∞ 6 1 and that for 0 < θ < 1, we have (
√

1 − θt)−1 < (
√

1 − t)−1.
Similarly, |Eh(Z)−Eht(Z)| 6

3
2

√
t. Using (3.25) with (3.36) together with the triangle inequality

we have for all h ∈ Lip(1)

|E[h(F )] − E[h(Z)]| 6
1√
t
(B1(1) + B2(1)) +

1

2

√
t (5 + E|F |) .

Minimising in t gives that the optimal is achieved for t = 2(B1(1) + B2(1))/(5 + E|F |), and
using this t yields the assertion.

To illustrate the result, for Example 3.4 we obtain dW (F,Z) 6
9√
n

(for n > 6) which is of

the expected Berry-Esséen order.

4 Normal approximation on a fixed chaos

4.1 Explicit upper bounds and CLTs

We now focus on random variables of the type F = Jq(f), where Jq(f) is the multiple integral
defined in Formula (2.6), q > 2 and f ∈ ℓ2

0(N)◦q. Due to the definition of the derivative operator
D, as given in Section 2.5, we know that F ∈ domD. Moreover, by combining Theorem 3.1 with
formulae (3.27)–(3.28) one infers that, for every h ∈ C2

b and for Z ∼ N (0, 1),
∣∣E[h(F )] − E[h(Z)]

∣∣

6 min(4‖h‖∞, ‖h′′‖∞)

√√√√E

[(
1 − 1

q
‖DF‖2

ℓ2(N)

)2
]

+
20

3q
‖h′′‖∞ E‖DF‖4

ℓ4(N). (4.37)

The following statement provides an explicit bound of the two expectations appearing in
(4.37).
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Theorem 4.1 Fix q > 2, let f ∈ ℓ2
0(N)◦q, and set F = Jq(f). Then

E

{(
1 − 1

q
‖DF‖2

ℓ2(N)

)2
}

=
∣∣∣1 − q!‖f‖2

ℓ2(N)⊗q

∣∣∣
2

+ q2
q−1∑

p=1

{
(p − 1)!

(
q − 1

p − 1

)2
}2

(2q − 2p)! ‖f̃ ⋆p
p f × 1∆2(q−p)

‖2
ℓ2(N)⊗2(q−p) (4.38)

6

∣∣∣1 − q!‖f‖2
ℓ2(N)⊗q

∣∣∣
2
+ q2

q−1∑

p=1

{
(p − 1)!

(
q − 1

p − 1

)2
}2

(2q − 2p)! ‖f ⋆p
p f × 1∆2(q−p)

‖2
ℓ2(N)⊗2(q−p) ,

(4.39)

and

E‖DF‖4
ℓ4(N) 6 q4

q∑

p=1

{
(p − 1)!

(
q − 1

p − 1

)2
}2

(2q − 2p)!‖f ⋆p−1
p f‖2

ℓ2(N)⊗(2(q−p)+1) . (4.40)

Remark 4.2 According to Lemma 2.4, one has that

‖f ⋆0
1 f‖2

ℓ2(N)⊗(2q−1) = ‖f ⋆q−1
q f‖2

ℓ2(N) 6 ‖f‖2
ℓ2(N)⊗q × max

j

∑

b1,...,bq−1

f2(j, b1, ..., bq−1),

and also, by combining this relation with (2.4), for p = 2, ..., n − 1,

‖f ⋆p−1
p f‖2

ℓ2(N)⊗(2(q−p)+1) 6 ‖f‖3
ℓ2(N)⊗q

√
max

j

∑

b1,...,bq−1

f2(j, b1, ..., bq−1).

These estimates imply that, once ‖f‖ℓ2(N)⊗q is given, the bound on the RHS of (4.40) can be
assessed by means of a uniform control on the “influence indices”

∑
b1,...,bq−1

f2(j, b1, ..., bq−1),

j > 1. As shown in [21, Theorem 2.1 and Section 3], when F = Jq(f) depends uniquely on a
finite number of components of X, these influence indices can be used to directly measure the
distance between the law of F and the law of the random variable, say FG, obtained by replacing
the Rademacher sequence with a i.i.d. Gaussian one. This result roughly implies that the two
components of the bound (4.37) have a different nature, namely: (4.40) controls the distance
between F and its Gaussian-based counterpart FG, whereas (4.38)-(4.39) assess the distance
between FG and a standard Gaussian random variable.

Proof of Theorem 4.1. Observe that, by a classical approximation argument and by virtue of
Lemma 2.6, it is sufficient to consider kernels f with support in a set of the type {1, ..., N}q , where
N < ∞ (this is for convenience only, since it allows to freely apply some Fubini arguments).
Since DjF = qJq−1(f(j, ·)), one has that (due to the multiplication formula (2.11))

(DjF )2 = q2
q−1∑

r=0

r!

(
q − 1

r

)2

J2(q−1−r)

(
˜f(j, ·) ⋆r

r f(j, ·) × 1∆2(q−1−r)

)

= q2
q∑

p=1

(p − 1)!

(
q − 1

p − 1

)2

J2(q−p)

(
˜f(j, ·) ⋆p−1

p−1 f(j, ·) × 1∆2(q−p)

)
. (4.41)
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It follows that, by a Fubini argument,

1

q
‖DF‖2

ℓ2(N) = q

q∑

p=1

(p − 1)!

(
q − 1

p − 1

)2

J2(q−p)

(
f̃ ⋆p

p f × 1∆2(q−p)

)

= q!‖f‖2
ℓ2(N)⊗q + q

q−1∑

p=1

(p − 1)!

(
q − 1

p − 1

)2

J2(q−p)

(
f̃ ⋆p

p f × 1∆2(q−p)

)
,

and the equality (4.38) is obtained by means of orthogonality and isometric properties of multiple
integrals. Inequality (4.39) is a consequence of the fact that, for any kernel h, ‖h̃‖ 6 ‖h‖. To
prove (4.40), use again (4.41) in order to write

E[(DjF )4] = q4
q∑

p=1

{
(p − 1)!

(
q − 1

p − 1

)2
}2

(2q − 2p)!

∥∥∥∥
˜f(j, ·) ⋆p−1

p−1 f(j, ·) × 1∆2(q−p)

∥∥∥∥
2

ℓ2(N)⊗2(q−p)

6 q4
q∑

p=1

{
(p − 1)!

(
q − 1

p − 1

)2
}2

(2q − 2p)!
∥∥∥f(j, ·) ⋆p−1

p−1 f(j, ·)
∥∥∥

2

ℓ2(N)⊗2(q−p)
.

The conclusion is obtained by using the identity

∑

j∈N

∥∥∥f(j, ·) ⋆p−1
p−1 f(j, ·)

∥∥∥
2

ℓ2(N)⊗2(q−p)
=
∥∥f ⋆p−1

p f
∥∥2

ℓ2(N)⊗(2(q−p)+1) .

We deduce the following result, yielding sufficient conditions for CLTs on a fixed chaos.

Proposition 4.3 Fix q > 2, and let Fk = Jq(fk), k > 1, be a sequence of multiple integrals
such that fk ∈ ℓ2

0(N)◦q and E(F 2
k ) = q!‖fk‖ℓ2(N)⊗q → 1. Then, a sufficient condition in order to

have that

Fk
Law→ Z ∼ N (0, 1) (4.42)

is that

‖fk ⋆r
r fk‖ℓ2(N)⊗2(q−r) → 0, ∀r = 1, ..., q − 1. (4.43)

Proof. One only needs to combine Theorem 4.1 and Relation (4.37) with Point 3 of Lemma 2.4.

Remark 4.4 The content of Proposition 4.3 echoes the results proved in [27], where it is shown
that, on a fixed Gaussian chaos of order q, the convergence to zero of the contractions ‖fk ⋆r

r fk‖,
r = 1, ..., q − 1, is necessary and sufficient in order to have the CLT (4.42). See also [22] for
bounds, involving norms of contractions, on the normal approximation of the elements of a
Gaussian chaos. See [28] and [29] for analogous results concerning the normal approximation of
regular functionals of a Poisson measure. Finally, observe that we do not know at the present
time wether the condition (4.43) is necessary in order to have the CLT (4.42).
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4.2 More on finite quadratic forms

When specialized to the case of normalized double integrals, Theorem 3.1, Proposition 4.3 and
Remark 2.5 yield the following result.

Corollary 4.5 Let Fk = J2(fk), k > 1, be a sequence of double integrals such that E(F 2
k ) =

2‖fk‖2
ℓ2(N)⊗2 = 1 (for simplicity). Let Z ∼ N (0, 1). Then, for every k > 1 and every h ∈ C2

b it
holds that

∣∣E[h(Fk)] − E[h(Z)]
∣∣ (4.44)

6 4
√

2 min(4‖h‖∞, ‖h′′‖∞) × ‖fk ⋆1
1 fk × 1∆2‖ℓ2(N)⊗2 + 160‖h′′‖∞ × ‖fk ⋆1

2 fk‖2
ℓ2(N)

6 4
√

2 min(4‖h‖∞, ‖h′′‖∞) × ‖fk ⋆1
1 fk × 1∆2‖ℓ2(N)⊗2 + 160‖h′′‖∞ × ‖fk ⋆1

1 fk × 1∆c
2
‖2

ℓ2(N)⊗2 ,

and a sufficient condition in order to have the CLT (4.42) is that ‖fk ⋆1
1 fk‖ℓ2(N)⊗2 → 0.

Now consider kernels fk ∈ ℓ2
0(N)◦2, k > 1, such that for every k the following holds: (i)

2‖fk‖2
ℓ2(N)⊗2 = 1, and (ii) the support of fk is contained in the set {1, ..., k}2. Then, the random

variables

Fk = J2(fk) =
∑

16i,j6k

fk(i, j)XiXj , k > 1, (4.45)

are quadratic functionals (with no diagonal terms) of the vectors (X1, ...,Xk). Limit theorems
involving sequences such as (4.45), for general vectors of i.i.d. random variables, have been
intensively studied in the probabilistic literature – see e.g. [9], [14] and the references therein.
The following result, providing a complete characterization of CLTs for sequences such as (4.45),
can be deduced from the main findings contained in [9] (but see also [10] for extensions to general
multilinear functionals).

Proposition 4.6 Let X be the Rademacher sequence considered in this paper, and let Fk be
given by (4.45). For every k > 1, write [fk] for the k × k square symmetric matrix {fk(i, j) :
1 6 i, j 6 k}. Then, the following three conditions are equivalent as k → ∞:

(a) Fk
Law→ Z ∼ N (0, 1);

(b) Trace{[fk]
4} = ‖fk ⋆1

1 fk‖2
ℓ2(N)⊗2 → 0;

(c) E(F 4
k ) → E(Z4) = 3.

Remark 4.7 Condition (b) in the previous statement is often replaced by the following:

(b′) Trace{[fk]
4} → 0 and max

j6k

k∑

i=1

fk(i, j)
2 → 0.

However, Relation (2.5) shows that the second requirement in (b′) is indeed redundant.
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In [5], Chatterjee proves that, in Wasserstein distance,

dW (Fk, Z) 6

√
1

2
Trace{[fk]4} +

5

2

k∑

j=1

[ k∑

i=1

fk(i, j)
] 3

2 . (4.46)

Note that

max
j6k

[ k∑

i=1

fk(i, j)
2
] 3

2 6

k∑

j=1

[ k∑

i=1

fk(i, j)
2
] 3

2 6
1

2
max
j6k

[ k∑

i=1

fk(i, j)
2
] 1

2 , (4.47)

and due e.g. to (2.5), Relation (4.46) gives an alternate proof of the implication (b) → (a)
in Proposition 4.6. Another proof of the same implication can be deduced from the following
result, which is a direct consequence of Corollary 4.5 and Lemma 2.4 (Point 3).

Corollary 4.8 Let the notation and assumptions of this section prevail. Then, for every k and
for every h ∈ C2

b , one has that

|E[h(Fk)] − E[h(Z)]|
6 4

√
2 min(4‖h‖∞, ‖h′′‖∞)‖fk ⋆1

1 fk × 1∆2‖ℓ2(N)⊗2 + 160‖h′′‖∞‖fk ⋆1
1 fk × 1∆c

2
‖2

ℓ2(N)⊗2

6 4
√

2 min(4‖h‖∞, ‖h′′‖∞)
√

Trace{[fk]4} + 160‖h′′‖∞Trace{[fk]
4}.

5 Sums of single and double integrals and applications to weighted

runs

5.1 Motivation: infinite weighted runs

Due to their simple dependence structure, runs lend themselves as good test examples for normal
approximations; for applications see for example [1]. The first Berry-Esséen bound for overlap-
ping success runs was derived in [12]. A multivariate normal approximation for the count runs
of finite length in the context of Stein’s method can be found for example in [34]. Weighted runs
can be viewed as a special case of weighted U-statistics; a normal approximation using Stein’s
method is available for example in [36]. Typically these studies focus on counting runs in a finite
window of a possibly infinite sequence, see for example [1] for details. In contrast, our method
allows to consider infinite weighted sums of runs.

Let ξ = {ξn : n ∈ Z} be a standard Bernoulli sequence. This means that ξ is a collection
of i.i.d. random variables such that P [ξ1 = 1] = P [ξ1 = 0] = 1/2. In the sequel, we will
suppose without loss of generality that ξ = 1

2 (1 + X) where X = {Xn : n ∈ Z} is a two-sided
Rademacher sequence, obtained e.g. by juxtaposing two independent Rademacher sequences
of the kind introduced in Section 2.1. Note that we chose Z as a parameter set, in order to
simplify the forthcoming discussion. Also, in what follows we will implicitly use the fact that
all the results and bounds established in the previous sections extend to this setting, by simply
replacing sums over N with sums over Z (the proof of this elementary fact is left to the reader).
Now fix an integer d > 1 as well as a sequence {α(n) : n > 1} of elements of ℓ2(Z). In this
section, we study the normal approximation of the sequence {Gn : n > 1} defined by

Gn =
∑

i∈Z

α
(n)
i ξi . . . ξi+d. (5.48)
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We call Gn an infinite weighted d-run. Actually, we will rather focus on the normalized version
of Gn, namely

Fn =
Gn − E(Gn)√

VarGn
. (5.49)

Observe that, in order to apply Theorem 3.1, one needs to find the chaotic expansion of Fn or,
equivalently, that of Gn. Using the identity ξ = 1

2(1 + X), it is immediately deduced, see also
Section 2.4-(ii), that

Gn = 2−(d+1)
∑

i∈Z

α
(n)
i (1 + Xi) . . . (1 + Xi+d)

= 2−(d+1)
∑

i∈Z

α
(n)
i

∑

I⊂{i,...,i+d}
Xi1 . . . Xi|I| (with I = {i1, . . . , i|I|})

= 2−(d+1)
d+1∑

r=0

∑

i∈Z

α
(n)
i

∑

I⊂{i,...,i+d}
|I|=r

Xi1 . . . Xir

= E(Gn) +

d+1∑

r=1

Jr


2−(d+1)

∑

i∈Z

α
(n)
i

∑

I⊂{i,...,i+d}
|I|=r

˜1{i1} ⊗ . . . ⊗ 1{ir}


 , (5.50)

where the tilde indicates a symmetrization. In particular, it is now immediate to compute DGn

and DL−1Gn, by using the definitions given in Section 2.5. However, since the analysis of (5.48)
is meant to be only an illustration, from now on we will focus on the case where d = 1 (2-runs).
The general case could be handled in a similar way (at the cost of a quite cumbersome notation).

5.2 Normal approximation of sums of single and double integrals

We will deduce a bound for the quantity
∣∣E[h(Fn)] − E[h(Z)]

∣∣ (where Z ∼ N (0, 1) and Fn is
given by (5.49)) from the following result, which can be seen as a particular case of Theorem
3.1.

Proposition 5.1 (Sum of a single and a double integral) Let F = J1(f)+ J2(g) with f ∈ ℓ2(Z)
and g ∈ ℓ2

0(Z)◦2. Assume that
∑

i∈Z

∣∣g(i, k)
∣∣ < ∞ for all k ∈ Z. Also, suppose (for simplicity)

that VarF = 1, and let h ∈ C2
b . Then

∣∣E[h(F )] − E[h(Z)]
∣∣ 6 min(4‖h‖∞, ‖h′′‖∞)

(
2
√

2‖g ⋆1
1 g1∆2‖ℓ2(Z)⊗2 + 3‖f ⋆1

1 g‖ℓ2(Z)

)

+
160

3
‖h′′‖∞

∑

k∈Z


f4(k) + 16

(
∑

i∈Z

|g(i, k)|
)4

 . (5.51)

Remark 5.2 By applying successively Fubini and Cauchy-Schwarz theorems, one has that

‖f ⋆1
1 g‖2

ℓ2(Z) =
∑

i,j∈Z

f(i)f(j) g ⋆1
1 g(i, j) 6 ‖f‖2

ℓ2(Z)‖g ⋆1
1 g‖ℓ2(Z)⊗2 . (5.52)

This inequality has an interesting consequence. Suppose indeed that the sequences J1(fn)
and J2(gn), n > 1, are such that, as n → ∞: (a) ‖fn‖ℓ2(Z) → 1, (b) 2‖gn‖2

ℓ2(Z)⊗2 → 1, (c)
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∑
k∈Z

f4
n(k) → 0, (d)

∑
k∈Z

(∑
i∈Z

|gn(i, k)|
)4 → 0, and (e) ‖gn ⋆1

1 gn‖ℓ2(Z)⊗2 → 0. Then the
estimate (5.52) and Proposition 5.1 imply that, for every (α, β) 6= (0, 0), the sequence

αJ1(fn) + βJ2(gn)√
α2 + β2

, n > 1,

converges in law to Z ∼ N (0, 1), and therefore that the vectors (J1(fn), J2(gn)), n > 1, jointly
converge in law towards a two-dimensional centered i.i.d. Gaussian vector with unit variances.
Note that each one of conditions (a)–(e) involves separately one of the two kernels fn and gn. See
[24] and [28, Section 6], respectively, for several related results in a Gaussian and in a Poisson
framework.

Proof of Proposition 5.1. Firstly, observe that DkF = 2J1

(
g(·, k)

)
+ f(k) = 2

∑
i∈Z

g(i, k)Xi +
f(k) so that, using (a + b)4 6 8(a4 + b4),

E
∣∣DkF |4 6 128E

(
∑

i∈Z

g(i, k)Xi

)4

+ 8f4(k) 6 128

(
∑

i∈Z

∣∣g(i, k)
∣∣
)4

+ 8f4(k) < ∞.

We are thus left to bound B1 and B2 in Theorem 3.1, taking into account the particular form
of F . We have −L−1F = 1

2J2(g) + J1(f) so that −DkL
−1F = J1

(
g(·, k)

)
+ f(k). Consequently,

with the multiplication formula (2.11), we get

〈DF,−DL−1F 〉ℓ2(Z)

= 2
∑

k∈Z

J1

(
g(·, k)

)2
+ 3

∑

k∈Z

f(k)J1

(
g(·, k)

)
+ ‖f‖2

ℓ2(Z)

= 2
∑

k∈Z

J2

(
g(·, k) ⊗ g(·, k)1∆2

)
+ 3

∑

k∈Z

f(k)J1

(
g(·, k)

)
+ ‖f‖2

ℓ2(Z) + 2‖g‖2
ℓ2(Z)⊗2

= 2J2(g ⋆1
1 g1∆2) + 3J1(f ⋆1

1 g) + ‖f‖2
ℓ2(Z) + 2‖g‖2

ℓ2(Z)⊗2

so that

E
∣∣〈DF,−DL−1F 〉ℓ2(Z) − VarF

∣∣2 = E
∣∣2J2(g ⋆1

1 g1∆2) + 3J1(f ⋆1
1 g)
∣∣2

= 8‖g ⋆1
1 g1∆2‖2

ℓ2(Z)⊗2 + 9‖f ⋆1
1 g‖2

ℓ2(Z).

Hence,

B1 6

√
8‖g ⋆1

1 g1∆2‖2
ℓ2(Z)⊗2 + 9‖f ⋆1

1 g‖2
ℓ2(Z)

6
(
2
√

2‖g ⋆1
1 g1∆2‖ℓ2(Z)⊗2 + 3‖f ⋆1

1 g‖ℓ2(Z)

)
.

Now, let us consider B2. We have
∣∣DkF

∣∣ 6 |f(k)| + 2
∑

i∈Z

|g(i, k)|.

Similarly,

∣∣DkL
−1F

∣∣ =
∣∣f(k) + J1

(
g(·, k)

)∣∣ =
∣∣∣∣∣f(k) +

∑

i∈Z

g(i, k)Xi

∣∣∣∣∣

6 |f(k)| +
∑

i∈Z

|g(i, k)| 6 |f(k)| + 2
∑

i∈Z

|g(i, k)|.
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Still using (a + b)4 6 8(a4 + b4), we deduce

∑

k∈Z

∣∣DkL
−1F

∣∣×
∣∣DkF

∣∣3 6
∑

k∈Z

(
|f(k)| + 2

∑

i∈Z

|g(i, k)|
)4

6 8
∑

k∈Z


f4(k) + 16

(
∑

i∈Z

|g(i, k)|
)4

 .

Hence

B2 6
160

3

∑

k∈Z


f4(k) + 16

(
∑

i∈Z

|g(i, k)|
)4



and the desired conclusion follows by applying Theorem 3.1.

5.3 Bounds for infinite 2-runs

When d = 1, Proposition 5.1 allows to deduce the following bound for the normal approximation
of the random variable Fn defined in (5.49).

Proposition 5.3 Let {Fn : n > 1} be the sequence defined by Fn = Gn−E(Gn)√
VarGn

with

Gn =
∑

i∈Z

α
(n)
i ξiξi+1.

Here, ξ = {ξn : n ∈ Z} stands for the standard Bernoulli sequence and {α(n) : n > 1} is a given
sequence of elements of ℓ2(Z). Consider a function h ∈ C2

b . Then, for Z ∼ N (0, 1),

∣∣E[h(F )] − E[h(Z)]
∣∣ 6

7

16
× min(4‖h‖∞, ‖h′′‖∞)

VarGn
×
√∑

i∈Z

(α
(n)
i )4 (5.53)

+
35

24
× ‖h′′‖∞

(VarGn)2
×
∑

i∈Z

(α
(n)
i )4

with

VarGn =
3

16

∑

i∈Z

(α
(n)
i )2 +

1

8

∑

i∈Z

α
(n)
i α

(n)
i+1. (5.54)

It follows that a sufficient condition to have Fn
Law→ Z is that

∑

i∈Z

(α
(n)
i )4 = o

(
(VarGn)2

)
as n → ∞.

Proof. Identity (5.54) is easily verified. On the other hand, by (5.50), we have

Fn =
Gn − E(Gn)√

VarGn
= J1(f) + J2(g),
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with

f =
1

4
√

VarGn

∑

a∈Z

α(n)
a

(
1{a} + 1{a+1}

)

g =
1

8
√

VarGn

∑

a∈Z

α(n)
a

(
1{a} ⊗ 1{a+1} + 1{a+1} ⊗ 1{a}

)
.

Now, let us compute each quantity appearing in the RHS of (5.51). If i 6= j then

(g ⋆1
1 g)(i, j) =

1

64VarGn

∑

a,b,k∈Z

α(n)
a α

(n)
b

(
1{a}(i)1{a+1}(k) + 1{a+1}(i)1{a}(k)

)

×
(
1{b}(j)1{b+1}(k) + 1{b+1}(j)1{b}(k)

)

=
1

64VarGn

(
α

(n)
i α

(n)
i+11{j=i+2} + α

(n)
j α

(n)
j+11{j=i−2}

)
.

Hence

‖g ⋆1
1 g1∆2‖ℓ2(Z)⊗2

=
1

64VarGn

√∑

i,j∈Z

[
(α

(n)
i )2(α

(n)
i+1)

21{j=i+2} + (α
(n)
j )2(α

(n)
j+1)

21{j=i−2}
]

=

√
2

64VarGn

√∑

i∈Z

(α
(n)
i )2(α

(n)
i+1)

2.

We have

(f ⋆1
1 g)(i) =

1

32VarGn

∑

a,b,k∈Z

α(n)
a α

(n)
b

(
1{a}(k) + 1{a+1}(k)

)

×
(
1{b}(i)1{b+1}(k) + 1{b+1}(i)1{b}(k)

)

=
1

32VarGn

(
α

(n)
i α

(n)
i+1 + (α

(n)
i−1)

2 + (α
(n)
i )2 + α

(n)
i−1α

(n)
i−2

)
.

Hence, using (a + b + c + d)2 6 4(a2 + b2 + c2 + d2),

‖f ⋆1
1 g‖ℓ2(Z)

=
1

32VarGn

√∑

i∈Z

[
α

(n)
i α

(n)
i+1 + (α

(n)
i−1)

2 + (α
(n)
i )2 + α

(n)
i−1α

(n)
i−2

]2

6
1

16VarGn

√∑

i∈Z

(α
(n)
i )2(α

(n)
i+1)

2 +
∑

i∈Z

(α
(n)
i−1)

4 +
∑

i∈Z

(α
(n)
i )4 +

∑

i∈Z

(α
(n)
i−1)

2(α
(n)
i−2)

2

=

√
2

16VarGn

√∑

i∈Z

(α
(n)
i )2(α

(n)
i+1)

2 +
∑

i∈Z

(α
(n)
i )4.
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We have, using (a + b)4 6 8(a4 + b4),

∑

k∈Z

f4(k) =
1

256(VarGn)2

∑

k∈Z

[
∑

a∈Z

α(n)
a

(
1{a}(k) + 1{a+1}(k)

)
]4

=
1

256(VarGn)2

∑

k∈Z

(
α

(n)
k + α

(n)
k−1

)4

6
1

16(VarGn)2

∑

k∈Z

(
α

(n)
k

)4
.

Finally, still using (a + b)4 6 8(a4 + b4),

∑

k∈Z

[
∑

i∈Z

|g(i, k)|
]4

6
1

4096(VarGn)2

∑

k∈Z



∑

i,a∈Z

∣∣α(n)
a

∣∣∣∣1{a}(i)1{a+1}(k) + 1{a+1}(i)1{a}(k)
∣∣



4

=
1

4096(VarGn)2

∑

k∈Z

[∣∣α(n)
k−1

∣∣+
∣∣α(n)

k

∣∣
]4

6
1

256(VarGn)2

∑

k∈Z

(α
(n)
k )4.

Now, the desired conclusion follows by plugging all these estimates in (5.51), after observing

that
∑

i∈Z
(α

(n)
i )2(α

(n)
i+1)

2 6
∑

i∈Z
(α

(n)
i )4, by the Cauchy-Schwarz inequality.

Example 5.4 1. Choose α
(n)
i = 1{1,...,n}(i). Then

∑
i∈Z

(α
(n)
i )4 = n and

VarGn >
3

16

∑

i∈Z

(α
(n)
i )2 =

3n

16
,

so that (5.53) gives a bound of order n−1/2 overall. This is the same order as obtained in
[34], also for smooth test functions, while [36] obtain a bound of this order in Kolmogorov
distance under suitable conditions on the weights.

2. Choose α
(n)
i = i−1 1{n,n+1,...}(i). Then

∑
i∈Z

(α
(n)
i )4 = O(n−3) and

VarGn >
3

16

∑

i∈Z

(α
(n)
i )2 ∼n→∞

3

16n

so that (5.53) also gives a bound of order n−1/2 overall.

6 Multiple integrals over sparse sets

6.1 General results

Fix d > 2. Let FN , N > 1, be a sequence of subsets of Nd such that the following three properties
are satisfied for every N > 1: (i) FN 6= ∅, (ii) FN ⊂ ∆N

d (as defined in (2.2)), that is, FN is
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contained in {1, . . . , N}d and has no diagonal components, and (iii) FN is a symmetric set, in
the sense that every (i1, ..., id) ∈ FN is such that (iσ(1), ..., iσ(d)) ∈ FN for every permutation σ
of the set {1, ..., d}. Let X be the infinite Rademacher sequence considered in this paper. Given
sets FN as at points (i)–(iii), we shall consider the sequence of multilinear forms

S̃N = [d! × |FN |]− 1
2

∑

(i1,...,id)∈FN

Xi1 · · · Xid = Jd(fN ), N > 1, (6.55)

where |FN | stands for the cardinality of FN , and

fN (i1, ..., id) := [d! × |FN |]− 1
2 × 1FN

(i1, ..., id).

Note that E(S̃N ) = 0 and E(S̃2
N ) = 1 for every N . In the paper [4], Blei and Janson studied

the problem of finding conditions on the set FN , in order to have that the CLT

S̃N
Law→ Z ∼ N (0, 1), N → ∞, (6.56)

holds.

Remark 6.1 Strictly speaking, Blei and Janson use the notation FN in order to indicate the
restriction to the simplex {(i1, ..., id) : i1 < i2 < ... < id} of a set verifying Properties (i)–(iii)
above.

In order to state Blei and Janson’s result, we need to introduce some more notation.

Remark on notation. In what follows, we will write ak to indicate vectors ak = (a1, ..., ak)
belonging to a set of the type {1, ..., N}k =: [N ]k, for some k,N > 1. We will regard these
objects both as vectors and sets, for instance: an expression of the type ak ∩ il = ∅, means that
the two sets {a1, ..., ak} and {i1, ..., il} have no elements in common; when writing j ∈ ak, we
mean that j = ar for some r = 1, ..., k; when writing ak ⊂ il (k 6 l), we indicate that, for every
r = 1, ..., k, one has ar = is for some s = 1, ..., l. When a vector ak enters in a sum, we will
avoid to specify ak ∈ [N ]k, whenever the domain of summation [N ]k is clear from the context.

Given N > 1 and an index j ∈ [N ], we set

F ∗
N,j = {id ∈ FN : j ∈ id}.

For every N , the set F#
N ⊂ FN × FN is defined as the collection of all pairs (id,kd) ∈ FN × FN

such that: (a) id ∩ kd = ∅, and (b) there exists p = 1, ..., d − 1, as well as i′p ⊂ id and k′
p ⊂ kd

such that
((k′

p, id \ i′p), (i′p, kd \ k′
p)) ∈ FN × FN ,

where id \ i′p represents the element of [N ]d−p obtained by eliminating from id the coordinates

belonging to i′p, and (k′
p, id \ i′p) is the element of [N ]d obtained by replacing i′p with k′

p in id (an
analogous description holds for (i′p, kd \ k′

p)). In other words, the 2d indices i1, . . . , id, j1, . . . , jd

can be partitioned in at least two ways into elements of FN .
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Theorem 6.2 ([4, Th. 1.7]) Let the above notation and assumptions prevail, and suppose that

lim
N→∞

max
j6N

|F ∗
N,j |

|FN | = 0, and (6.57)

lim
N→∞

|F#
N |

|FN |2 = 0. (6.58)

Then Relation (6.56) holds, with convergence of all moments.

Remark 6.3 As pointed out in [4], Condition (6.58) can be described as a weak “sparseness
condition” (see e.g. [3]). See also [4, Th. 1.7] for a converse statement.

The principal achievement of this section is the following refinement of Theorem 6.2.

Theorem 6.4 Under the above notation and assumptions, consider a function h ∈ C2
b . Then

there exist two universal constants C1 and C2, depending only on d, ‖h‖∞ and ‖h′′‖∞, such
that, for every N > 1 and for Z ∼ N (0, 1),

|E[h(Z)] − E[h(S̃N )]| 6 C1
|F#

N | 12
|FN | + C2

[
max
j6N

|F ∗
N,j |

|FN |

] 1
4

. (6.59)

Proof. By combining (4.37) with Theorem 4.1, we know that there exist universal combinatorial
constants αd

p > 0, p = 1, ..., d − 1 and βd
l > 0, l = 1, ..., d, such that

∣∣E[h(S̃N )] − E[h(Z)]
∣∣ 6 ‖h‖∞

d−1∑

p=1

αd
p ‖fN ⋆p

p fN 1∆N
2(d−p)

‖ℓ2(N)⊗2(d−p) (6.60)

+‖h′′‖∞
d−1∑

l=1

βd
l ‖fN ⋆l−1

l fN‖2
ℓ2(N)⊗2(d−l)+1 . (6.61)

We now evaluate each norm appearing in (6.60)–(6.61). According to the second and the third
points of Lemma 2.4 and using the fact that ‖fN‖2

ℓ2(N)⊗d = (d!)−1, one has that

‖fN ⋆0
1 fN‖2

ℓ2(N)⊗(2d−1) = ‖fN ⋆d−1
d fN‖2

ℓ2(N)

6
1

d!
max
j6N

∑

bd−1

fN (j,bd−1)
2 =

1

d × d!
max
j6N

|F ∗
N,j |

|FN | . (6.62)

Also, by combining the two inequalities in the second point of Lemma 2.4, we deduce that, for
every l = 2, ..., d − 1,

‖fN ⋆l−1
l fN‖2

ℓ2(N)⊗2(d−l)+1 6
1

d!
‖fN ⋆d−1

d fN‖ℓ2(N) (6.63)

6
1

(d!)3/2
√

d

[
max
j6N

|F ∗
N,j |

|FN |

] 1
2

6
1

(d!)3/2
√

d

[
max
j6N

|F ∗
N,j |

|FN |

] 1
4

.
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Now fix p = 1, ..., d − 1. One has that

‖fN ⋆p
p fN 1∆N

2(d−p)
‖2

ℓ2(N)⊗2(d−p) (6.64)

=
1

(d!|FN |)2
∑

ad−p,bp
xd−p,yp

1FN
(ad−p,bp)1FN

(xd−p,bp)1FN
(xd−p,yp)1FN

(ad−p,yp)1{ad−p∩xd−p=∅}

=

p∑

γ=0

γ!

(
p

γ

)2 Uγ

(d!|FN |)2 ,

where

U0 =
∑

ad−p, bp
xd−p, yp

1FN
(ad−p,bp)1FN

(xd−p,bp)1FN
(xd−p,yp)1FN

(ad−p,yp)1{ad−p∩xd−p=∅}1{bp∩yp=∅}

6 |F#
N |,

and

Up =
∑

ad−p, bp
xd−p

1FN
(ad−p,bp)1FN

(xd−p,bp)1{ad−p∩xd−p=∅}

6
∑

bp



∑

ad−p

1FN
(ad−p,bp)




2

6 |FN | × max
j6N

|F ∗
N,j |,

and finally, for γ = 1, ..., p − 1,

Uγ =
∑

ad−p,uγ , bp−γ
xd−p, yp−γ

1FN
(ad−p,uγ ,bp−γ)1FN

(xd−p,uγ ,bp−γ) ×

×1FN
(xd−p,uγ ,yp−γ)1FN

(ad−p,uγ ,yp−γ)1{ad−p∩xd−p=∅}1{bp−γ∩yp−γ=∅}

6
∑

ad−p,uγ , bp−γ
xd−p, yp−γ

1FN
(ad−p,uγ ,bp−γ)1FN

(xd−p,uγ ,bp−γ) ×

×1FN
(xd−p,uγ ,yp−γ)1FN

(ad−p,uγ ,yp−γ)1{bp−γ∩yp−γ=∅}

6 |FN |2 × ‖fN ⋆d−p
d−p+1 fN‖2

ℓ2(N)⊗2p−1 .

The proof is concluded by using the estimates (6.62) (for p = 1) and (6.63) (for p = 2, ..., d− 1).

We shall now state a generalization of Theorem 6.4, providing an explicit upper bound for
the normal approximation of multiple integrals defined over infinite sets. This result shows once
again that our approach allows to deal directly with the Gaussian approximation of random
variables that are functions of the whole infinite sequence X. Consider a sequence of real
numbers β = {βi : i > 1} ∈ ℓ2(N), and define the finite measure on N

mβ(A) =
∑

i∈A

β2
i , A ⊂ N. (6.65)
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We denote by md
β (d > 2) the canonical d-product measure associated with mβ. For every d > 2

and for every set F ⊂ Nd, we define the sets F# ⊂ F × F and F ∗
j , j = 1, 2, ... as before. In

particular, F ∗
j is the collection of all (i1, ..., id) ∈ F such that j = ik for some k. For β as

before, and F ∈ ∆d (possibly infinite) such that mβ(F ) > 0, we are interested in the normal
approximation of the random variable

J(β, F ) =
1

[d!mβ(F )]1/2

∑

(i1,...,id)∈F

βi1 · · · βidXi1 · · · Xid .

The following statement, whose proof (omitted) follows along the lines of that of Theorem 5.4,
provides an upper bound for the normal approximation of J(β, F ).

Proposition 6.5 Let Z ∼ N (0, 1). Under the above notation and assumptions, for every
h ∈ C2

b one has that there exist positive constants K1 and K2, depending uniquely on d, ‖h‖∞
and ‖h′′‖∞, such that

∣∣E[h(Z)] − E[h(J(β, F ))]
∣∣ 6 K1

m2d
β (F#)

1
2

md
β(F )

+ K2

[
sup
j>1

md
β(F ∗

j )

md
β(F )

] 1
4

. (6.66)

6.2 Fractional Cartesian products

In this section, we describe an explicit application of Theorem 6.4. The framework and notation
are basically the same as those of Example 1.2 in [4]. Fix integers d > 3 and 2 6 m 6 d − 1,
and consider a collection {S1, ..., Sd} of distinct non-empty subsets of [d] = {1, ..., d} such that:
(i) Si 6= ∅, (ii)

⋃
i Si = [d], (iii) |Si| = m for every i, (iv) each index j ∈ [d] appears in exactly

m of the sets Si, and (v) the cover {S1, ..., Sd} is connected (i.e., it cannot be partitioned into
two disjoint partial covers). For every i = 1, ..., d and every yd = (y1, ..., yd) ∈ Nd, we use the
notation πSi

y = (yj : j ∈ Si). Note that the operator πSi
transforms vectors of Nd into vectors of

Nm. For every N > dm, write n = ⌊N1/m⌋, that is, n is the largest integer such that n 6 N1/m.
Now select a one-to-one map ϕ from [n]m into [N ], and define

F ∗
N = {(ϕ(πS1kd), ..., ϕ(πSd

kd)) : kd ∈ [n]d} ⊂ [N ]d,

(note that, in general, F ∗
N is not a symmetric set), F ∗∗

N = F ∗
N ∩ ∆d

N , and also

FN = sym(F ∗∗
N ), (6.67)

where sym(F ∗∗
N ) indicates the collections of all vectors yd = (y1, ..., yd) ∈ Nd such that

(yσ(1), ..., yσ(d)) ∈ F ∗∗
N

for some permutation σ.

Proposition 6.6 Let Z ∼ N (0, 1), and let FN and S̃N , N > dm, be respectively defined accord-
ing to (6.67) and (6.55). Then, for every h ∈ C2

b , there exists a constant K > 0, independent of
N , such that

∣∣E[h(S̃N )] − E[h(Z)]
∣∣ 6

K

N1/(2m)
.
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Proof. The computations contained in [4, p. 16] can be straightforwardly adapted to our setting,
so that we deduce that the sequence {FN : N > dm} has combinatorial dimension α = d/m.
Recall that this means that there exist finite constants 0 < Q2 < Q1 < ∞ (independent of
N) such that: (a) |FN | > Q2N

α, and (b) for every A1, ..., Ad ⊂ [N ], |FN ∩ (A1 × · · ·Ad)| 6

Q1(max16j6d |Aj |)α. Thanks to Theorem 6.4, to conclude the proof it is therefore sufficient to
check that, as N → ∞,

max
j6N

|F ∗
N,j | = O(Nα−1) and |F#

N | = O(N2α−1/m). (6.68)

Start by observing that every element (z1, ..., zd) of FN has the form

(z1, ..., zd) = (ϕ(πSσ(1)
kd), ..., ϕ(πSσ(d)

kd)), (6.69)

where kd = (k1, ..., kd) ∈ [n]d and σ is a permutation of [d]. Since ϕ is one-to-one, it follows
that, for every j 6 N , there are at most d!d × nd−m elements of the set FN,j. To see this, just
observe that, every (z1, ..., zd) ∈ FN,j is completely specified by the following three elements: (i)
a permutation σ of d, (ii) the index a = 1, ..., d such that za = j, and (iii) the values of those
coordinates kb such that b 6∈ Sσ(a). Since n 6 N1/m by construction, one immediately obtains
the first relation in (6.68).

To prove the second part of (6.68), we shall first show that, if ((z1, ..., zd), (z
′
1, ..., z

′
d)) ∈ F#

N are
such that (z1, ..., zd) is as in (6.69), and (z′1, ..., z

′
d) = (ϕ(πSσ′(1)

k′
d), ..., ϕ(πSσ′(d)

k′
d)) (k′

d ∈ [n]d)

then kd and k′
d must have m coordinates in common. The definition of F#

N implies indeed that,
for such a vector ((z1, ..., zd), (z

′
1, ..., z

′
d)), there exists

(u1, ..., ud) = (ϕ(πSρ(1)
id), ..., ϕ(πSρ(d)

id)) ∈ FN ,

such that, for some p = 1, ..., d − 1: (a) there exist indices a1, ..., ap and b1, ..., bp such that
πSρ(ai)

id = πSσ(bi)
kd for every i = 1, ..., p, and (b) there exist indices v1, ..., vd−p and w1, ..., wd−p

such that πSρ(vi)
id = πSσ′(wi)

k′
d for every i = 1, ..., d − p. Note that then we necessarily have

{a1, ..., ap, v1, ..., vd−p} = {b1, ..., bp, w1, ..., wd−p} = [d]. By connectedness, there exists at least
one q ∈ [d] such that iq (i.e., the qth coordinate of id) belongs both to one of the sets πSρ(ai)

id and
to one of the sets πSρ(vi)

id. This last property implies that there exists a constant L, independent

of N , such that |F#
N | 6 Ln2d−1 6 LN2α−1/m. This concludes the proof.

Remark 6.7 Note that the combinatorial dimension α = d/m, as appearing in the proof of
Proposition 6.6, is an index of interdependence between the coordinates of the sets FN . See Ch.
XIII in [3] for more details on this point.

6.3 Beyond the Rademacher case: a question by Blei and Janson

Now we go back to the framework and notation of Section 6.1, so that, in particular, the
sequence S̃N , N > 1, is defined according to (6.55). For every N define S̃G

N to be the random
variable obtained from (6.55) by replacing the sequence X with a i.i.d. Gaussian sequence
G = {Gi : i > 1}, where each Gi has mean zero and unit variance. A natural question, which
has been left open by Blei and Janson in [4, Remark 4.6], is whether under the conditions (6.57)–
(6.58) the sequence S̃G

N , N > 1, converges in law towards a standard Gaussian distribution. Note
that this problem could be tackled by a direct computation, based for instance on [22] or [27].
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However, the results of this paper, combined with those of [21], allow to elegantly deduce a
more general result, which we provide in the forthcoming statement. In what follows, we write
V = {Vi : i > 1} to indicate a centered i.i.d. sequence, with unit variance and such that
E|V1|3 = η < ∞ (note that the results of [21] would allow to obtain similar results in even more
general frameworks, but we do not look for generality here). We also denote by S̃V

N the random
variable obtained from (6.55) by replacing X with V .

Proposition 6.8 Under the above notation and assumptions, consider a function h ∈ C3
b . Then,

there exist two universal constants B1 and B2, depending uniquely on d, η, ‖h‖∞, ‖h′′‖∞ and
‖h′′′‖∞, such that, for every N > 1 and for Z ∼ N (0, 1),

∣∣E[h(Z)] − E[h(S̃V
N )]
∣∣ 6 B1

|F#
N | 12

|FN | + B2

[
max
j6N

|F ∗
Nj |

|FN |

] 1
4

. (6.70)

In particular, if (6.57)–(6.58) take place, then S̃V
N converges in law towards Z.

Proof. One has that

∣∣E[h(Z)] − E[h(S̃V
N )]
∣∣ 6

∣∣E[h(Z)] − E[h(S̃N )]
∣∣+
∣∣E[h(S̃N )] − E[h(S̃V

N )]
∣∣,

and the conclusion is obtained by combining Theorem 6.4 with the fact that, according to [21,
Theorem 3.18, case H2], there exists a constant Q, depending only on ‖h′′′‖∞ and η, such that

∣∣E[h(S̃N )] − E[h(S̃V
N )]
∣∣ 6 Q

[
max
j6N

|F ∗
Nj |

|FN |

] 1
2

.
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To appear in Probab. Theory Rel. Fields.

[7] L.H. Chen and Q.-M. Shao (2005). Stein’s method for normal approximation. In: An in-
troduction to Stein’s method, 1-59. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 4,
Singapore Univ. Press, Singapore, 2005.

[8] F. Daly (2008). Upper bounds for Stein-type operators. Electron. J. Probab. 13, 566-587
(electronic).

[9] P. de Jong (1987). A central limit theorem for generalized quadratic forms. Probab. Theory
Rel. Fields 75(2), 261-277.

[10] P. de Jong (1990). A central limit theorem for generalized multilinear forms. J. Mult. Anal.
34, 275-289.
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Appendix: Some technical proofs

Proof of Lemma 2.4

In what follows, for k > 1, we shall write ak to indicate the generic vector ak = (a1, ..., ak) ∈ Nk.
We start by proving the first point. To do this, just write, using the Cauchy-Schwarz inequality,

‖f ⋆l
r g‖2

ℓ2(N)⊗(n+m−r−l) =
∑

im+n−r−l

f ⋆l
r g (im+n−r−l)

2

=
∑

in−r

∑

jm−r

∑

kr−l

(
∑

al

f(in−r,kr−l,al)g(jm−r,kr−l,al)

)2

6
∑

in−r

∑

kr−l

∑

al

f2(in−r,kr−l,al)
∑

jm−r

∑

bl

g2(jm−r,kr−l,bl)

6
∑

in−r

∑

kr−l

∑

al

f2(in−r,kr−l,al)
∑

jm−r

∑

lr−l

∑

bl

g2(jm−r, lr−l,bl)

= ‖f‖2
ℓ2(N)⊗n‖g‖2

ℓ2(N)⊗m .

The first part of the second point is obtained by writing

max
j



∑

bn−1

f2(j,bn−1)




2

6
∑

j



∑

bn−1

f2(j,bn−1)




2

= ‖f ⋆n−1
n f‖2

ℓ2(N)

6 max
j

∑

bn−1

f2(j,bn−1) ×
∑

j′

∑

b′
n−1

f2(j,bn−1)

= max
j

∑

bn−1

f2(j,bn−1) × ‖f‖2
ℓ2(N)⊗n .

For the second part, we have, by applying (in order) the Cauchy-Schwarz inequality, as well
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as the previous estimate,

‖f ⋆l−1
l g‖2

ℓ2(N)⊗(n+m−2l+1)

=
∑

j

∑

kn−l

∑

lm−l



∑

il−1

f(j, il−1,kn−l)g(j, il−1, lm−l)




2

=
∑

j

‖f(j, ·) ⋆l−1
l−1 g(j, ·)‖2

ℓ2(N)⊗(n+m−2l)

6
∑

j

∑

kn−l

∑

il−1

f2(j, il−1,kn−l)
∑

lm−l

∑

jl−1

g2(j, jl−1, lm−l)

6 max
j

∑

bn−1

f2(j,bn−1) ×
∑

im

g2(im) = max
j

∑

bn−1

f2(j,bn−1) × ‖g‖2
ℓ2(N)⊗m

=

√√√√√max
j



∑

bn−1

f2(j,bn−1)




2

× ‖g‖2
ℓ2(N)⊗n

6

√√√√√
∑

j



∑

bn−1

f2(j,bn−1)




2

× ‖g‖2
ℓ2(N)⊗m = ‖f ⋆n−1

n−1 f‖ℓ2(N) × ‖g‖2
ℓ2(N)⊗m .

Finally, for the third part, just observe that

‖f ⋆0
1 f‖2

ℓ2(N)⊗(2n−1) =
∑

j

∑

in−1

∑

jn−1

f(j, in−1)f(j, jn−1) =
∑

j



∑

in−1

f(j, in−1)




2

= ‖f ⋆n−1
n f‖2

ℓ2(N)

and, for 2 6 l 6 n:

‖f ⋆l−1
l f‖2

ℓ2(N)⊗(2n−2l+1)

=
∑

i=j

∑

kn−l

∑

ln−l



∑

il−1

f(i, il−1,kn−l)f(j, il−1, ln−l)




2

6
∑

(an−l+1,bn−l+1)∈∆c
2n−2l+2



∑

il−1

f(il−1,an−l+1)f(il−1,bn−l+1)




2

= ‖f ⋆l−1
l−1 f × 1∆c

2n−2l+2
‖2

ℓ2(N)⊗(2n−2l+2) .

Proof of Lemma 2.6

We have, by bilinearity and using the first point of Lemma 2.4,

‖fk ⋆r
r gk − f ⋆r

r g‖ℓ2(N)⊗(m+n−2r) = ‖fk ⋆r
r (gk − g) + (fk − f) ⋆r

r g‖ℓ2(N)⊗(m+n−2r)

6 ‖fk ⋆r
r (gk − g)‖ℓ2(N)⊗(m+n−2r) + ‖(fk − f) ⋆r

r g‖ℓ2(N)⊗(m+n−2r)

6 ‖fk‖ℓ2(N)⊗n‖gk − g‖ℓ2(N)⊗m + ‖fk − f‖ℓ2(N)⊗n‖g‖ℓ2(N)⊗m −→
k→∞

0.

37



Proof of Proposition 2.9

We assume, without loss of generality, that m 6 n. We first prove (2.11) for functions f and g
with support, respectively, in ∆N

n and ∆N
m, for some finite N . One has that

Jn (f)Jm (g) =

∫

∆N
n ×∆N

m

{
f ⋆0

0 g
}

dµ⊗n+m
X =

∫

∆N
n ×∆N

m

{f ⊗ g} dµ⊗n+m
X .

For r = 0, ...,m, we denote by Πr (n,m) the set of all partitions π of {1, ...., n + m} composed of

i) exactly r blocks of the type {i1, i2}, with 1 6 i1 6 n and n + 1 6 i2 6 n + m,

ii) exactly n + m − 2r singletons.

For instance: an element of Π2 (3, 2) is the partition

π = {{1, 4} , {2, 5} , {3}} ; (6.71)

the only element of Π0 (n,m) is the partition π = {{1} , {2} , ..., {n + m}} composed of all
singletons; an element of Π3 (4, 4) is the partition

π = {{1, 5} , {2, 6} , {3, 7} , {4} , {8}} . (6.72)

It is easily seen that Πr (n,m) contains exactly r!
(n

r

)(m
r

)
elements (to specify an element of

Πr (n,m), first select r elements of {1, ..., n}, then select r elements in {n + 1, ..., n + m} , then
build a bijection between the two selected r-sets). For every r = 0, ...,m and every π ∈ Πr (n,m),
we write BN

n,m (π) to denote the subset of {1, ..., N}n+m given by

{
(i1, ..., in, in+1, ..., in+m) ∈ {1, ..., N}n+m : ij = ik iff j and k are in the same block of π

}

(note the “if and only if” in the definition). For instance, for π as in (6.71), an element of B3
3,2 (π)

is (1, 2, 3, 1, 2); for π as in (6.72), an element of B5
4,4 (π) is (1, 2, 3, 4, 1, 2, 3, 5). The following two

facts can be easily checked;

A)

∆N
n × ∆N

m =

m⋃

r=0

⋃

π∈Πr(n,m)

BN
n,m (π) ,

where the unions are disjoint;

B) For every r = 0, ...,m, and every π ∈ Πr (n,m),

∫

BN
n,m(π)

{
f ⋆0

0 g
}

dµ⊗n+m
X =

∫

∆n+m−2r

{f ⋆r
r g} dµ⊗n+m−2r

X .

(note that the last expression does not depend on the partition π, but only on the class
Πr (n,m)).
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It follows that

Jn (f)Jm (g) =

∫

∆N
n ×∆N

m

{
f ⋆0

0 g
}

dµ⊗n+m
X

=

m∑

r=0

∑

π(r)∈Π∗
r(n,m)

∫

BN
n,m(π(r))

{
f ⋆0

0 g
}

dµ⊗n+m
X

=
m∑

r=0

r!

(
n

r

)(
m

r

)∫

∆n+m−2r

{f ⋆r
r g} dµ⊗n+m

X

=(∗)
m∑

r=0

r!

(
n

r

)(
m

r

)∫

∆n+m−2r

{
f̃ ⋆r

r g
}

dµ⊗n+m
X

=

m∑

r=0

r!

(
n

r

)(
m

r

)
Jn+m−2r

[(
f̃ ⋆r

r g
)
1∆n+m−2r

]
,

which is the desired conclusion. We stress that the equality (∗) has been obtained by using the
symmetry of the measure µ⊗n+m

X . The result for general f, g is deduced by an approximation
argument and Lemma 2.6. This concludes the proof.
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