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Abstract. The aim of this paper is to describe in detail
how the benchmark tests ISMIP-HOM (Ice Sheet Model In-
tercomparison Project-Higher-Order ice-sheet Model) have
been performed using the open source finite element (FE)
code Elmer (http://www.csc.fi/elmer). The ISMIP-HOM
setup consists of five diagnostic and one prognostic experi-
ments, for both 2-D and 3-D geometries. For all the tests, the
full-Stokes equations are solved. Some technical points con-
cerning FE, such as mesh characteristics, stabilisation meth-
ods, numerical methods used to solve the linear system and
parallel performance are discussed. For all these setups, the
CPU time consumption in relation to the accuracy of the so-
lution is analysed. Based on these findings, some general
rules on optimising the computing time versus the accuracy
of the results are deduced.

1 Introduction

Following the EISMINT (European Ice Sheet Modelling
INiTiative, Payne et al., 2000) benchmark experiments, the
Ice Sheet Model Intercomparison Project (ISMIP) aims to
provide a comparison of the new generation of ice-sheet
flow models. It is composed of three different tests. The
comparison of the ice-dynamic response of Antarctic and
Greenland ice sheet models applied to climatic warming
(ISMIP-POLICE), coordinated by Philippe Huybrechts, is
dedicated to global ice-sheet models. The simulation setup
for Heinrich-type ice-sheet instabilities (ISMIP-HEINO), co-
ordinated by Reinhard Calov and Ralf Greve, aims to com-
pare the ability of 3-D ice-sheet flow models to simulate
large scale surges induced by an activation and deactiva-
tion wave of the temperate basal area. Since the model
domain represents a small synthetic circular ice-sheet, this

Correspondence to: O. Gagliardini
(gagliardini@lgge.obs.ujf-grenoble.fr)

experiment is not limited to global ice-sheet flow models
and can be performed by higher order flow models. The
last experiment that compares Higher-Order Models (ISMIP-
HOM, http://homepages.ulb.ac.be/∼fpattyn/ismip/) is coor-
dinated by Frank Pattyn and is addressed to all 2-D and 3-D
ice flow models.

In the present paper we discuss in detail the results ob-
tained by running the ISMIP-HOM experiments with the FE
open source code Elmer. The complexity of the equations
to be solved in the proposed tests is such that most of the
standard FE software for fluid dynamics should be able to
perform the experiments (at least the five diagnostic). There-
fore, the main focus of such experiments lays more on the
comparison of the results obtained for a various range of all
the parameters that control the simulation, rather than in pro-
ducing the results themselves. In this paper, we present a
detailed study on the influence of the mesh parameters (e.g.,
number of nodes, type of elements, ratio of horizontal to
vertical element densities), numerical methods used to solve
the linear system (direct or iterative methods), and the in-
fluence of the tolerance criteria used to control the conver-
gence of the non-linear iteration induced by the non-linear
flow law of ice. In order to compare these results, the qual-
ity of the solution for given settings, relative to a reference
solution, as well as the CPU time consumption have to be
taken into account. Especially the latter, even if being ma-
chine dependent, should have been part of the model output
for the ISMIP-HOM experiments, since the applicability of
a model to a certain problem size is a fundamental informa-
tion. All results presented in this paper have been obtained
on a HP ProLiant Cluster of the Center for Scientific Com-
puting (CSC, Finland).

Among the 28 models that participated ISMIP-HOM tests,
only two full-Stokes codes, including Elmer, have been ap-
plied to all tests-scenarios. An intercomparison of output
from all models is presented in Pattyn et al. (2008). This
paper solely focuses on results obtained with Elmer.
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2 Equations and numerical methods

We briefly summarise the equations to be solved and the nu-
merical methods used to solve them by the finite element
(FE) method.

2.1 Governing equations

For all these experiments, we are interested in solving the
gravity-driven flow of ice over a rigid bedrock for various
boundary conditions at the ice-bedrock boundary. The con-
stituting law for the ice behaviour is given by a Norton-Hoff
type law (Glen’s law in Glaciology):

τij = 2ηDij , (1)

whereτ andD are the deviatoric stress and the strain-rate
tensor, respectively. Both, linear and non-linear ice rheol-
ogy are envisaged. For the latter, the effective viscosityη is
strain-rate dependent and denotes as:

η =
A−1/n

2
ǫ̇
(1−n)/n
e , (2)

where the second invariant of the strain-rateǫ̇e is expressed
by

2ǫ̇2
e = tr D2 = D : D . (3)

As the HOM experiments are defined to be isothermal, the
fluidity parameterA, in Eq. (2), is a constant.

With ice being a highly viscous and incompressible mate-
rial, the mass conservation and the conservation of linear mo-
mentum reduce to the well-known set of Stokes equations:

div u = tr D = 0 , (4)

and

div σ + ρg = 2 divηD + gradp + ρg = 0 , (5)

whereu is the velocity vector,ρ the ice density andg the
gravity vector. The Cauchy stress tensorσ=τ +pI has been
decomposed into its deviatoric part – replaced by the strain-
rate using Eq. (1) – and the isotropic pressurep. For both 2-D
and 3-D experiments, thez-axis is aligned with the negative
direction of the gravity vector and thex-axis points in the
principal direction of the flow.

In the case of prognostic experiments, the surface eleva-
tion z=zs(x, y, t) is part of the solution. For this free surface,
the following equation serves as the kinematic boundary con-
dition:

∂zs

∂t
+ u⊥.∇⊥zs = uz + a for all z = zs(x, y, t), (6)

whereu⊥=(ux, uy), the operator∇⊥ stands for the gradient
evaluated in horizontal directions, i.e.,∇⊥=(∂./∂x, ∂./∂y),
anda is the accumulation-ablation function, considered as
a vertical flux. For experiment F, vanishing accumulation is
prescribed.

2.2 Boundary conditions

For each of these conservation equations, a various number
of boundary conditions have to be applied, depending on the
test case. Three different kinds of boundaries can be distin-
guished for all these tests.

2.2.1 Ice-bedrock interfacez=zb(x, y, t)

For the velocity field, either no sliding (u(x, y, zb)=0) – as
for experiments A, B and E – or a friction law linking the
sliding velocity to the basal shear stress – as for tests C and
D – applies. Such friction law is of the form

t i · u = As t i · (σ · nb) = Asτbi (i = 1, 2) , (7)

wherenb is the unit normal vector pointing into the bedrock
and t i the unit tangent vectors (i=1 in 2-D andi=1, 2 in
3-D). The sliding parameterAs is only a function of space
(As=1/β2 in C, D and F). In contrary to the shallow ice
approximation, the basal shear stressτb is not equal to the
basal driving stressρg(zs−zb)∇⊥zs , but rather part of the
solution.

2.2.2 Upper surfacez=zs(x, y, t)

For all these tests, the upper surface is a stress free surface,
which implies thatns ·(σ ·ns)=patm ≈ 0, wherens is the unit
normal vector of the surface. Note that this condition does
not imply that the isotropic pressurep vanishes at the sur-
face. As a consequence of the variational formulation used in
Elmer, this stress free condition is inherent (natural boundary
condition), such that no explicit condition has to be applied
for the Stokes problem. For the kinematic boundary condi-
tion at the free surface Eq. (6), the rate of accumulation,a,
has to be prescribed. Within the FE formulation of Eq. (6), it
acts as a source term.

2.2.3 Lateral boundaries of the model

For experiments A, B, C, D and F, periodicity of the verti-
cally aligned in- and outflow boundaries is applied. In prin-
ciple Elmer does support non-conformal periodical boundary
mapping, nevertheless, in order to avoid inaccuracies intro-
duced by interpolation, it is favourable to ensure conformal
mapping, like we did in our applications.

2.3 Finite element formulation

We hereafter only discuss some technical aspects of interest
in connection with the ISMIP-HOM experiments. For a de-
tailed presentation of the FE implementation in Elmer, the
reader can consult the Elmer documentation, which is to be
found under http://www.csc.fi/elmer.
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2.3.1 Stokes equation

Ice flow is governed by the Stokes problem for an incom-
pressible fluid, corresponding to the solution of Eqs. (4) and
(5). A numerical solution of this set requires stabilisation by
either using the classical Taylor-Hood elements (quadratic
interpolation of the velocity and linear interpolation of the
pressure), the stabilised method (Franca and Frey, 1992) or
the residual free bubbles method (Baiocchi et al., 1993).

The way how stress is computed from the velocity and how
the isotropic pressure fields is obtained is of particular inter-
est, as different methods can lead to sensitively different so-
lutions. In this study, the deviatoric stress field is obtained by
solving Eq. (1) using the following variational form with the
scalar test functions8:
∫

V

τij8 dV = 2
∫

V

ηDij8 dV , (8)

whereDij andη are computed from the nodal velocities us-
ing the derivative of the basis functions.

2.3.2 Free surface equation

The free surface elevationzs is discretized as

zs(x, y, t) = 9i(x, y)zi
s(t) , (9)

wherezi
s is the (nodal) elevation at thei-th node inside the

local element of the meshed ice sheet surface, and9i stands
for the nodal interpolation functions.

The discrete variational form of Eq. (6) is obtained by spa-
tial integration over the ice sheet surface, using the test func-
tion 8. The free surface evolution is therefore solved on a
two-dimensional space for a three-dimensional flow problem
or on a one-dimensional space for a two-dimensional flow
problem. At time stept + dt the following set of equations
is then solved

∂zi
s

∂t

∫
zs (t)

9i8 dzs(t) + zi
s

∫
zs (t)

u⊥.∇⊥9i8 dzs(t)

=

∫
zs (t)

(uz + a)8 dzs(t) ,

(10)

where zs(t) is the ice sheet surface at time stept , and
u⊥=(ux, uy) anduz are taken from the solution of the Stokes
problem at timet .

Due to the hyperbolic nature of Eq. (10) the standard
Galerkin method does not apply. Stabilisation is obtained by
applying the stabilised method as presented by Donea and
Huerta (2003) page 172, adding the element-wise defined
term

zi
s

∫
Element

α9i8 dzs(t) (11)

The stabilisation parameter

α =
d

2 ||u||
, (12)

includes the representative element diameterd, and the norm
of the velocity||u||.

At each time step, to avoid a distortion of the domain mesh
caused by the moving free surface, the nodes of the domain
mesh are re-distributed by solving a fictive elasticity problem
introducing a mesh displacement vectord,

−∇ · (µ(∇d + (∇d)T ) + λ∇ · d I ) = 0, (13)

whereI the unity tensor. The fictive elastic properties of
the mesh are given by the arbitrary Lame parametersµ and
λ. The vertical component of the displacement at the free
surface then is coupled to the free surface variable by the
Dirichlet conditiond · ez=zs(t).

2.4 Numerical methods

2.4.1 Linear system

The discretisation and linearisation process of partial differ-
ential equations by the FE method leads to a linear system to
be solved. There are two categories of methods to solve this
linear system: direct and iterative methods. The first leads
to an exact solution up to machine precision, but is not fea-
sible on very large problems. The latter utilises a converging
sequence of approximate solutions.

In our particular application two-dimensional problems
were solved by the direct Unsymmetric MultiFrontal method
(UMFPACK, Davis, 2004), whereas a BiConjugate Gradient
Stabilised method (BiCGStab, Kelley, 1995) was applied to
three-dimensional computations. After a renumbering in or-
der to optimise the matrix bandwidth and a scaling of the
resulting matrix, an incomplete LU (ILU) factorisation with
the lowest fill-in order (ILU0) was used as pre-conditioner
for the system. The convergence of the iterative method is
obtained when the relative change of the residuals is lower
than the criterionǫL.

2.4.2 Non-linear system

The non-Newtonian stress-strain relation introduces non-
linearities into the system. Linearisation is obtained by ex-
pressing the strain-rate in the effective viscosity (2) in terms
of the velocity field taken from the previous iteration step,
thus applying a fixed point iteration scheme. Convergence
is checked upon the norm of the relative change of the field
variables

2
|Un+1 − Un|

|Un+1| + |Un|
< ǫNL ≪ 1, (14)

where|Un| stands for norm of the solution vector at then-th
non-linear iteration step.
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Fig. 1. Three sections (horizontal length 100 m) of the lower end of
Arolla glacier geometry flow-line (experiment E) model with mesh
E 20 20 applied.

2.4.3 Coupled solvers and time stepping scheme

Applying constant boundary conditions, the prognostic tests
are integrated over time until a steady state is reached. For
time-integration, an implicit scheme is applied. On a single
time-level, the Stokes and free surface solvers are run iter-
atively until the convergence criterionǫC is reached. The
same convergence estimate Eq. (14) as for the non-linear it-
eration is used but the reference value for the current solution
Un stands now for the last converged value of the non-linear
system before starting a new coupled iteration cycle. Using
this implicit scheme, the time step can be increased with no
decrease of the accuracy of the solution. If the time step is
small enough, an explicit scheme is equivalent.

In order to guarantee good convergence, one should set
ǫL<ǫNL<ǫC .

2.4.4 Mesh generation

Implied by the domain geometry, experiments A, B, C, D
and F were performed using layered meshes consisting ofNx
horizontal andNz vertical layers in 2-D andNx andNy hori-
zontal andNz vertical layers in 3-D. The mesh then consists
of quadrilateral elements with 4 nodes in 2-D and hexahedral
elements with 8 nodes in 3-D.

The geometry for experiment E was defined by a longitu-
dinal profile of 5 km in length with a grid spacing of 100 m,
based on the topography of the Haut Glacier d’Arolla from
the year 1930. From the two sets of point coordinates de-
scribing the free surface as well as the bedrock, 50 sections
(48 of quadrilateral and 2 of triangular topology) with lin-
ear connections between the supporting points at the surfaces
were created (see Fig. 1). This brings along the advantage
that variables for output required on these points do not have
to be interpolated.

In order to compare the influence of longitudinal as well as
vertical element density, four different computational meshes
using layered structure and a fifth using unstructured mesh-
ing technique have been created using the pre-processor
Gambit (see Table 1 and Fig. 2).

Table 1. Mesh parameters for experiment E.

Identifier ratio hori. number of element
over vert. nodes/cells type

E 1 10 1/10 541/500 linear quad/tri
E 1 20 1/20 1031/1000 linear quad/tri
E 20 20 20/20 20771/19800 linear quad/tri
E 20 20 2nd 20/20 41542/19800 2nd order quad/tri
E unstruct ≈ 20 m 2405/4290 linear tri

3 General settings using FEM

3.1 Mesh influence

3.1.1 Mesh density

Mesh density is one of the most important parameters that
controls the quality of the solution. Higher resolution natu-
rally results in higher quality, but the drawback is that CPU
time consumption increases with mesh resolution. Due to the
numerical methods used, the CPU time is found to be pro-
portional to the number of degrees of freedom to the power
1.27 and 1.11 in 2-D and 3-D applications, respectively (see
Fig. 3 and its caption). For the Stokes problem, the degrees
of freedom are 3N in 2-D and 4N in 3-D, whereN is the
total number of nodes. In order to run one of the diagnos-
tic experiments, the CPU cost is approximately 0.0024N1.27

seconds for 2-D problems, whereas it is 0.061N1.11 seconds
in 3-D. This difference of regression between 2-D and 3-D
cases certainly results from the different methods used to
solve the linear system (direct in 2-D and iterative in 3-D).
Note the discrepancy of the CPU time consumption for the
different tests, indicating that the CPU time consumption de-
pends on the geometry, i.e. domain lengthL, of the problem
to be solved (and not only the plain amount of nodes).

3.1.2 Ratio of horizontal to vertical layers

In total six variations of experiments B and D were per-
formed using a regular mesh consisting ofNx horizontal and
Nz vertical layers. The ratioNx/Nz was varied from 1 up
to 10, while keeping an almost constant value for the overall
amount of nodes,N . Since we constrainedNx to be a mul-
tiple of 4 in order to have one node exactly at the minimum
and maximum value of the sinusoidal functions (bedrock ge-
ometry for test B and sliding function for test D),N naturally
is not exactly the same for all the meshes. The range of nodes
was 10 278± 267.

The comparison between the tests is done using the mini-
mum and maximum values of the field variables computed
at the surface and the bottom. In the whole range of the
tested ratiosNx/Nz, the maximum relative difference for the

The Cryosphere, 2, 67–76, 2008 www.the-cryosphere.net/2/67/2008/
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Fig. 2. From top to bottom, the meshes E1 10, E 1 20, E unstruct
and E20 20. See Table 1 for definition of these four meshes. Ver-
tical scales are 10 times exaggerated.

velocity, stress and pressure fields is less than 1% for test B.
For test D, this relative difference even is below 1% for all the
field variables, except for the minimum value of shear stress
at the bottom, which should vanish in the limit ofAs→∞.
Relative to the maximum value of the shear stress at the bot-
tom (≈100 kPa for the 5 tests), this error is lower than 5% for
all the meshes, but increases with a growing ratioNx/Nz.

The aspect ratioH/L of the experiments, whereH and
L are respectively the height and the length of the domain,
varies from 0.006 up to 0.20. As a common rule applied
to the FE method, elements should not be too much elon-
gated. For the six experiments B and D, one cannot con-
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Fig. 3. CPU time consumption (s) as a function of the total degrees
of freedom, for 2-D and 3-D experiments A, B, C and D. Power
regressionsy=0.0006x1.27 andy=0.013x1.11 for 2-D and 3-D ex-
periments are plotted using straight and dotted lines, respectively.
Dashed and dash-dot lines are parallel to the 3-D regression line
with a power law factor divided by 4 and 16, respectively. The
stars associated with the number indicate results for parallel runs
for experiment A withL=5 km and the corresponding number of
processors.

clude from these results which ratioNx/Nz between 1 to 10
is more suitable for these tests. Nevertheless, our results
show that for these particular setups with large difference
between horizontal and vertical gradients, elongated quadri-
lateral elements can be used. ForL=160 km, this leads to
an element aspect ration of 0.0125. Therefore, the same ra-
tio Nx/Nz=240/120=2 was used to produce all the submit-
ted results. Likewise, the 3-D meshes were also built with
Nx/Nz=Ny/Nz=2 for experiments A and C.

3.2 Convergence criteria

The convergence of the solution is controlled by three crite-
ria:
– ǫL for the convergence of the linear solution if an iterative
method is used to solve the linear system (3-D experiments),
– ǫNL for the convergence of the non-linear iterations due to
the non linear ice-rheology,
– ǫC for the convergence of the coupled problem for the prog-
nostic experiments.

The two criteriaǫL and ǫNL can be increased in order
to decrease the number of iterations and decrease the CPU
time consumption. To quantify the influence of the conver-
gence criteria, experiment A with domain lengthL=40 km
has been performed forǫL=10−7 up to ǫL=10−2 and
ǫNL=10ǫL. As shown in Fig. 4b, the error of the solution
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Fig. 4. (a)CPU time consumption (circle) and number of non-linear
iterationsNNL (cross) relative to the reference run (ǫL=10−7)

and(b) maximum of the relative difference with the reference run
(ǫL=10−7) on the velocities as a function ofǫL=ǫNL/10, for ex-
periment A with lengthL=40 km.

is directly proportional to the two convergence criteria. In-
creasing the convergence criteria by one order of magnitude
will decrease the accuracy of the solution by one order of
magnitude. Most of the win in CPU is obtained by reduction
of the needed number of non-linear iterations, as indicated in
Fig. 4a.

In all experiments submittedǫL=10−6 was set for the 3-D
experiments (a direct method was used for the 2-D experi-
ments) andǫNL=10−5 was taken to be the non-linear conver-
gence criterion for 2-D as well as 3-D non-linear problems.

3.3 Numerical methods

Numerical stabilisation of the Stokes equation was achieved
by different methods:
– Taylor-Hood elements using quadratic velocity basis func-
tion and linear pressure basis function,
– linear elements stabilised using the residual free bubbles
method (Baiocchi et al., 1993),
– linear elements using the stabilisation method by Franca
and Frey (1992).

For a given number of elements, the first two methods re-
sult in the same size of the linear system, whereas for the
third, just half the size of the linear system is needed. Nev-
ertheless, we established that in order to maintain the quality
of the solution, the number of elements should be increased
for the last method. The first two methods lead to the same
results in the case of linear (or plane) boundaries (as for ex-
periments A, B, C and D), but the number of mesh nodes
for the bubbles is half compared to the Taylor-Hood method,
such that tests A, B, C, D and F were performed using the
bubble stabilisation method. Since the normal defined on the
domain boundaries in experiment E shows discontinuities,
linear elements stabilised with the bubbles method occurred
to be less adapted to this problem than non-linear elements
(see Sect. 4.3).

Table 2. Settings for submitted experiments A and C.

Nx × Ny × Nz 60× 60× 30

Element Brick (8 nodes)
Linear Method Iterative (BiCGStab)
Preconditioning ILU0 (incomplete LU)
ǫL 10−6

ǫNL 10−5

Stabilisation Bubbles

3.4 Parallel runs

Parallel runs were performed for experiment A with
L=5 km. Elmer utilises domain decomposition to perform
parallel runs. The mesh was partitioned such that the associ-
ated nodes of the periodic boundary conditions fall into the
same partition. A good partition table should minimise the
number of shared inter-partition nodes in order to decrease
the information exchange between the processors and assign
an equal amount of nodes to the partitions, such that load bal-
ance is guaranteed. It is found that the efficiency of the par-
allelisation is inverse proportional to the number of shared
nodes, relative to the total number of nodes. A vertical parti-
tioning was found not to converge, certainly because in that
case the number of shared nodes was too large. As shown in
Fig. 3, if using horizontal partitioning, the parallel efficiency
is close to 1, i.e. the decrease of the CPU time consumption
is approximately proportional to the number of partitions.

4 Specific characteristics of experiments

In the following, we want to highlight specific results ob-
tained for each of the experiments. A complete description
of all the ISMIP-HOM experiments can be found in Pat-
tyn and Payne (2006) (http://homepages.ulb.ac.be/∼fpattyn/
ismip/) and in the complementary material of Pattyn et al.
(2008).

4.1 Experiments A and B

Results of experiments A are shown in Figs. 1 to 7 of the
complementary material and the settings for the submitted
experiments are given in Table 2.

Results of experiments B are shown in Figs. 8 to 12 of
the complementary material, http://www.the-cryosphere.net/
2/67/2008/tc-2-67-2008-supplement.zip, as well as the re-
sults for Experiment A in the planey=L/4. Settings for the
submitted experiments B are given in Table 3.

As shown in Fig. 2 of the complementary material, the
shape of the horizontal surface velocity forL=5 km signifi-
cantly differs from that for the five other cases. The surface
velocity is larger over the bump, anti-correlated with the ice
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Table 3. Settings for submitted experiments B and D.

Nx × Nz 240× 120

Element Quadrilateral (4 nodes)
Linear Method Direct
ǫNL 10−5

Stabilisation Bubbles

thickness. This can be explained by mass conservation: vari-
ation of horizontal flux cannot be balanced anymore by ver-
tical flux at the free surface since the vertical velocity would
be too large for the given flow depth. Therefore, the horizon-
tal flux is more or less constant inducing larger velocity for
smaller depth, and vice-versa. This feature is not observed
in 3-D certainly because parts of the ice can flow around the
obstacle by its lateral sides.

The maximum of the absolute value of the difference
between the isotropic and hydrostatic pressure at the bed,
1p(zb)=p(zb)−ρ g H , decreases with increasingL (see
Fig. 1 of the complementary material). ForL=160 km, the
isotropic pressure at the base is very close to the hydrostatic
pressure (|1p(zb)|<4 kPa, to be compared to the mean basal
isotropic pressurep≈9000 kPa).

For the 3-D tests A, the output variables plotted in the
planey=L/4 are very close to that of the 2-D tests B (see
Figs. 8 to 12 of the complementary material). This indicates
that the third directiony, perpendicular to the mean flow di-
rection, does not play a significant role for the flow. Even if
the bedrock gradients iny andx directions are of the same
order of magnitude, the 3-D flow conditions are not far from
the plane-strain assumption made for the 2-D flow. The re-
sults get closer with increasing length of the domain.

4.2 Experiments C and D

Results of experiments C are shown in Figs. 13 to 21 of the
complementary material file and the settings for the submit-
ted experiments are given in Table 2.

Results of experiments D and experiments C in the plane
y=L/4 are shown in Figs. 22 to 27 of the complementary
material. Settings for the submitted experiments D are given
in Table 3. As for experiment B, the shape of the horizontal
surface velocity forL=5 km differs from the five others. The
same explanation as in experiment B still applies to this test.

The discontinuity atx=3L/4 observed on most of the
1p(zb) curves is difficult to interpret (see Fig. 27 on the
complementary material). It was found whatever the mesh
discretisation was. A mesh with no node exactly at the posi-
tion x=3L/4 revealed the same discontinuity. This discon-
tinuity also appears for the 3-D experiments C (see Fig. 27
in the complementary material). More detailed study of the
deviatoric stress fields over the whole domain indicates that

Fig. 5. Isovalue of the longitudinal deviatoric stressSxx [kPa] for
experiment D with lengthL=5 km.

the horizontal normal component of the deviatoric stressSxx

changes its sign atx=L/4 andx=3L/4 from bed to sur-
face, and that its horizontal gradient at this point is very high,
as shown in Fig. 5. Contrary to experiment B, the absolute
value of1p(zb) is not a decreasing function ofL. For all
the tests, the maximum absolute value of1p(zb) is approxi-
mately 30 kPa, which is about 0.3% of the basal hydrostatic
pressure.

Note that, since the basal slope of the bedrock is very small
( nb ≈ [0.0017 0 0.999998]), the shear stressSxz(zb) is very
close to the basal dragτb=σnt |zb

=tb.σnb. This explains why
the minimal value ofσxz|zb

is very close to zero for all the
tests.

A good method to verify the model results is to compare
the component of the load caused by the gravity force paral-
lel to the bedρg1000L sin(0.1◦) to the integral of the basal
drag over the whole bedrock

∫ L

0 σntdx. Obviously, these two
quantities should cancel each other. For all the six experi-
ments, this balance was found to be fulfilled with a relative
error lower than 0.6%.

4.3 Experiment E

Experiment E000 (Arolla flow line without slip section) was
run on all five grids presented in Sect. 2.4. The submitted
experiments have been run using the settings summarised in
Table 4. Results of experiments E are shown in Figs. 28 and
29 of the complementary material. Comparison of the CPU
time spent for read-in of data and solution of the flow prob-
lem are depicted in Fig. 6.

The corresponding results for the Cartesian components
of the surface velocities as well as the Cartesian component
τxy(zb) of the deviatoric stress tensor and the pressure differ-
ence1p(zb) at the bedrock are shown in Fig. 7.

The results show a quantitative equal behaviour of the sur-
face velocity field between the five different meshes. Nev-
ertheless, a higher frequency as well as amplitude of the
oscillation in the stress and pressure curves obtained at the
bedrock can be seen on the grids using more than just one
mesh interval between the supporting points of the geometry.
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Fig. 6. Experiment E000: CPU time consumption obtained for the
different meshes defined in Table 1.
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Fig. 7. Experiment E000 -(a) Horizontal surface velocity,(b) verti-
cal surface velocity,(c)basal shear stress and(d) difference between
the isotropic and hydrostatic pressure at the bed on mesh E1 20
(dash-dot line), Eunstruct (dotted line), E20 20 (dashed line) and
E 20 20 2nd (solid line).

Comparison to a run with second order elements on the mesh
E 20 20 2nd revealed that this is a numerical artifact caused
by the use of first order elements. Figure 8 clearly shows,
that the curve for1p(zb) for the second order elements is
missing these oscillations.

The linear interpolation between the data points used to
construct the mesh is certainly responsible for these oscilla-
tions. These findings lead to the conclusion that the solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−150

−100

−50

0

50

x/L [−]

∆
 p

 [k
P

a]

E−1−20 linear

E−20−20 linear

E−20−20 2 nd order

Fig. 8. Experiment E000: comparison of1p(zb) along the bedrock
between linear and second-order element runs.

is not only influenced by the numerical method used to solve
the equations, but also the method used to generate a com-
putational grid from a digital elevation model (DEM). In our
case we stick to the instructions of the test coordinator to use
linear connections along bedrock and free surface between
the given DEM points. We agree that this linear interpolation
was necessary for an objective comparison of all the models
with different node numbers on the boundaries. For other ap-
plications, we would recommend to perform a non-linear in-
terpolation between the given DEM points. In Zwinger et al.
(2007), we chose Nonuniform Rational B-Splines (Les and
Wayne, 1997) interpolation in order to get a smooth bedrock
geometry, which enabled us to do the runs using linear ele-
ments.

As one can deduce from the horizontal position of the in-
serted markers from the result obtained with the mesh E1 20
(where the basal mesh points coincide with the supporting
points of the geometry), the peaks in the solution obtained
with the linear element mesh E20 20 occur exactly at these
supporting points of the geometry. The most evident ex-
planation hence is that the kinks in the bedrock topography
occurring at mesh points (due to the interconnection using
straight lines) are responsible for these oscillations. This
phenomenon is omitted using the second order element func-
tions, since the first derivative of the test functions does not
show unsteadiness and the kinks are being smoothed out.

Experiment E001 (Arolla flow line with slip section) was
run on three of the grids. The results are displayed in Fig. 9.
Here the situation concerning the oscillations of the stress
and pressure curves is even more pronounced, as singular
points, where a sudden change from no-slip to slip takes
place, are imposed on the bedrock boundary. Again, an ad-
ditional run on the mesh E20 20 2nd revealed that – apart
from the peaks at the singular points – oscillations can be
avoided by applying second order elements. The comparison
between different meshes and element types is depicted in
Fig. 10.

The Cryosphere, 2, 67–76, 2008 www.the-cryosphere.net/2/67/2008/



O. Gagliardini and T. Zwinger: Elmer and the ISMIP-HOM experiments 75

0.00 0.25 0.50

x/L [−]

0.75 1.00
0

20

40

60

80

100

120
 (a) E001 − horizontal velocity [m/a]

0.00 0.25 0.50

x/L [−]

0.75 1.00
−30

−20

−10

0

10

20
 (b) E001 − vertical velocity [m/a]

0.00 0.25 0.50

x/L [−]

0.75 1.00
−200

−100

0

100

200

300

400

500
 (c) E001 − shear stress [kPa]

0.00 0.25 0.50

x/L [−]

0.75 1.00
−1500

−1000

−500

0

500

1000

1500
 (d) E001 − pressure difference [kPa]

Fig. 9. Experiment E001 -(a) Horizontal surface velocity,(b) verti-
cal surface velocity,(c)basal shear stress and(d) difference between
the isotropic and hydrostatic pressure at the bed on mesh E1 20
(dash-dot line), E20 20 (dashed line) and E20 20 2nd (solid line).
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4.4 Experiment F

Results of experiments F are shown in Figs. 30 and 31 of the
complementary material and the settings for the submitted
experiments are summarised in Table 5.

Since the central area over the bump is the zone of inter-
est, the horizontal element size is increased from the centre
to the lateral boundaries with a factor 2. To ensure the mass
conservation, periodic boundary conditions are applied be-

Table 4. Settings for submitted experiment E.

Mesh E20 20 2nd

Element 2nd order quad/tri
Linear Method Direct
ǫNL 10−5

Stabilisation Stabilised Method

Table 5. Settings for submitted experiment F.

Nx × Ny × Nz 60× 60× 40

Element Brick (8 nodes)
Linear Method Indirect ILU0
ǫL 10−5

ǫC 10−4

Stabilisation Bubbles
Time step dt = 1 a

tween the upstream and downstream boundaries. For the two
lateral boundaries, a zero flux and the periodicity for the ve-
locity within the plane of the boundary are prescribed.

The steady state solution is reached by running a time de-
pendent simulation with constant boundary conditions using
a time step size equivalent to one year. As expected, the
surface elevation velocity is a decreasing function of time.
As shown in Fig. 11b (thick lines), the CPU consumption
needed for one time step is a decreasing function of time, in-
dicating that the number of coupled iterations needed for a
converged solution during one time step is also decreasing
with time (from 6 to 1). The two tests were stopped when the
norm of the relative difference between two time steps of all
the variables (velocity and surface elevation) was lower than
10−4. As shown in Fig. 11b (thin lines), this corresponds to
a maximal vertical velocity of the surface of few centimetres
per year. It took a time-integration equivalent to 197 (exp. F
without sliding) and 228 (exp. F with sliding) years to com-
ply with these convergence criteria.

Since there is no accumulation on the surface, the ini-
tial volumeV0=9.9685×1012 m3 should be conserved. As
shown in Fig. 11a, for both experiments, the relative change
of volume is of the order of the precision (<10−6).

5 Conclusions

All ISMIP-HOM benchmark tests have been performed us-
ing the finite element code Elmer. Some technical points
linked to FE, such as element types and densities, numeri-
cal solution methods and parallel performance have been dis-
cussed. The CPU time consumption for all the tests has been
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reported together with the parameters of the model setup.
From our sensitivity experiments, we have established that
horizontally elongated elements did not cause any drop in so-
lution quality for experiments A to D. For experiment E, the
oscillations arising at the supporting points of the geometry
were eliminated using second-order element functions. The
few tests performed using parallel computing, with a paral-
lel efficiency close to one, are very promising for future 3-D
applications.

As shown in Pattyn et al. (2008), results obtained with
Elmer are very close to the ones obtained with the other full-
Stokes model. Consequently, a relatively high level of con-
fidence can be attributed to these results, even if no analyti-
cal solution is available to validate the accuracy of all these
results. In Pattyn et al. (2008), it is also shown that the ob-
served deviations between the models are the consequence of
the model hypothesis (ranging from SIA to full-Stokes), and
not caused by the choice of the numerical methods and their
implementation. In other words, models built on the same
hypothesis give similar results. For the full-Stokes models,
this clearly indicates that the results are very close to the ex-
act solution of the problem.

Output figures for all the tests, as well as the original out-
put files in the format defined by the ISMIP-HOM conveners,
are attached as complementary material to this paper. One
purpose of this article is to provide fully documented results
of all ISMIP-HOM runs obtained with Elmer. Such material
can be used in the future in helping the developments of new
higher-order models, by allowing an easy comparison with
some existing well documented benchmark tests.
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