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Abstract. The aim of this paper is to describe in detail experiment is not limited to global ice-sheet flow models
how the benchmark tests ISMIP-HOM (Ice Sheet Model In-and can be performed by higher order flow models. The
tercomparison Project-Higher-Order ice-sheet Model) havdast experiment that compares Higher-Order Models (ISMIP-
been performed using the open source finite element (FEHOM, http://homepages.ulb.ac.b@dattyn/ismip/) is coor-
code Elmer (http://www.csc.filelmer). The ISMIP-HOM dinated by Frank Pattyn and is addressed to all 2-D and 3-D
setup consists of five diagnostic and one prognostic experiice flow models.

ments, for both 2-D and 3-D geometries. For all the tests, the

full-Stokes equations are solved. Some technical points con- In the present paper we discuss in detail the results ob-
cerning FE, such as mesh characteristics, stabilisation mettained by running the ISMIP-HOM experiments with the FE
ods, numerical methods used to solve the linear system ang@Pen source code Elmer. The complexity of the equations
parallel performance are discussed. For all these setups, tH€ be solved in the proposed tests is such that most of the
CPU time consumption in relation to the accuracy of the so-standard FE software for fluid dynamics should be able to
lution is ana|ysed_ Based on these findings, some generd}erform the experiments (at least the five diagnostic). There-

rules on optimising the computing time versus the accuracyfore, the main focus of such experiments lays more on the
of the results are deduced. comparison of the results obtained for a various range of all

the parameters that control the simulation, rather than in pro-
ducing the results themselves. In this paper, we present a
detailed study on the influence of the mesh parameters (e.qg.,
1 Introduction number of nodes, type of elements, ratio of horizontal to
vertical element densities), numerical methods used to solve
Following the EISMINT (European Ice Sheet Modelling the linear system (direct or iterative methods), and the in-
INiTiative, Payne et al., 2000) benchmark experiments, thefluence of the tolerance criteria used to control the conver-
Ice Sheet Model Intercomparison Project (ISMIP) aims togence of the non-linear iteration induced by the non-linear
provide a comparison of the new generation of ice-sheefiow law of ice. In order to compare these results, the qual-
flow models. It is composed of three different tests. Theity of the solution for given settings, relative to a reference
comparison of the ice-dynamic response of Antarctic andsolution, as well as the CPU time consumption have to be
Greenland ice sheet models applied to climatic warmingtaken into account. Especially the latter, even if being ma-
(ISMIP-POLICE), coordinated by Philippe Huybrechts, is chine dependent, should have been part of the model output
dedicated to global ice-sheet models. The simulation setugor the ISMIP-HOM experiments, since the applicability of
for Heinrich-type ice-sheet instabilities (ISMIP-HEINO), co- a model to a certain problem size is a fundamental informa-
ordinated by Reinhard Calov and Ralf Greve, aims to com-tion. All results presented in this paper have been obtained
pare the ability of 3-D ice-sheet flow models to simulate on a HP ProLiant Cluster of the Center for Scientific Com-
large scale surges induced by an activation and deactivaputing (CSC, Finland).
tion wave of the temperate basal area. Since the model
domain represents a small synthetic circular ice-sheet, this Among the 28 models that participated ISMIP-HOM tests,
only two full-Stokes codes, including Elmer, have been ap-
plied to all tests-scenarios. An intercomparison of output

Correspondence to: O. Gagliardini from all models is presented in Pattyn et al. (2008). This
BY (gagliardini@Igge.obs.ujf-grenoble.fr)  paper solely focuses on results obtained with Elmer.
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2 Equations and numerical methods 2.2 Boundary conditions

We briefly summarise the equations to be solved and the nUFor each of these conservation equations, a various number
merical methods used to solve them by the finite elementy boundary conditions have to be applied, depending on the
(FE) method. test case. Three different kinds of boundaries can be distin-

2.1 Governing equations guished for all these tests.

For all these experiments, we are interested in solving the?-2-1 Ice-bedrock interface=z(x, y. 1)
gravity-driven flow of ice over a rigid bedrock for various o . o
boundary conditions at the ice-bedrock boundary. The confor the velocity field, either no slidinge(x, y, z;,)=0) — as

stituting law for the ice behaviour is given by a Norton-Hoff for experiments A, B and E — or a friction law linking the
type law (Glen’s law in Glaciology): sliding velocity to the basal shear stress — as for tests C and

D — applies. Such friction law is of the form
‘L','j = ZT]Dl'j y (1)
wheret and D are the deviatoric stress and the strain-ratefi - u = Ast; - (0 -np) = Astpi (i =1,2), (7)
tensor, respectively. Both, linear and non-linear ice rheol-
ogy are envisaged. For the latter, the effective viscasiy =~ wheren,, is the unit normal vector pointing into the bedrock

strain-rate dependent and denotes as: and¢; the unit tangent vectors£1 in 2-D andi=1,2 in
A-1/n 3-D). The sliding parameted; is only a function of space
p= ¢l ) (A;=1/B2 in C, D and F). In contrary to the shallow ice
2 approximation, the basal shear stresds not equal to the
where the second invariant of the strain-ratés expressed ~Pasal driving stresgg(z;—z5)V 125, but rather part of the
by solution.
-2 2 .
2; =ttD°=D:D. () 2.2.2 Uppersurface=z,(x, y, 1)
As the HOM experiments are defined to be isothermal, the
fluidity parameterd, in Eq. (2), is a constant. For all these tests, the upper surface is a stress free surface,

With ice being a highly viscous and incompressible mate-Which implies tha, - (o -n5)=pam = 0, wheren; is the unit
rial, the mass conservation and the conservation of linear monormal vector of the surface. Note that this condition does

mentum reduce to the well-known set of Stokes equations: not imply that the isotropic pressugevanishes at the sur-
face. As a consequence of the variational formulation used in

divu =trD =0, (4)  Elmer, this stress free condition is inherent (natural boundary

and condition), such that no explicit condition has to be applied
for the Stokes problem. For the kinematic boundary condi-

dive + pg = 2divyD +gradp + pg =0, (5)  tion at the free surface Eq. (6), the rate of accumulation,

whereu is the velocity vectorp the ice density ang the has to be prescribed. Within the FE formulation of Eq. (6), it

gravity vector. The Cauchy stress tensetr + pI has been ~ acts as a source term.

decomposed into its deviatoric part — replaced by the strain-

rate using Eq. (1) — and the isotropic pressur€or both 2-D  2.2.3  Lateral boundaries of the model

and 3-D experiments, theaxis is aligned with the negative

direction of the gravity vector and the-axis points in the ~ For experiments A, B, C, D and F, periodicity of the verti-

principal direction of the flow. cally aligned in- and outflow boundaries is applied. In prin-
In the case of prognostic experiments, the surface elevaciple Elmer does support non-conformal periodical boundary

tionz=z,(x, y, t) is part of the solution. For this free surface, mapping, nevertheless, in order to avoid inaccuracies intro-

the following equation serves as the kinematic boundary conduced by interpolation, it is favourable to ensure conformal

dition: mapping, like we did in our applications.
0z . .
8—; 4+u,.Vizs=u,+a forallz=z(x,y, 1), (6) 2.3 Finite element formulation

whereu | =(uy, uy), the operato® | stands for the gradient We hereafter only discuss some technical aspects of interest
evaluated in horizontal directions, .87, =(9./9x, 3./dy), in connection with the ISMIP-HOM experiments. For a de-
anda is the accumulation-ablation function, considered astailed presentation of the FE implementation in Elmer, the
a vertical flux. For experiment F, vanishing accumulation isreader can consult the Elmer documentation, which is to be
prescribed. found under http://www.csc.fi/elmer.
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2.3.1 Stokes equation The stabilisation parameter

Ice flow is governed by the Stokes problem for an incom-, — d i
pressible fluid, corresponding to the solution of Egs. (4) and  2|ul|
(5).- A numerical solution of this set requires stabilisation by jcjudes the representative element diamétend the norm
either using the classical Taylor-Hood elements (quadraticyf ipe velocity||u].

interpolation of the velocity and linear interpolation of the At each time step, to avoid a distortion of the domain mesh
pressure), the stabilised method (Franca and Frey, 1992) qfaysed by the moving free surface, the nodes of the domain

the residual free bubbles method (Baiocchi etal., 1993).  megh are re-distributed by solving a fictive elasticity problem
The way how stress is computed from the velocity and howinoducing a mesh displacement veator

the isotropic pressure fields is obtained is of particular inter-
est, as different methods can lead to sensitively different so—V - (u(Vd + (V)Y + A1V -d 1) =0, (13)
lutions. In this study, the deviatoric stress field is obtained by

solving Eq. (1) using the following variational form with the where[ the umlty tensor. Thg fictive elastic properties of
scalar test function®: the mesh are given by the arbitrary Lame parameieasid

A. The vertical component of the displacement at the free
N _ N surface then is coupled to the free surface variable by the
/v 7ij®dV = 2/‘, nDij®av, (8) Dirichlet conditiond - e,=z;(¢).

(12)

whereD;; andn are computed from the nodal velocities us- 2.4 Numerical methods
ing the derivative of the basis functions.
2.4.1 Linear system
2.3.2 Free surface equation
The discretisation and linearisation process of partial differ-
The free surface elevatiap is discretized as ential equations by the FE method leads to a linear system to
be solved. There are two categories of methods to solve this
, linear system: direct and iterative methods. The first leads
zs(x, y, 1) = Wi(x, y)zg(t) (9)  to an exact solution up to machine precision, but is not fea-
sible on very large problems. The latter utilises a converging

wherez; is the (nodal) elevation at thieth node inside the sequence of approximate solutions.

local element of the meshed ice sheet surface vanstands In our particular application two-dimensional problems

for the n.odal interpolgtion functions. ) ) were solved by the direct Unsymmetric MultiFrontal method

The discrete variational form of Eq. (6) is obtained by SPa-(UMFPACK, Davis, 2004), whereas a BiConjugate Gradient
tial integration over the ice sheet surface, using the test funcg 1 iiced method (BICGStab, Kelley, 1995) was applied to
tion &. The. free surface evolution IS thef?fore solved on ay e _dimensional computations. After a renumbering in or-
two-dimensional space for a three-dimensional flow problemyg, optimise the matrix bandwidth and a scaling of the

or on a one-dimensional space for a two-dimensional flowegiing matrix, an incomplete LU (ILU) factorisation with
problem. At time step + dr the following set of equations e |owest fill-in order (ILUO) was used as pre-conditioner
is then solved for the system. The convergence of the iterative method is
obtained when the relative change of the residuals is lower
than the criteriorg; .

azi .
- ‘I’icbdzs(t)Jrzﬁ,/ u, VW ddz(t)
o Juy zs() (10) 24.2 Non-linear system
- /Z (,)(”Z+a)q)d25(t)’ The non-Newtonian stress-strain relation introduces non-

linearities into the system. Linearisation is obtained by ex-
where z,4(¢) is the ice sheet surface at time stepand pressing the strain-rate in the effective viscosity (2) in terms
u =(uy, uy) andu, are taken from the solution of the Stokes of the velocity field taken from the previous iteration step,
problem at time. thus applying a fixed point iteration scheme. Convergence
Due to the hyperbolic nature of Eg. (10) the standardis checked upon the norm of the relative change of the field
Galerkin method does not apply. Stabilisation is obtained byvariables
applying the stabilised method as presented by Donea and

n+l _ yrn
Huerta (2003) page 172, adding the element-wise defineQu <enL <1 (14)
term Ut + U ’
; where|U"| stands for norm of the solution vector at tiv¢h
Zs /Elemem“q’iq)dzf () (1) non-linear iteration step.

www.the-cryosphere.net/2/67/2008/ The Cryosphere, 2, 67-76, 2008



70 O. Gagliardini and T. Zwinger: Elmer and the ISMIP-HOM experiments

Table 1. Mesh parameters for experiment E.

Identifier ratio hori. number of element
over vert. nodes/cells type

E_1.10 1/10 541/500 linear quad/tri

E_1.20 1/20 1031/1000 linear quad/tri

E_20.20 20/20 20771/19800 linear quad/tri
Fig. 1. Three sections (horizontal length 100 m) of the lower end of E 20.20.2nd  20/20 41542/19800 énd cr)r%uer qur!ld/tri
Arolla glacier geometry flow-line (experiment E) model with mesh Eiunistn;ct ~20m 2405/4290 linear tri
E_20.20 applied. _
2.4.3 Coupled solvers and time stepping scheme 3 General settings using FEM

Applying constant boundary conditions, the prognostic tests3-1 Mesh influence

are integrated over time until a steady state is reached. For ]

time-integration, an implicit scheme is applied. On a single3-1-1 Mesh density

time-level, the Stokes and free surface solvers are run iter- o )

atively until the convergence criterion- is reached. The Mesh density is one of the most important parameters that
same convergence estimate Eq. (14) as for the non-linear jcontrols the _quqllty of the 'solutlon. Higher resollutlon natu-
eration is used but the reference value for the current solutioh@!ly results in higher quality, but the drawback is that CPU
U" stands now for the last converged value of the non-lineatime ansumptlon increases with mes_h re_solutlon. Due to the
system before starting a new coupled iteration cycle. UsingUMerical methods used, the CPU time is found to be pro-
this implicit scheme, the time step can be increased with ndPOrtional to the number of degrees of freedom to the power

decrease of the accuracy of the solution. If the time step is-2/ @hd 111 in 2-D and 3-D applications, respectively (see
small enough, an explicit scheme is equivalent. Fig. 3 and its captlpn). For the Stpkes problem, the degrees
of freedom are & in 2-D and 4V in 3-D, whereN is the

In order to guarantee good convergence, one should S8btal number of nodes. In order to run one of the diagnos-
€L<ENL<EC: tic experiments, the CPU cost is approximatel§a®4y 127
seconds for 2-D problems, whereas it i®LN 111 seconds
2.4.4 Mesh generation in 3-D. This difference of regression between 2-D and 3-D
cases certainly results from the different methods used to

Implied by the domain geometry, experiments A, B, C, D solve the linear system (direct in 2-D and iterative in 3-D).
and F were performed using layered meshes consisting of Note the discrepancy of the CPU time consumption for the
horizontal andV, vertical layers in 2-D andVy andNy hori- different tests, indicating that the CPU time consumption de-

zontal andV, vertical layers in 3-D. The mesh then consists PENAS on the geometry, i.e. domain lengtof the problem
of quadrilateral elements with 4 nodes in 2-D and hexahedral® Pe solved (and not only the plain amount of nodes).

elements with 8 nodes in 3-D. . . .
3.1.2 Ratio of horizontal to vertical layers

The geometry for experiment E was defined by a longitu-

dinal profile of 5km in length with a grid spacing of 100m, | total six variations of experiments B and D were per-

based on the topography of the Haut Glacier d’Arolla from formed using a regular mesh consisting\gf horizontal and

the year 1930. From the two sets of point coordinates de-y, vertical layers. The ratidvy/N, was varied from 1 up

scribing the free surface as well as the bedrock, 50 sectiong, 10, while keeping an almost constant value for the overall

(48 of quadrilateral and 2 of triangular topology) with lin- amount of nodesly. Since we constrainedy to be a mul-

ear connections between the supporting points at the surfacqple of 4 in order to have one node exactly at the minimum

were created (see Fig. 1). This brings along the advantaggnd maximum value of the sinusoidal functions (bedrock ge-

that variables for output required on these points do not haV%metry for test B and sliding function for test DY, naturally

to be interpolated. is not exactly the same for all the meshes. The range of nodes
In order to compare the influence of longitudinal as well aswas 10 278t 267.

vertical element density, four different computational meshes The comparison between the tests is done using the mini-

using layered structure and a fifth using unstructured meshmum and maximum values of the field variables computed

ing technique have been created using the pre-processat the surface and the bottom. In the whole range of the

Gambit (see Table 1 and Fig. 2). tested ratiogVy/ Nz, the maximum relative difference for the

The Cryosphere, 2, 67-76, 2008 www.the-cryosphere.net/2/67/2008/
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Fig. 3. CPU time consumption (s) as a function of the total degrees
of freedom, for 2-D and 3-D experiments A, B, C and D. Power
regressions=0.0006r1-27 andy=0.013¢1-11 for 2-D and 3-D ex-
periments are plotted using straight and dotted lines, respectively.
Dashed and dash-dot lines are parallel to the 3-D regression line
with a power law factor divided by 4 and 16, respectively. The
stars associated with the number indicate results for parallel runs
for experiment A withL=5km and the corresponding number of
processors.

clude from these results which rathé /N, between 1 to 10

is more suitable for these tests. Nevertheless, our results
show that for these particular setups with large difference
between horizontal and vertical gradients, elongated quadri-
lateral elements can be used. Hoe160km, this leads to

an element aspect ration of0d25. Therefore, the same ra-
tio Ny/N,=240/120=2 was used to produce all the submit-
ted results. Likewise, the 3-D meshes were also built with
Nx/Nz=Ny/N,=2 for experiments A and C.

Fig. 2. From top to bottom, the meshesIEL0, E 1 20, Eunstruct
and E20.20. See Table 1 for definition of these four meshes. Ver-3.2 Convergence criteria
tical scales are 10 times exaggerated.
The convergence of the solution is controlled by three crite-
ria:
velocity, stress and pressure fields is less than 1% for test B- €. for the convergence of the linear solution if an iterative
For test D, this relative difference even is below 1% for all the method is used to solve the linear system (3-D experiments),
field variables, except for the minimum value of shear stress- €y, for the convergence of the non-linear iterations due to
at the bottom, which should vanish in the limit af — oo. the non linear ice-rheology,
Relative to the maximum value of the shear stress at the bot—¢¢ for the convergence of the coupled problem for the prog-
tom (=100 kPa for the 5 tests), this error is lower than 5% for nostic experiments.
all the meshes, but increases with a growing ratigN;. The two criteriae;, and ey, can be increased in order
The aspect ratidd /L of the experiments, wher® and  to decrease the number of iterations and decrease the CPU
L are respectively the height and the length of the domaintime consumption. To quantify the influence of the conver-
varies from 0006 up to 020. As a common rule applied gence criteria, experiment A with domain length=40 km
to the FE method, elements should not be too much elonhas been performed foe; =107 up to ¢,=10"2 and
gated. For the six experiments B and D, one cannot coney;=10¢;. As shown in Fig. #, the error of the solution

www.the-cryosphere.net/2/67/2008/ The Cryosphere, 2, 67-76, 2008
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0% w' Table 2. Settings for submitted experiments A and C.
01 @ . ®

10
0.6

(¢, =107)

NXxNyXNZ 60 x 60 x 30

-1

05 10

NL

Max Relative Error

;— 0.4 . Element Brick (8 nodes)
Qo3 10 Linear Method lIterative (BiCGStab)
Z 02 0° Preconditioning  ILUO (incomplete LU)
g 01 + €r 10—6
3 —5
oL - - - 10 E - - - 3 ENL 10
6 5 4 3 2 6 5 4 3 2
B2 P Stabilisation Bubbles

Fig. 4. (a)CPU time consumption (circle) and number of non-linear

iterations Nz (cross) relative to the reference rue; £10~7)

and(b) maximum of the relative difference with the reference run 3.4 Parallel runs

(e2=10"7) on the velocities as a function ef =e /10, for ex-

periment A with lengthl.=40 km. Parallel runs were performed for experiment A with
L=5km. Elmer utilises domain decomposition to perform
parallel runs. The mesh was partitioned such that the associ-

is directly proportional to the two convergence criteria. In- ated nodes of the periodic boundary conditions fall into the
creasing the convergence criteria by one order of magnitudéame partition. A good partition table should minimise the
will decrease the accuracy of the solution by one order ofniumber of shared inter-partition nodes in order to decrease
magnitude. Most of the win in CPU is obtained by reduction the information exchange between the processors and assign

of the needed number of non-linear iterations, as indicated iran equal amount of nodes to the partitions, such that load bal-
Fig. 4a. ance is guaranteed. It is found that the efficiency of the par-

allelisation is inverse proportional to the number of shared
nodes, relative to the total number of nodes. A vertical parti-
tioning was found not to converge, certainly because in that
case the number of shared nodes was too large. As shown in
Fig. 3, if using horizontal partitioning, the parallel efficiency

is close to 1, i.e. the decrease of the CPU time consumption
3.3 Numerical methods is approximately proportional to the number of partitions.

In all experiments submittef =10~° was set for the 3-D
experiments (a direct method was used for the 2-D experi
ments) and y; =102 was taken to be the non-linear conver-
gence criterion for 2-D as well as 3-D non-linear problems.

Numerical stabilisation of the Stokes equation was achieved4 Specific ch istics of :
by different methods: pecific characteristics of experiments

— Taylor-Hood elements using quadratic velocity basis func-m the following, we want to highlight specific results ob-

tion and linear pressure basis function, . . -
. " . . tained for each of the experiments. A complete description
— linear elements stabilised using the residual free bubbles . .
: X of all the ISMIP-HOM experiments can be found in Pat-
method (Baiocchi et al., 1993), )
. : S tyn and Payne (2006) (http://homepages.ulb.acfpattyn/
— linear elements using the stabilisation method by Francallsmi /) and in the complementary material of Pattyn et al
and Frey (1992). P P y y '

(2008).
For a given number of elements, the first two methods re-

sult in the same size of the linear system, whereas for thel.1 Experiments A and B

third, just half the size of the linear system is needed. Nev-

ertheless, we established that in order to maintain the qualityResults of experiments A are shown in Figs. 1 to 7 of the
of the solution, the number of elements should be increasedomplementary material and the settings for the submitted
for the last method. The first two methods lead to the sameexperiments are given in Table 2.

results in the case of linear (or plane) boundaries (as for ex- Results of experiments B are shown in Figs. 8 to 12 of
periments A, B, C and D), but the number of mesh nodesthe complementary material, http://www.the-cryosphere.net/
for the bubbles is half compared to the Taylor-Hood method,2/67/2008/tc-2-67-2008-supplement.zip, as well as the re-
such that tests A, B, C, D and F were performed using thesults for Experiment A in the plange=L /4. Settings for the
bubble stabilisation method. Since the normal defined on thesubmitted experiments B are given in Table 3.

domain boundaries in experiment E shows discontinuities, As shown in Fig. 2 of the complementary material, the
linear elements stabilised with the bubbles method occurredhape of the horizontal surface velocity o5 km signifi-

to be less adapted to this problem than non-linear elementsantly differs from that for the five other cases. The surface
(see Sect. 4.3). velocity is larger over the bump, anti-correlated with the ice

The Cryosphere, 2, 67-76, 2008 www.the-cryosphere.net/2/67/2008/
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Table 3. Settings for submitted experiments B and D. -

Ny x Nz 240x 120

Element Quadrilateral (4 nodes)
Linear Method  Direct

ENL 1075

Stabilisation Bubbles

-20 -15

m
th!ckness. Thls can be explained by mass conservation: VarlI_:ig. 5. Isovalue of the longitudinal deviatoric streSg, [kPa] for
ation of horizontal flux cannot be balanced anymore by VeT-eyperiment D with length—5 km.
tical flux at the free surface since the vertical velocity would
be too large for the given flow depth. Therefore, the horizon-
tal flux is more or less constant inducing larger velocity for the horizontal normal component of the deviatoric stigss
smaller depth, and vice-versa. This feature is not observe@hanges its sign at=L/4 andx=3L/4 from bed to sur-
in 3-D certainly because parts of the ice can flow around theace, and that its horizontal gradient at this point is very high,
obstacle by its lateral sides. as shown in Fig. 5. Contrary to experiment B, the absolute

The maximum of the absolute value of the difference ygjye of Ap(zp) is not a decreasing function @f. For all
between the isotropic and hydrostatic pressure at the beC{he tests, the maximum absolute Va'Uﬂﬁ(Zb) is approxi_
Ap(zp)=p(zp)—p g H, decreases with increasing (see  mately 30 kPa, which is about3% of the basal hydrostatic
Fig. 1 of the complementary material). Fbe=160km, the  pressure.
isotropic pressure at the base is very close to the hydrostatic Note that, since the basal slope of the bedrock is very small
pressure|Ap(z5)|<4 kPa, to be compared to the mean basal( ;, ~ [0.0017 0 0999998), the shear stress . (z)) is very
isotropic pressur@~9000 kPa). close to the basal drag=ay,, |, =t5.0 1. This explains why

For the 3-D tests A, the output variables plotted in the the minimal value ob,,|,, is very close to zero for all the
planey=L/4 are very close to that of the 2-D tests B (see tests.

Figs. 8 to 12 of the complementary material). This indicates A good method to verify the model results is to compare
that the third directiory, perpendicular to the mean flow di- the component of the load caused by the gravity force paral-
rection, does not play a significant role for the flow. Even if |e| to the bedpg100QL sin(0.1°) to the integral of the basal
the bedrock gradients in andx directions are of the same  graq over the whole bedroc% oedx. Obviously, these two
order of magnitude, the 3-D flow conditions are not far from g antities should cancel each other. For all the six experi-

the plane-strain assumption made for the 2-D flow. The reoments, this balance was found to be fulfilled with a relative
sults get closer with increasing length of the domain. error lower than G%.

20
1

4.2 Experiments C and D 4.3 Experiment E

Results of experiments C are shown in Figs. 13 to 21 of theExperiment EQ0O (Arolla flow line without slip section) was
complementary material file and the settings for the submit-run on all five grids presented in Sect. 2.4. The submitted
ted experiments are given in Table 2. experiments have been run using the settings summarised in
Results of experiments D and experiments C in the planeTable 4. Results of experiments E are shown in Figs. 28 and
y=L/4 are shown in Figs. 22 to 27 of the complementary 29 of the complementary material. Comparison of the CPU
material. Settings for the submitted experiments D are givertime spent for read-in of data and solution of the flow prob-
in Table 3. As for experiment B, the shape of the horizontallem are depicted in Fig. 6.
surface velocity fol.=5 km differs from the five others. The The corresponding results for the Cartesian components
same explanation as in experiment B still applies to this testof the surface velocities as well as the Cartesian component
The discontinuity atc=3L/4 observed on most of the t.,(z;) of the deviatoric stress tensor and the pressure differ-
Ap(zp) curves is difficult to interpret (see Fig. 27 on the enceAp(z,) at the bedrock are shown in Fig. 7.
complementary material). It was found whatever the mesh The results show a quantitative equal behaviour of the sur-
discretisation was. A mesh with no node exactly at the posiface velocity field between the five different meshes. Nev-
tion x=3L/4 revealed the same discontinuity. This discon- ertheless, a higher frequency as well as amplitude of the
tinuity also appears for the 3-D experiments C (see Fig. 27oscillation in the stress and pressure curves obtained at the
in the complementary material). More detailed study of thebedrock can be seen on the grids using more than just one
deviatoric stress fields over the whole domain indicates thamesh interval between the supporting points of the geometry.
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Fig. 6. Experiment EO00: CPU time consumption obtained for the

different meshes defined in Table 1. Fig. 8. Experiment EO00: comparison afp(zj) along the bedrock

between linear and second-order element runs.

EO000 - horizontal velocit / b) EO00 - vertical veloci / . . .
— nzontal veloety [ma] P it L is not only influenced by the numerical method used to solve

60 ) . the equations, but also the method used to generate a com-
putational grid from a digital elevation model (DEM). In our
case we stick to the instructions of the test coordinator to use
-5 linear connections along bedrock and free surface between
the given DEM points. We agree that this linear interpolation

was necessary for an objective comparison of all the models

50
40
30
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20

10 e with different node numbers on the boundaries. For other ap-
S o oo o7 100 X0 ol om0 o 1oo pllcatlons, we would recommend to pe'rform a nqn-lmear in-
XIL -] XL [ terpolation between the given DEM points. In Zwinger et al.
(2007), we chose Nonuniform Rational B-Splines (Les and
(c) E000 - shear stress [kPa) g, (@) 000~ pressure difference [kPa] Wayne, 1997) interpolation in order to get a smooth bedrock
| geometry, which enabled us to do the runs using linear ele-
ments.

As one can deduce from the horizontal position of the in-
serted markers from the result obtained with the medhZ®
(where the basal mesh points coincide with the supporting
points of the geometry), the peaks in the solution obtained
with the linear element mesh. BD_20 occur exactly at these

-50

-100

-50 -150 supporting points of the geometry. The most evident ex-
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 . . . .

e e planation hence is that the kinks in the bedrock topography

occurring at mesh points (due to the interconnection using

Fig. 7. Experiment E00O (a) Horizontal surface velocityp) verti- straight lines) are responsible for these oscillations. This

cal surface velocity(c) basal shear stress afat) difference between  phenomenon is omitted using the second order element func-
the isotropic and hydrostatic pressure at the bed on mesI2&E  tions, since the first derivative of the test functions does not
(dash-dot line), Eunstruct (dotted line), 20.20 (dashed line) and  show unsteadiness and the kinks are being smoothed out.
E.20.20.2nd (solid line). Experiment E001 (Arolla flow line with slip section) was

run on three of the grids. The results are displayed in Fig. 9.

Here the situation concerning the oscillations of the stress
Comparison to a run with second order elements on the meSBnd pressure curves iS even more pronounced' as Singu|ar
E_20.20.2nd revealed that this is a numerical artifact CaUSEdpoints’ where a sudden change from no-slip to slip takes
by the use of first order elements. Figure 8 clearly showsplace, are imposed on the bedrock boundary. Again, an ad-
that the curve forAp(zp) for the second order elements is ditional run on the mesh_20.20.2nd revealed that — apart
missing these oscillations. from the peaks at the singular points — oscillations can be

The linear interpolation between the data points used tcavoided by applying second order elements. The comparison

construct the mesh is certainly responsible for these oscillabetween different meshes and element types is depicted in
tions. These findings lead to the conclusion that the solutiorfig. 10.
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Fig. 9. Experiment EQ01 ¢(a) Horizontal surface velocityp) verti-
cal surface velocity(c) basal shear stress aft) difference between
the isotropic and hydrostatic pressure at the bed on mesi2E&E
(dash-dot line), E20_20 (dashed line) and_20.20.2nd (solid line).
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Fig. 10. Experiment E001l: comparison afp(z;,) along the
bedrock between linear and second-order element runs.

4.4 Experiment F

Table 4. Settings for submitted experiment E.

Mesh E20.20_2nd
Element 2nd order quad/tri
Linear Method Direct

ENL 107°

Stabilisation Stabilised Method

Table 5. Settings for submitted experiment F.

Nx x Ny x Nz 60 x 60 x 40
Element Brick (8 nodes)
Linear Method Indirect ILUO
€r 10-°

ec 1074
Stabilisation Bubbles

Time step d=1a

tween the upstream and downstream boundaries. For the two
lateral boundaries, a zero flux and the periodicity for the ve-
locity within the plane of the boundary are prescribed.

The steady state solution is reached by running a time de-
pendent simulation with constant boundary conditions using
a time step size equivalent to one year. As expected, the
surface elevation velocity is a decreasing function of time.
As shown in Fig. 1l (thick lines), the CPU consumption
needed for one time step is a decreasing function of time, in-
dicating that the number of coupled iterations needed for a
converged solution during one time step is also decreasing
with time (from 6 to 1). The two tests were stopped when the
norm of the relative difference between two time steps of all
the variables (velocity and surface elevation) was lower than
10~4. As shown in Fig. 1l (thin lines), this corresponds to
a maximal vertical velocity of the surface of few centimetres
per year. It took a time-integration equivalent to 197 (exp. F
without sliding) and 228 (exp. F with sliding) years to com-
ply with these convergence criteria.

Since there is no accumulation on the surface, the ini-
tial volume V5=9.9685x 102 m?3 should be conserved. As
shown in Fig. 14, for both experiments, the relative change
of volume is of the order of the precisior 106).

Results of experiments F are shown in Figs. 30 and 31 of thes Conclusions
complementary material and the settings for the submitted

experiments are summarised in Table 5.

All ISMIP-HOM benchmark tests have been performed us-

Since the central area over the bump is the zone of intering the finite element code Elmer. Some technical points
est, the horizontal element size is increased from the centréinked to FE, such as element types and densities, numeri-
to the lateral boundaries with a factor 2. To ensure the massal solution methods and parallel performance have been dis-
conservation, periodic boundary conditions are applied becussed. The CPU time consumption for all the tests has been

www.the-cryosphere.net/2/67/2008/
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