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Abstract

Results from a regional climate simulation (1970–2006) over the Greenland ice sheet

(GrIS) reveals that more than 97% of the interannual variability of the modelled Surface

Mass Balance (SMB) can be explained by the GrIS summer temperature anomaly

and the GrIS annual precipitation anomaly. This multiple regression is then used to5

empirically estimate the GrIS SMB since 1900 from climatological time series. The

projected SMB changes in the 21st century are investigated with the set of simulations

performed with atmosphere-ocean general circulation models (AOGCMs) of the Fourth

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4).

These estimates show that the high surface mass loss rates of recent years are not10

unprecedented in the GrIS history of the last hundred years. The minimum SMB rate

seems to have occurred earlier in the 1930s. The AOGCMs project that the SMB

rate of the 1930s would be common at the end of 2100. The temperature would be

higher than in the 1930s but the increase of accumulation in the 21st century would

partly offset the acceleration of surface melt due to the temperature increase. However,15

these assumptions are based on an empirical multiple regression only validated for

recent/current climatic conditions, and the accuracy and time homogeneity of the data

sets and AOGCM results used in these estimations constitute a large uncertainty.

1 Introduction

Mass balance variations of the GrIS play an important role in global sea level fluctua-20

tions and oceanic THC changes. On the one hand, GrIS mass balance changes appear

to have contributed several metres to some of the sea-level fluctuations since the last

interglacial period known as the Eemian, 1.25×10
5

yr ago (Cuffey and Marshall, 2000)

and are expected to contribute to sea-level rise under the projected future global warm-

ing throughout this century (IPCC, 2007). On the other hand, increases in the freshwa-25

ter flux from the Greenland ice sheet (run-off of the surface melt water, basal melting
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and glacier discharge) could perturb the THC by reducing the density contrast driving

the thermohaline circulation (Rahmstorf et al., 2005). Any weakening of the THC in

response to a surface warming and an increasing freshwater flux induced by global

warming (Gregory et al., 2005; Swingedouw et al., 2006) would reduce the heat input

to the North Atlantic ocean and subsequently reduce the warming in regions including5

Europe. The IPCC 4th Assessment Report (IPCC AR4) projects that the Greenland ice

sheet is likely to lose mass because the increasing run-off is expected to exceed the

precipitation increase in a warmer climate but did not expand on the individual model

estimates or mass balance components.

In this study, we provide estimates of the GrIS SMB from 1900 to 2100 based on a10

multiple regression model using anomalies of GrIS summer temperature (from 1 June

to 31 August) and from GrIS annual precipitation. A 37-yr (1970–2006) simulation of the

GrIS performed by the regional climate model MAR (Modèle Atmosphérique Régional)

shows that 97% of the interannual variability of the modelled SMB is explained by these

anomalies (Fettweis, 2007). Such a strong correlation is also confirmed by the model15

of Hanna et al. (2008) driven by the ECMWF (re)analysis. We use this relation to

empirically estimate the GrIS SMB since 1900 until now from climatological time series

and analyses. The 21st century is investigated with results from the AOGCMs used in

the IPCC AR4. Sect. 2 explains in detail both the method and data used. Estimates of

near past and future GrIS SMB rates are presented in Sect. 3 and Sect. 4, respectively.20

Section 5 contains a discussion of the results.

2 Method

To a first approximation, the GrIS SMB variability (∆SMBGrIS) is driven by the GrIS

annual precipitation anomaly (∆Pyr) minus the GrIS meltwater run-off rate variability.

According to Box et al. (2004) and Fettweis (2007), the run-off rate variability can be25

approximated by the GrIS summer (from 1 June to 31 August) 3 m-temperature (∆Tjja)
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to give this multiple regression:

∆SMBGrIS ≃ a∆Tjja + b∆Pyr (1)

where a and b are constant parameters. These parameters are determined by re-

solving the multiple regression equation using the simulated GrIS SMB anomaly time

series and both temperature and precipitation anomaly time series.5

By using de-trended results simulated by MAR, a correlation coefficient of 0.97 is ob-

tained between the simulated and estimated GrIS SMB anomaly from Eq. (1) over the

period 1970–1999. The root mean square error (RMSE) represents 25% of the GrIS

SMB anomaly standard deviation. Such a correlation motivated the use of this equa-

tion to extend the estimate of the SMB variability with the help of climatological time10

series and the outputs from analyses and the AOGCMs used in the IPCC AR4. The

30-yr reference period (1970–1999) is chosen because it covers most of the available

data sets and model results used in this study.

Figure 1 shows where the regional variability of the MAR 3 m-temperature and pre-

cipitation best captures the variability of the MAR SMB of the whole ice sheet. With the15

aim of applying this multiple regression to other data sets (at low resolution and without

an ice sheet/land mask), we delimited regions in latitude/longitude on the GrIS where

the variability of precipitation and temperature will be captured to estimate the SMB

following Eq. (1). These regions (called Region 1 and Region 2 hereafter) are different

for temperature and precipitation, and are plotted in Figs. 1 and 2. The boundaries of20

these regions are chosen to have higher correlations between the GrIS SMB modelled

by MAR and the SMB estimated by temperature/precipitation anomaly simulated by

MAR model (following Fig. 1) as well as anomalies from all data sets used hereafter

(see Table 2). Both regions chosen are therefore the same for all data sets.

The excellent agreement between the modelling from MAR and from Hanna et al.25

(2008) (called Hanna08 hereafter) and the estimates of the GrIS SMB anomaly by

using temperature (resp. precipitation) anomaly on Region 1 (resp. 2) can be seen in

Fig. 3. This figure compares also the GrIS SMB simulated by the Polar MM5 model
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(Box et al., 2006). The interannual variability between the three models compares very

well. In the 2000s, the MAR SMB anomalies are much lower than the other models

and the agreement between simulated and estimated SMB (from Eq. 1) is worse. The

results are likely affected in part by inhomogeneities after 2002 due to the use of the

operational ECMWF analysis, instead of the model-consistent ECMWF reanalysis for5

the period 1958–2001, to drive the three models. The disagreement in the 2000s

explains why we did not extend the 30-yr reference period (1970–1999) to the 2000s.

3 Surface mass balance in the 20th century

For each data set listed in Table 1, we computed the parameters a and b over the

reference period (1970–1999) by using the GrIS SMB anomaly time series simulated10

by MAR and by Hanna08 in the left part of Eq. (1) and the temperature/precipitation

anomaly time series from the data set averaged on Region 1/Region 2 in the right part.

The high correlation coefficient(>0.8) between the GrIS SMB anomaly simulated by

MAR (resp. Hanna08) and the one estimated by the data sets following Eq. (1) over

1970–1999 (see Tables 2 and 3) motivated us to extend empirically the SMB anomaly15

estimation to the whole period covered by the data sets by using the same previously

determined parameters a and b. These parameters are computed over 1970–1999 by

using de-trended (i.e. with a zero trend) time series to minimise the dependence on the

reference period and are applied after that to the whole time series (without correction

of the trend). The anomalies refer then to the period 1970–1999. In addition, the use20

of de-trended time series of anomalies to compute the parameters a and b rather than

time series of values provides a better homogeneity between the different data sets

and the MAR (resp. Hanna08) model.

Before continuing, it should be noted that these data set-based SMB anomaly esti-

mates should be considered with precaution.25

– Firstly, these estimates are based on Eq. (1) which does not explain fully the
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SMB variability and uses results from the MAR and Hanna08 models (not direct

observations) for the calibration.

– Secondly, by using constant parameters a and b through the whole period cov-

ered by the climatic dataset, we assume that the dependence of the SMB on the

temperature/precipitation anomaly are the same as during 1970–1999. That is5

why we chose to use de-trended time series to minimise this impact.

– In addition, we assume that the data set is homogeneous through the whole pe-

riod, which is not guaranteed as, for example, in the ECMWF time series after

2002.

– We assume also that the variability in Region 1 and 2 remains representative for10

the whole ice sheet for the entire period.

– Finally, there are not many in-situ observations (on which the data sets are based)

available over Greenland. Such data are collected along the coast by the Danish

Meteorological Institute (DMI) weather stations. They are consequently not rep-

resentative for the GrIS (Fettweis et al., 2005; Cappelen et al., 2001), although15

Hanna et al. (2008) show good correspondence between DMI and Swiss Camp

(west flank of GrIS) summer temperature variations since 1990. Nevertheless,

we can assume that the interannual variability is less sensitive to the lack of mea-

surements over the GrIS, the more so since the variability along the coast is a

good proxy for the whole GrIS variability according to Figs. 1 and 2.20

Figure 4 plots the time series of anomalies for the different datasets from 1900 to

2006. As these datasets are mainly based on the same in situ observations, the tem-

perature time series compare very well. All the series unanimously show warm periods

around 1930, 1950 and 1960 in full agreement with previous studies based on coastal

DMI weather station observations (Box, 2002; Box and Cohen, 2006; Vinther et al.,25

2006). The rate of warming in 1920–1930 is the most spectacular as pointed out by

Chylek et al. (2006). Finally, Greenland climate was colder around 1920 and, in the
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1970s and 1980s. The temperature minimum (resp. maximum) seems to have oc-

curred in 1992 after the Mont Pinatubo eruption (resp. in 1931). The warm summers

of recent years (1998, 2003, 2005), associated with large melt extent areas (Fettweis

et al., 2007), seem to be less warm than these of the 1930s, as also pointed out by

Hanna et al. (2007).5

Concerning the precipitation time series, the agreement among them is less obvious

and large disparities occur as for example with the NCEP precipitation time series in

the 1950s. In addition, the interannual variability is more significant in the GHCN pre-

cipitation time series because only one or two pixels with data are available in Region 2

(Three pixels with temperature data are available in Region 1). This suggests that the10

precipitation variability in the GHCN time series is rather the variability measured by

one or two coastal DMI weather stations. However, the series show all a small nega-

tive anomaly in the 1930s and positive in 1970s but these anomalies are less significant

than the temperature anomalies. Finally, the correlation of the de-trended time series

of the data sets with the MAR anomalies is better for temperature than for precipitation15

(see Table 2). The precipitation is more difficult to simulate and to measure (especially

snowfall) which might explain these discrepancies.

Both simulated and estimated SMB anomalies through the 20th century are plotted

on Fig. 5. The reference period is 1970–1999 over which the GrIS SMB simulated by

MAR is 352±112 km
3

yr
−1

(resp. 348±105 km
3

yr
−1

for Hanna08). The generally ac-20

cepted current estimate of the GrIS SMB is around 300 km
3

yr
−1

which approximately

balances the glacier discharge and the basal melting rate (Reeh et al., 1999; Fettweis,

2007). Tables 2 and 3 list the ratio a/b, i.e. the weight of the temperature variability

against the precipitation variability in the SMB variability. This ratio is obtained by us-

ing normalised (i.e. varying between −1 and +1) de-trended temperature/precipitation25

anomaly time series. On average, this ratio is near −1.5 (resp. −1) if the SMB anomaly

time series simulated by MAR (resp. Hanna08) is used to calibrate a and b. There-

fore, thermal factors, rather than precipitation changes, influence the SMB sensitivity,

as concluded by Fettweis (2007). This ratio is above −1 with the GHCN time series
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but these data should be considered with caution due to the sparse data available in

Region 1 and 2.

The set of SMB estimates in Fig. 5 agree to give positive anomalies around 1920 and

in the 1970s and 1980s. The maximum, confirmed by all data sets, takes place at the

beginning of the 1970s with a SMB anomaly near +200 km
3

yr
−1

due to a combination5

of cold summers and wet years. Over the period 1930–1960 and since the end of

1990s, the estimated SMB is below the 1970–1999 average. The absolute minimum

occurred around 1930 with a SMB anomaly near −300 km
3

yr
−1

. Secondary (minor)

SMB minima appear to have occurred in 1950 and 1960, equalling the surface mass

loss rates of the last few years (1998, 2003, 2006), although these minima are not10

confirmed in all data sets. However (Chylek et al., 2007) found also a maximum melt

area at the beginning of the 1930s followed by minor maxima in 1950 and 1960. The

minimum SMB rates around 1930 are due to exceptionally warm summers combined

with dry years inducing SMB rates lower than those currently observed, although the

effect of human-induced global warming was not perceptible at that time. Around 195015

and 1960, the low SMB rates are mainly explained by positive temperature anomalies.

This suggests that the glacier acceleration observed in the last decade (Rignot and

Kanagaratnam, 2006) is likely to have occurred previously as well in the 1930s if the

melt-induced outlet glacier acceleration is confirmed (Zwally et al., 2002). Therefore,

the whole ice-sheet mass balance was likely to have been negative at that time. After20

the 1990s, the GrIS SMB decreases slowly to reach the negative anomalies of the last

few years, although the summers of the 2000s were not exceptional compared to 70 yr

ago (Chylek et al., 2006).

Finally, the interannual SMB variability was higher in 1960–1990 than in the 1930s

and 2000s. During 1960–1990, negative SMB anomalies were mainly succeeded by25

positive anomalies. By contrast, in the 1930s and 2000s, there is a succession of neg-

ative SMB anomalies inducing an acceleration of the melt due to the albedo feedback.

A high melt-rate year decreases the snow pack albedo for the next year if the winter

accumulation is not enough to compensate the melt during the next summer (Fettweis,
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2007).

4 Change in the future

In the following section, we assume that the hypotheses made before are still valid

in the near future. In that case, AOGCM simulations performed for the IPCC AR4

can be used to project the GrIS SMB anomalies for the 21st century. The projected5

temperature/precipitation anomalies (plotted in Fig. 6) are based on model outputs

from the “Climate of the Twentieth Century Experiment” (20C3M) and from the scenario

SRES (Special Report on Emission Scenarios) A1B described in Nakicenov and Swart

(2000). The mid-range A1B scenario corresponds to a continuous increase of the

atmospheric CO2 concentration during the 21st century to a level of 720 ppm by 2100.10

We deduce the projected SMB changes in the future from the IPCC AR4 experiments

via the following algorithm:

1. The time series of temperature (∆Ti ) and precipitation (∆Pi ) from the 20C3M ex-

periment are de-trended, centred i.e.

∆T =
1

30

1999
∑

i=1970

∆Ti = ∆P = 0 (2)15

and normalised i.e.

∆Ti and ∆Pi ∈ [−1,1] (3)

over 1970–1999. The normalisation of the ∆Ti and ∆Pi time series enables to

homogenise the AOGCMs results over 1970–1999.

2. The MAR and Hanna08 results show a standard deviation of the GrIS SMB time20

series around 100 km
3

yr
−1

over the period 1970–1999. Therefore, if k=a/b, the

233

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/225/2008/tcd-2-225-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/225/2008/tcd-2-225-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD

2, 225–254, 2008

The 1900–2100

Greenland ice sheet

surface mass balance

X. Fettweis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

standard deviation of the SMB estimated by the temperature and precipitation

time series from the 20C3M experiment is fixed to be 100 km
3

yr
−1

, i.e.

√

√

√

√

1999
∑

i=1970

(a(∆Ti −∆T ) + b(∆Pi −∆P ))2 (4)

= a

√

√

√

√

1999
∑

i=1970

(∆Ti + 1/k∆Pi )
2 (5)

= 100 km3 yr−1 (6)5

which enables the computation of a and b if the parameter k is known. Previous

results listed in Tables 2 and 3 show a parameter k varying between −1.8 and

−0.6 following the data and model results used. Here, we will compute a and b
for k fixed at both −2 and −1.

3. For each decade between the 2010s and the 2090s, the mean projected tem-10

perature (resp. precipitation) in Region 1 (resp. Region 2) is retrieved from the

SRESA1B scenario. Afterwards, the mean 1970–1999 temperature (resp. precip-

itation) from the 20C3M experiment is subtracted from the projected temperature

(resp. precipitation) to compute anomalies which we divide by the normalisation

factor used in Eq. (3). By using parameters a and b computed in Eq. (4), we can15

then estimate the projected SMB anomaly for each decade based on a fixed value

of k.

As validation, this algorithm was applied to the ECMWF (resp. GHCN) time series by

taking a value of −1 for the parameter k. The resulted estimated SMB time series fully

agree with these simulated by Hanna08. The correlation coefficient is 0.97 (resp. 0.85)20

for a RMSE equal to 32 (resp. 52) km
3

yr
−1

. These results should be compared with

those listed in Table 3.

234

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/225/2008/tcd-2-225-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/225/2008/tcd-2-225-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD

2, 225–254, 2008

The 1900–2100

Greenland ice sheet

surface mass balance

X. Fettweis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Figure 6 plots the decadal mean of the temperature and precipitation anomalies for

all models listed in Table 4. While the interdecadal variability is very high (particularly

for precipitation) and some models are in total disagreement with the others, the models

are unanimous in projecting a temperature increase of ∼2.5
◦
C through the 21st century.

Changes in precipitation are more model-dependent than temperature although the5

multimodel average gives a small increase of precipitation during the 21st century.

Table 5 summarises the changes projected for the 21st century.

The ensemble mean of the 23 models used in the 20C3M experiment (see

Table 4) gives a mean surface temperature (resp. precipitation) of −1.2±0.6
◦
C

(resp. 530±60 mm) and a trend of +0.02 K
◦
yr

−1
(resp. no significant precipitation10

change) in Region 1 (resp. Region 2) over the reference period 1979–1999. These

results are in agreement with observations during 1970-1999, suggesting that the mul-

timodel average can be used as a reliable estimate of future changes. In a first ap-

proach, we decided to use only results of the ensemble mean rather than those from a

single model. Sophisticated weighting of the various models can be investigated in the15

future.

The SMB anomaly projection for k=a/b=−1 and k=−2 are shown in Fig. 7 and listed

in Table 5. The lower SMB anomaly in the 20th century seems to have occurred in 1931

with −300 km
3

yr
−1

. This record surface mass loss rate is likely to become common at

the end of the 21st century. The temperature will probably be much higher than pre-20

viously observed during the 20th century, but a predicted increase of precipitation will

most likely partly offset the SMB decrease associated with warming. With the SRESA2

experiment, the projected negative SMB anomaly is higher. However it should be noted

that the MAR model simulates for 2003 and 2006 negative SMB anomalies equivalent

to those projected by the AOGCMs on average for the end of the 21st century. These25

recent SMB rates are the result of low precipitation and very high temperatures (an

anomaly of about 2
◦
K occurred in 2003), suggesting that some AOGCMs could under-

estimate changes resulting from the global warming over the GrIS.

These projections are decadal means suggesting that some SMB anomalies could
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be much lower for individual years (see Fig. 8) owing to the high observed interannual

variability in the SMB (see Fig. 3). In addition to the uncertainties linked to the mod-

els/scenario and the value of k, these projections do not take into account changes in

ice dynamics and surface topography as described in Gregory and Huybrechts (2006).

An albedo decrease as well as a decrease of the surface height due to successive an-5

nual negative GrIS mass rates induces an acceleration of the melt. In addition to these

surface changes, there may be changes in glacier discharge (e.g. from melt-induced

outlet glacier acceleration as observed by Zwally et al., 2002) and in basal melting

estimated currently to be ∼300 km
3

yr
−1

by Reeh et al. (1999).

If we assume that the whole GrIS was in balance in 1970–1999, the mass loss from10

glacier discharge and basal melting to equilibrate the simulated SMB is +350 km
3

yr
−1

.

At the end of this century, the mean projections estimate SMB anomalies reaching

as low as about −300 km
3

yr
−1

which gives a global average rate of sea level rise of

+0.83 mm yr
−1

(the computation was made by using an area of a world ocean area

of 361 million km
2
). These rates are entirely in agreement with those published by15

Huybrechts et al. (2004) and by Gregory and Huybrechts (2006) for a similar scenario.

The mean SMB could be +50 km
3

yr
−1

in 2100. Added to the current mass loss from

glacier discharge and basal melting (∼−350 km
3

yr
−1

), the whole GrIS mass balance

would be −300 km
3

yr
−1

. The total volume of the GrIS is 2.93×10
6

km
3

according to

Bamber et al. (2001). About ten thousand years would be needed to melt the ice sheet20

completely with a constant rate of −300 km
3

yr
−1

. This simple calculation does not take

into account the positive feedbacks from albedo and elevation changes (Ridley et al.,

2005) or changes in ice dynamics nor the fact that in a warmer climate the ice sheet

will retreat from the coast so that less calving can take place.

5 Discussion and conclusion25

Simulations made with MAR (Fettweis, 2007) and by Hanna et al. (2008) reveal a

very high correlation between the interannual variability of the modelled SMB and the
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variability of both temperature and precipitation GrIS anomalies. We have derived

a multiple-regression relation that has been used with climatological time series to

empirically estimate the GrIS SMB since 1900. The SMB changes projected for the

end of the 21st century have been derived using the set of experiments conducted for

the IPCC AR4.5

The results show that the GrIS surface mass loss in the 1930s is likely to have

been more significant than currently due to a combination of very warm and dry

years. It is also noted from our results that a mere ten years would be enough

to pass from a GrIS growth state to a significant mass-loss state. Therefore, the

SMB changes that are currently occurring, and which are linked to global warming10

(Fettweis, 2007; Hanna et al., 2008) are not exceptional in the GrIS history. For the

near future, the IPCC AR4 models project SMB rates similar to those of the 1930s for

the end of the 21st century. That transforms to about 4 cm of sea-level rise for the end

of this century under SRES scenario A1B. If these rates are confirmed and no signifi-

cant changes occur in iceberg calving and basal melting, then these rates are not large15

enough to significantly change the freshwater flux into the Atlantic Ocean. However,

large uncertainties remain indeed in these estimates due to models/scenarios used as

well as parameters and hypotheses made in the algorithm to estimate the GrIS SMB

anomaly. That is why further investigations are needed. High-resolution simulations

made with the MAR model (which explicitly simulates the SMB by incorporating the20

surface feedbacks) forced at its boundaries by the IPCC AR4 models outputs should

yield more comprehensive and realistic results although this requires a lot of comput-

ing time. Moreover, both 2003 and 2006 negative SMB anomalies simulated by MAR

resulting from a combination of low precipitation and very high temperatures are equiv-

alent to those projected by the AOGCMs on average for the end of the 21st century.25

This suggests that some AOGCMs could underestimate changes over the GrIS from

the global warming.
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Table 1. Five climatological data sets used in this paper to estimate the GrIS SMB.

Abbreviation Name Period Resolution Web site Reference

CRU Climate Research Unit TS 2.1 1901–2002 0.5
◦

http://www.cru.uea.ac.uk Mitchell and Jones (2005)

ECMWF ECMWF (Re)-Analysis 1958–2006 1.125
◦

http://www.ecmwf.int Uppala et al. (2005)

GHCN Global Histo. Climato. Network 2 1900–2006 5
◦

http://lwf.ncdc.noaa.gov/ Peterson and Vose (1997)

NCEP NCEP/NCAR Reanalysis 1 1948–2006 ∼2
◦

http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html Kalnay et al. (1996)

UDEL Arctic Land-Surface TS 1.01 1930–2000 0.5
◦

http://climate.geog.udel.edu/∼climate/html pages/download.html#ac temp ts2
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Table 2. Correlation coefficient between the de-trended annual temperature (resp. precipita-

tion) anomaly averaged over Region 1 (resp. Region 2) from the different data sets and sim-

ulated by the MAR model over the reference period (1970–1999). The correlation coefficient

as well as the RMSE (in km
3
) between the de-trended GrIS SMB modelled by MAR and the

SMB estimated by temperature/precipitation de-trended anomaly time series are also shown.

Finally, the last column lists the ratio of the parameters a and b computed by using de-trended

normalised time series.

Name ∆T corr. ∆P corr. ∆SMB RMSE a/b

CRU 0.79 0.84 0.81 64.6 −1.32

ECMWF 0.92 0.94 0.89 49.3 −1.57

GHCN 0.83 0.82 0.83 61.4 −0.87

NCEP 0.91 0.90 0.89 49.6 −1.73

UDEL 0.86 0.80 0.83 61.0 −1.76

MAR 1.0 1.0 0.97 28.7 −1.47
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Table 3. The same as Table 2 but by using results simulated by Hanna08 in the left part of

Eq. (1).

Name ∆SMB RMSE a/b

CRU 0.86 52.3 −0.95

ECMWF 0.97 26.1 −1.17

GHCN 0.86 52.5 −0.63

NCEP 0.96 30.7 −1.34

UDEL 0.86 52.2 −1.25
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Table 4. Twenty-four AOGCMs from the IPCC AR4 used in this paper. This data comes from

the World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project

phase 3 (CMIP3) multi-model dataset available at http://www-pcmdi.llnl.gov/.

Nodel ID Sponsors, Country

BCCR-BCM2.0 Bjerknes Centre for Climate Research, Norway

CCSM3 National Center for Atmospheric Research, USA

CGCM3.1(T47/T63) Canadian Centre for Climate Modelling and Analysis, Canada

CNRM-CM3 Météo-France/Centre National de Recherches Météorologiques, France

CSIRO-MK3.0/3.5 Commonwealth Scientific and Industrial Research

Organisation Atmospheric Research, Australia

ECHAM5-MPI-OM Max Planck Institute for Meteorology, Germany

ECHO-G Meteorological Institute of the University of Bonn, Germany

Meteorological Research Institute of the Korea Meteorological Administration Korea

FGOALS-g1.0 National Key Laboratory of Numerical Modeling for Atmospheric Sciences

and Geophysical Fluid Dynamics /Institute of Atmospheric Physics, China

GFDL-CM2.0/2.1 US Department of Commerce/National Oceanic and Atmospheric

Administration/Geophysical Fluid Dynamics Laboratory, USA

GrISS-AOM National Aeronautics and Space Administration /Goddard Institute for Space Studies, USA

GrISS-EH/ER National Aeronautics and Space Administration /Goddard Institute for Space Studies, USA

INM-CM3.0 Institute for Numerical Mathematics, Russia

IPSL-CM4 Institut Pierre Simon Laplace, France

MIROC3.2(hires)/(medres) Center for Climate System Research, National Institute for Environmental

Studies, and Frontier Research Center for Global Change, Japan

MRI-CGCM2.3.2 Meteorological Research Institute, Japan

PCM National Center for Atmospheric Research, USA

UKMO-HadCM3/HadGEM1 Hadley Centre for Climate Prediction and Research/Met Office, UK
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Table 5. Future projections for the 21st century from the ensemble mean of the AOGCMs

simulations performed for the IPCC AR4. The two last lines use simulations made for the

SRESA2 experiments against SRESA1B for the other ones.

Decade ∆T (in K
◦
) ∆P (in mm) ∆SMB (in km

3
) for a/b=−1 ∆SMB (in km

3
) for a/b=−2

2010–2019 0.62 9.32 −55±61 −83±65

2020–2029 0.8 16.18 −65±36 −102±44

2030–2039 1.13 41.99 −85±59 −140±64

2040–2049 1.37 48.34 −93±51 −165±57

2050–2059 1.63 37.14 −139±76 −214±75

2060–2069 1.79 26.70 −153±76 −234±80

2070–2079 2.09 50.28 −167±74 −268±87

2080–2089 2.22 76.04 −177±81 −284±90

2090–2099 2.33 40.95 −185±82 −298±96

2080–2089 2.49 71.62 −209±134 −328±157

2090–2099 2.77 86.34 −220±120 −355±148

246

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/225/2008/tcd-2-225-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/225/2008/tcd-2-225-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD

2, 225–254, 2008

The 1900–2100

Greenland ice sheet

surface mass balance

X. Fettweis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 1. Left: autocorrelation of the (a) JJA 3 m-temperature and (b) annual precipitation simu-

lated by MAR over the period 1970–1999. The autocorrelation is defined as the correlation be-

tween time series of the average ice-sheet summer temperature and annual total ice-sheet pre-

cipitation with the respective temperature/precipitation values for each grid point. Right: the cor-

relation between the time series of the MAR-simulated GrIS SMB and (c) JJA 3 m-temperature

and (d) annual precipitation at each grid location. Minimum and maximum values are indi-

cated as well as the ice sheet average and the standard deviation. Finally, this figure shows

the regions quoted in the text. Region 1: 55
◦
W≤longitude≤45

◦
W and 63

◦
N≤latitude≤73

◦
N.

Region 2: 55
◦
W≤longitude≤30

◦
W and 65

◦
N≤latitude≤75

◦
N.
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Interactive DiscussionFig. 2. Correlation between the time series of the MAR (resp. Hanna08) simulated

GrIS SMB and the summer 3 m-temperature and annual precipitation from the ECMWF

(resp. NCEP/NCAR) reanalysis at each grid location over 1970–1999.
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Fig. 3. The GrIS SMB anomaly simulated by the MAR model and estimated with Eq. (1) by

using temperature/precipitation anomaly simulated by MAR, derived using a positive degree-

day and runoff/retention model based on ECMWF reanalysis Hanna et al. (2008) and estimated

by using temperature/precipitation anomaly from the ECMWF (re)analysis, and simulated by

the Polar MM5 model Box et al. (2006). The reference period is 1970–1999 and the temperature

and precipitation anomaly are taken from Region 1 and 2 described in Fig. 1.
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Fig. 4. Time series of the GrIS temperature (resp. precipitation) anomaly computed for Re-

gion 1 (resp. 2) from the different data sets listed in Table 1. In red dashed, the time series from

GISTEMP (available at http://data.giss.nasa.gov/). Anomalies are with respect to 1970–1999.

The 5-yr running mean of the averaged anomalies of the available data sets is shown in dashed

black.
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Fig. 5. (a) Time series of the estimated GrIS SMB anomaly using the SMB variability simulated

by MAR (to determine the parameters a and b in Eq. (1)) and anomalies from the different data

sets listed in Table 1 since 1900 until 2006. The reference period is 1970–1999 over which the

GrIS SMB simulated by MAR and by Hanna08 is around 350 km
3

yr
−1

. The 5-yr running mean

of the ensemble mean is shown in dashed black. (b) The same as (a) but using the Hanna08

results to determine the parameters a and b in Eq. (1).
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Fig. 6. Time series of temperature (resp. precipitation) anomalies projected by AOGCMs listed

in Table 4. The anomalies are decadal means, computed on Region 1 and 2 described pre-

viously and refer to the period 1970–1999. The anomalies are based on model outputs from

the “Climate of the Twentieth Century Experiment” (20C3M) and from the scenario SRES A1B.

Finally, the ensemble mean (i.e. the anomalies averaged over all the available models), the

standard deviation and the UKMO-HadCM3 time series are plotted in red, blue and green,

respectively.
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Fig. 7. Time series of SMB anomalies projected by AOGCMs listed in Table 4 for a/b=−1

and a/b=−2. The anomalies are decadal means and refer to 1970–1999. The anomalies are

based on model outputs from the “Climate of the Twentieth Century Experiment” (20C3M) and

from the scenario SRES A1B. Finally, the ensemble mean (i.e. the anomalies averaged over all

the available models), the standard deviation and the UKMO-HadCM3 time series are plotted

in red, blue and green, respectively.
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Fig. 8. The 2010–2100 projected SMB anomaly using temperature/precipitation anomaly sim-

ulated by UKMO-HadCM3 for k=−2. The temperature/precipitation projections from UKMO-

HadCM3 are near the ensemble mean and its SMB anomaly projections are at the negative

end compared with other models. The 10-yr running mean is shown in red.
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