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Abstract. Starting about thirty years ago, new ideas in non- basis functions. We show how anisotropic (including strati-

linear dynamics, particularly fractals and scaling, provokedfied) models can be produced simply by replacing the usual
an explosive growth of research both in modeling and in ex-distance function by an anisotropic scale function, hence by
perimentally characterizing geosystems over wide ranges ofeplacing isotropic singularities by anisotropic ones.

scale. In this review we focus on scaling advances in solid
earth geophysics including the topography. To reduce the
review to manageable proportions, we restrict our attentiony
to scaling fields, i.e. to the discussion of intensive quantities

such as ore concentrations, rock densities, susceptibilitiesfhe surface topography and lithosphere are extremely vari-
and magnetic and gravitational fields. able over huge ranges of scales displaying structures smaller
We discuss the growing body of evidence showing thatthan millimeters, and as large as the planet; a ratio of at least
geofields are scaling (have power law dependencies on spa0'°. The mathematical modeling of this variability has long
tial scale, resolution), over wide ranges of both horizontal stimulated mathematicians and physicists. For example Per-
and vertical scale. Focusing on the cases where both horirin (1913) considered the problem of differentiability: “Con-
zontal and vertical statistics have both been estimated fronsider the difficulty in finding the tangent to a point of the
proximate data, we argue that the exponents are systematg¢oast of Brittany... depending on the resolution of the map
cally different, reflecting lithospheric stratification which — the tangent would change. The point is that a map is simply
while very strong at small scales — becomes less and lesa conventional drawing in which each line has a tangent. On
pronounced at larger and larger scales, but in a scaling marthe contrary, an essential feature of the coast is that ... with-
ner. We then discuss the necessity for treating the fields asut making them out, at each scale guessthe details which
multifractals rather than monofractals, the latter being too re-prohibit us from drawing a tangent...”. The converse prob-
strictive a framework. We discuss the consequences of multitem — integrability (“rectifiability”) was considered by Stein-
fractality for geostatistics, we then discuss cascade processémus (1954): “... The left bank of the Vistula when measured
in which the same dynamical mechanism repeats scale afwith increased precision would furnish lengths ten, hundred,
ter scale over a range. Using the binomial model first pro-and even a thousand times as great as the length read off a
posed by de Wijs (1951) as an example, we discuss the issu&ghool map. A statement nearly adequate to reality would
of microcanonical versus canonical conservation, algebraike to call most arcs encountered in nature as not rectifiable.
(“Pareto”) versus long tailed (e.g. lognormal) distributions, This statement is contrary to the belief that not rectifiable
multifractal universality, conservative and nonconservativearcs are an invention of mathematicians and that natural arcs
multifractal processes, codimension versus dimension forare rectifiable: it is the opposite which is true...”. Richard-
malisms. We compare and contrast different scaling modelson (1961) quantified integrability by considering the empir-
(fractional Brownian motion, fractional Levy motion, con- ical scaling of the coast of Britain and of several frontiers
tinuous (in scale) cascades), showing that they are all basegsing the “Richardson dividers” method. In his paper Man-
on fractional integrations of noises built up from singularity delbrot (1967) “How long is the coast of Britain?” Richard-
son’s scaling exponent was interpreted in terms of a fractal
Correspondenceto: S. Lovejoy dimension. Also among the early pioneers, we could cite
(lovejoy@physics.mcgill.ca) Vennig-Meinesz (1951) who argued that the spectitith)
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466 S. Lovejoy and D. Schertzer: Multifractals and the solid earth

of the earth’s topography was of the “remarkable” scalingadvance was the recognition that scale invariance is a very
form k—# with spectral exponen=2; close to the modern general (although nonclassical) symmetry principle. The de-
value 8~2.1 (k is a wavenumber, see below for discussion), velopment of this “Generalized Scale Invariance” (GSI) ef-
and de Wijs (1951) who — for the distribution of ores — first fectively extended scale invariance from the restrictive and
suggested an explicit cascade model. unrealistic isotropic (“self-similar”) fractals and multifrac-
Until Mandelbrot (1977)'s seminal “Fractals: form, tals to highly anisotropic systems. In scaling but anisotropic
chance and dimension” these pioneering papers were iseystems, as one “zooms” into a structure, one finds that the
lated. However, the 1970s were a period of explosive growth‘blown up” structure is (statistically) equivalent to the start-
of nonlinear dynamics, particularly after the discovery by ing structure only if in addition to the magnification, one
Feigenbaum (1978) and others of quantitative universality in‘squashes” and/or rotates the structures by an amount which
deterministic chaos: the geoscience community was primediepends on a scale invariant rule. When viewed using tradi-
for new ideas. In this context, and riding on the back of tional (isotropic, Euclidean) notions of scale, one finds that
the computer graphics revolution, Mandelbrot’s proposal thatstructures at different scales and possibly different locations
fractals are ubiquitous in nature struck a responsive chord. I+ can be quite different. GSI thus demonstrates the “phe-
promised to characterize and model many of the messy probromenological fallacy”: that one is not justified in infering
lems of geocomplexity using unique fractal dimensions. dynamics from phenomenological appearance. More con-
When it came to geophysical applications, this audaciouscretely, the common geophysical approach of making a hier-
idea turned out to have serious limitations: most geofieldsarchy of different dynamical models to cover different ranges
of interest are mathematical fields (i.e. they have a value abf scales is often unjustified.
each space-time point such as the atmospheric temperature In this review, we focus on the scaling of geophysical
or rock density), and — in spite of many attempts — they can-quantities that can best be represented as mathematical fields,
not be reduced to geometric sets of points. They thereforé.e. having a value (e.g. altitude) or intensity (e.g. rock den-
cannot generally be characterized by unique fractal dimensity) at each point. From these intensive variables, various
sions. Furthermore, the proposed fractal sets were only scalextensive quantities can be derived. For example, the dis-
invariant under isotropic scale changes or occasionally undetribution of islands (the “Korcak law” (Korcak, 1938)), the
the slightly more general “self-affine” scale changes in whichsize of ore deposits (e.g. Barton and Scholz, 1995; Crovelli
different exponents act in different orthogonal directions.  and Barton, 1995) are geometric sets which can be derived
Since Mandelbrot’s original proposal of applying fractal from the fields (the topography, ore concentration fields in
geometry to natural systems, geoscience applications — espéiese examples) and will be outside our scope. Similarly, we
cially in turbulence — played an important role in stimulating will not discuss the literature on the scaling of rock fractures
advances. There are four key developments on which wee.g. Barton, 1995; Leary, 2003a) nor on rock fragment dis-
focus here. The first is the realization that a generic consetributions (e.g. Turcotte, 1989; Kaminski and Jaupart, 1998);
quence of scale invariant dynamics — where the same basimany examples can be found in Turcotte (1989). Finally, the
mechanism repeats scale after scale from large to small — afgurgeoning literature on scaling in seismology (starting with
multifractal fields i.e. it requires the transition from fractal the famous Omori, 1895, and then Gutenberg and Richter,
geometry to multifractal processes. In these “cascades”, th&944, laws) generally treat earthquakes as sets of points and
variability is built up scale after scale; the generic result is only considers the distribution of intensities their without ref-
that the extremes are particularly singular, they display “di- erence to their locations (hence not as fields or measures) and
vergence of moments” or equivalently algebraic/power laware also outside our scope (see however Hooge et al., 1994).
(“Pareto”) distributions (also called the “multifractal but- Earthquakes are also fertile ground for classical SOC type
terfly effect” (Lovejoy and Schertzer, 1998)). Since Bak models which build upon the classical slider-block model
et al. (1987, 1988), the combination of fractals combined(Burridge and Knopoff, 1967; see Carlson et al., 1994, for
with algebraic probabilities has been termed “Self-Organizeda review, and Weatherley and Abe, 2004, for a recent exam-
Criticality” (SOC), therefore cascades can be said to pro-ple).
vide an alternative nonclassical “multifractal phase transi- This paper is organized as follows. In Sect. 2 we use spec-
tion” route to SOC (Schertzer and Lovejoy, 1994). The third tral analysis and many examples, to argue that scaling in the
advance was the realization that when — over a finite rangeolid earth and topography cover huge ranges of scale in both
of scales — such a scaling process interacts with many otherthe horizontal and vertical directions. We argue that the scal-
or is iterated enough, that the resulting behaviour is stableng is systematically different in the two directions and that
and attractive. This implies that it doesn’t depend on manythis is a symptom of the vertical lithospheric stratification.
of the details of the dynamics; i.e. that there exist “univer- In Sect. 3, we show — again with examples — that the scal-
sality classes” for multifractal processes. This essentially reding of the intense and weak field regions is different, that
duces the number of exponents from infinity to only threethe fields are typically multifractal not monofractal, and we
and finally allows multifractals to be manageable. This is aexamine some of the consequences for classical geostatis-
kind of multiplicative central limit theorem. The fourth key tics. In Sect. 4 we consider the generic multifractal process
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S. Lovejoy and D. Schertzer: Multifractals and the solid earth 467

— cascades — concentrating on aspects which require partighysics the term “scaling” is generally reserved for invari-
ular clarification, especially the issues of the type of scaleance under scale transformations in space, time or space-
by scale conservation, singularity localization, divergence oftime, although occasionally it is also used to describe the tails
moments, universality, the dimension and codimension mul-of algebraic probability distributions, (in this case it refers to
tifractal formalisms. Finally in Sect. 5 we compare and con-scaling in a probability space; see the discussion of SOC be-
trast various scaling models and show how to take into aciow). In the geosciences there is an unfortunate tendency to
count anisotropic scaling. In Sect. 6 we conclude. use “scaling” to denote the general problem of changing from
one scale to another even if there are no conserved proper-
ties; below we reserve the term for the more precise physics
2 Wide range scaling sense which implies some invariant properties under (possi-
bly anisotropic) scale changes.
2.1 AniSOtrOpiC Scaling and vertical stratification of struc- In the fo"owing we will be interested in the ver-
tures tical stratification which — if scaling — will mani-

. ) . . fest itself in different horizontal and vertical spectral
Scale invariance — no matter how theoretically appealing “exponents although for simplicity, we will assume

would not be of general geophysical interest were it not forisotropy in the horizontal plane. In this case, we have
the basic empirical fact that geofields display wide range p (k)dk=P (K, 0, k,) KdKdOdk, =27 P (K, k;) KdKdk,
scaling. Perhaps the most straightforward way to show thigynere K.0) are the horizontal polar coordinates. We

is by using spectral analysis which is both fairly familiar to iperefore have the following 1-D spectra:
geoscientists and has the advantage of being very sensitive to

scale breaks. In addition, it can also be useful for studying /

E(K)=2 KP (K ;
anisotropy. Consider the geophysical fiéld) wherer is a (K) d (K. kz) dkz;
position vector. We define the spectral dengtigk):

E (k) =2n/P(K,kZ)KdK;
P = (TG0 = [e*r1rar O K= @)

wherek is a wavevector. Sinc@ is quadratic in/, itis a ~ Wherek=(ky, ky, k;) is a wavevector. In order to model the
second order statistic. In the definition, we have included thehorizontal stratification — the fact that the 1-D spectra will
although in fact, ofterP is estimated from a single realiza- — We takeP to be of the general anisotropic scaling form:
tIO!’] using a fast I_:ourler a]gpnthm on gridded (finite rtfso- P (K0, k)  ||(K, k)|~ :

lution) data; in this case, it is more properly called a “pe- N

1/2
riodogram”. We may then define the “isotropic” spectrum |(K k,)|| = <<k£)2 N <%>2/HZ> 5)
E (k) obtained by angle integrating: * :

where K=(k,, ky) is a horizontal vector, and we have in-
E(k) = / P(k')dk' (2)  troduced the (Fourier) scale functifik, k,)||, the “sphero

K| =k wavenumber’k; at which Fourier structures are roughly
spherical, the spectral exponentand the anistropic expo-

wherek is the modulus of the wavevector (the notation in- nent /.. From Egs. (4), (5) we obtain the horizontal and
dicates angle integration in Fourier space). If the statisticalertical scaling exponentg{, .):
properties off (r) are both isotropic and scaling thénis of
the power law form: E(K)~ K Pr; E (k) ~ k: P (6)
E(k) oc kP (3)  Wwith exponents;, B, satisfying:
whereg is the “spectral exponent”. Note that sometimes an- £1 ~ s — sz_ Ls>H,
gle averaging (rather than integration) is performed; in 2-D, Bo ~ % s> 2
the corresponding exponentgs-1. The advantage of using ]
the present (turbulence based) definition is that if the procesge"
is isotropic, therﬁ is inc_jependent of the dimension of space Hy=1—B)/A—Bo); s =B+ H. +1 8)
so that 1-D sections will have the same exponent.

The exponents of isotropic spectra are invariant under theequation (5) assumes horizontal isotropy and we have delib-
scale changk— Ak (corresponding in real space to the scale erately given the very simplest possible scale function which
reductionr—1~1r); the spectra — which keeps its form but leads to 1-D horizontal/vertical spectra with different expo-
which changes by the factor # — is called “scaling”. In  nents (Eq. 6). In fact, in order for Egs. (6), (7), (8) to follow

@)
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468 S. Lovejoy and D. Schertzer: Multifractals and the solid earth

from Eq. (5, top), the scale function need only be a solution(in spite of the notation, the real space and Fourier space

of the functional “scale” equation: scale functions are not the same, and the Fourier generators
= o GT is the transpose of the real space gener@pr If we
1T (K, k)l =277 (K kN5 T =2~ (90 consider horizontal and vertical displacemeAtR, Az, re-

whereT;, is an operator which reduces the scale of a vec—SpeCtlveW)’ then this reduces to:

tor by a ratioA, andG is the (real space) generator of the (|AI (AR)|q) o |AR[5@
anisotropy (7" means “transpose”, necessary for the Fourier ‘A (AR) =1 (r + Ar) — I (r);

generator). In this case: Ar = (AR, 0)
100 3
(|AT (AZ)|9) oc |Az[5 @
G=|010 Al (Az) =1(r+Ar)—1(r);
00H, Ar = (0,0, Az)

leading to stratification. In this section, we will only need this \here:

simple case with diagonal matri@=G’ corresponding to

“self-affine” scale changes (wheh,=1, G is the identity and ~ éx (¢) = £ (¢) (14)
the system is invariant under isotropic scale changes, i.e. itigv (¢) = Hz§ (¢)

“self-similar”). However, the basic formula Eq. (9) (“Gen-

eralized Scale Invariance”, GSI developed in the context ofHZ is thus the ratio of the horizontal and vertical structure

atmospheric turbulence (Schertzer and Lovejoy, 1985b)) isfunctlon exponents. It we takg=2, this reduces to the

. ) : usual structure function exponent (applied to a single real-
valid whenG has off-diagonal elements (corresponding to.__.. . . . o
) . . . zation, i.e. without ensemble averaging, this is termed the
differential rotation as well as squashing of structures) an

o . . . ‘semi-variogram”). Due to the Wiener-Khintchin theorem
for generalizations in which the anisotropy depends on loca,, . ;
o9 : N . : (the spectrum of a homogeneous process is the Fourier trans-
tion (“nonlinear” GSI,G is then a nonlinear operator); see

o .form of the autocorrelation function), we then obtain:
Sect. 5. We may note that here it is the real space verti- )

cal cross-sections (i.e. the linégx,z)=constant) which are £ =s—-2-H,

self-affine. This i_s quite different frpm the self—.affinity Qf Brh=&2+1 (15)
monofractal functions such as fractional Brownian Motion g, =&, (2) + 1

(fBm) which have self-affinggraphs. For example, con- . .

sider an fBm model of the ore concentratiof,y), i.e. the ~ We therefore see that the rati@,—1)/(8,—1) is the ra-
concentration in two dimensionat ( y) space. The graph tio of the variances in the horizontal and vertical directions
of ¢ — which is the surface defined in the, (y, c(x, y)) so that if we define the extent of typical structures by their
space — has self-affing (c(x, 0)) sections (i.e. for constant Vvariances, then a structure of horizontal eh;(tEmR | has a
y=0), yet the rea}—space isq—cpncentration lines defined bycorresponding vertical extentAz=I; (% * wherel; is
c(x,y):constant'wnl be self-similar. . the real space counterpart &f, it is the scale at which the
The connection between the Fourier and real space struggy, space structures are roughly “roundishz~ |A R| =,
tures can be established by using structure functions. CO”Fig. 11 shows a vertical cross-section of the magnetic sus-

H h 1 H ’ : .
sider they"" order “structure functions, defined by: ceptibility (see below) showing how structures start out very
S, (Ar)={|AI (AP)I9); AL (Ar)=I (r+Ar)—1 (r) (10) flat/stratified at small scales becoming less and less stratified
at larger scales.
where Ar is a displacement vector inx(y,z) space: )
Ar=(AR, Az) whereAR=(Ax,Ay) is a horizontal displace- 2-2 Horizontal structures

ment vector. Equation (10) assumes thid statistically in- i .
d (10) y We now attempt to demonstrate that many geofields, includ-

dependent of. Note that the fluctuations can more generally | )

be defined by wavelets; the! in Eq. (10) is in fact a “Haar” Ing some .Of the most |_mportant ‘?‘UCh as the topography ‘f.jmd

or “poor man’s” wavelet generally adequate for our purposes.rOCk Qen5|ty — are scaling over w!de ranges of scgle. We first

If the field I (r) is scaling, then: c_onsml_er_ the topography which is of particular |m_p0rtance
since it is not only relatively well measured, but is a fun-

Sy (Ar) || Ar|[59 (11) damental geophysical field. Starting with Vennig-Meinesz
(1951), many spectral analyses of the earth’s topography

whereé () is the structure function exponent, apdr|| is have been made (Balmino et al., 1973; Bell, 1975; Berk-

the scale function (the real space counterpafi(df, ;)| of ~ son and Matthews, 1983; Fox and Hayes, 1985; Gibert and

Eqg. (5): Courtillot, 1987; Balmino, 1993; Mareschal, 1989; Lagall
L etal., 1993; Tchiguirinskaia et al., 2000; Gagnon et al., 2003)
HFG (AR, Az) ” =1 I(AR, A7)l (12)  allfinding approximately power law (isotropic) spectra (also
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8 Fig. 2a. Spectra from three images near the Puu Oo volcanic vent.

log,k (cycles/m) Spectra from the visible.

22

Fig. 1. Log/log plot of the spectra for four Digital Elevation Maps 2r
(DEMSs). From right to left: Lower Saxony (with trees, top), Lower
Saxony (a sub-region without trees, bottom), the U.S. at 90 m (in

grey), at 30 (about 1km, GTOPO30) and the earth (including - x| 122
bathymetry) at 5(about 10 km), ETOPO5. A reference line of slope [ = | g oy,
—2.10 is on the graph to show the overall slope of the spectra. The 18
1.26
- 1.22

small arrows show the frequency at which the spectra are not well I [
estimated due to the inadequate dynamical range of the data; sel 6 L
+

Gagnon et al. (2006) for this theoretical estimate (for ETOPOS5, it - * .
is well estimated over the whole range). The “semi error bar” sym- [ b L
bols indicate the amount of offset due to the resolution dependent 14
factorAX (@ (see Gagnon et al., 2006) for this necessary resolution [
dependent correction). Reproduced from Gagnon et al. (2006).

12

log k (cycle/m)

relevant are similar results on Venus topography (Kucinkas
et al., 1992)). Although the exponents are somewhat variig. 2b. Same but spectra from thermal infrared images. All spectra
able from region to region (see the discussion in Sect. 3.4)were shifted vertically for clarity. Corresponding valuesfofire
the values of8 are not so different; the overall conclusion indicated. Reproduced from Harvey et al. (2002).
of Gagnon et al. (2006) is that it varies from about 1.6 for
oceans to 2.1 for continents. Figure 1 shows a recent spectral
analysis of topography covering the range 1 m to 20000km, The horizontal scaling of the topography and other sur-
showing the excellent scaling over at least planetary scaleface fields is significant because the geophysical processes
down to about 40 m where vegetation starts becoming an isresponsible for them (including orographic, erosional, hydro-
sue. logical etc.) are strongly nonlinearly coupled so that the scal-

Others surface fields — especially from remote sensingng in one is strong evidence for scaling in another. We can
have also been shown to have wide range spectral scalindpe fairly confident of this because scale invariance is a sym-
Some — such as the reflected visible radiances and thermahetry principle and one generally assumes that symmetries
infra red emissions from volcanoes over the range of roughlyare respected unless specific symmetry breaking mechanisms
50cm to 2km (Fig. 2) (Harvey et al., 2002; Lafém& and  can be found. Another way of viewing the same argument is
Gaonac’h, 1999) have implications for the subsurface, whileto consider a dynamical process which generates structures
others primarily reflect soil, vegetation and other surfaceover a wide range of scales and then to decompose it into
characteristics. Using remote sensing many surface fieldsa finite number of different scaling regimes each valid over
and their surrogates have been shown to exhibit wide rang&arious sub ranges. The principle of parsimony demands that
scaling, for example soil moisture (Dubayah et al., 1997) and
humidity indices (Lovejoy et al., 200%h Single and multiscale remote sensing techniques, multifractals and
MODIS derived vegetation and soil moisture, Vadose Zone J., sub-
1Lovejoy, S., Tarquis, A., Gaonac’h, H., and Schertzer, D.: mitted, 2007b.
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470 S. Lovejoy and D. Schertzer: Multifractals and the solid earth

Table 1. A comparison of estimates of the stratification expongnfrom horizontal and vertical spectra. Sinbe=(8,—1)/(8,—1), it can
be very sensitive to small errors in the tBs. Although theoretically, the simplest model involves the same degree of stratification for all
the fields, this is not strictly necessary. From these limited data, we conclud€_tigtikely to be in the range 1.5 to 3.

Quantity Bn Bu H;
Mean of rock density, gamma emission, seismic velocity (Leary, 1997) +D3# 1.1@:0.12 3.4
Carbonate rock density (Tubman and Crane, 1995) Figs. 7a, b 0.86 0.78 1.57
Susceptibility (Figs. 4a, b, KTB, Fig. 9) 1.32 1.22(1.2,KTB) 1.45
Susceptibility inferred from regional magnetic anomalies, (two regions) 0.6, 1.4 0.8,1.2 2
Rock Density inferred from high wavenumber surface gravity 13 11 3
Hydraulic conductivity (Tchiguirinskaia, 2002) 1.66 1.3 2.22
pX) Log,oE(k)
3
05
251 i""\'\ . Logok
025 0\5 EE 1 125 15 175
2 =0 .\\ ’/ /“ Jli
\/ T iy
15 ' \\/ (. \'/\\ N Al ij‘ri‘- ('l 0
-15 W #i.“ \ MHI‘ |"\T A
1 \/ J l
2 Y i
05 25 i
20 40 60 80 100 120 ¥ Fig. 3b. de Wijs spectrum: Red line is theory: E{2)+2H with

K (2)=0.05 (trace moments)}/=0.090 (first order structure func-
Fig. 3a. de Wijs Zinc concentration data from the Pulacayo mine, tions), henceg,~1.12.
Bolivia, with x the horizontal distance in units of 2m data (blue)
simulation (pink with parameters=1.8,C1=0.03, H=0.090), both

normalized to unity (the mean concentration is 15.6%). ing in circles in Fourier space, see Eq. 2 above), the (Fourier

space) log areas exceeding a log spectral density is plotted. If

the process is isotropic in 2-D space, with spectral exponent
we start with the assumption of a single regime and then onlyg, then the result will be linear but with slopel/(8—1) (the
add new additional regimes when absolutely necessary.  reciprocal because of the interchange of the ordinate and ab-

Nevertheless, itis stillimportant to directly verify the scal- SCissa; the-1 because of the cumulation of all the values be-

ing on as many geophysica“y Significant fields as possibie;lOW a SpeCtraI denSity threShOld). The method has the usual
we discuss in particuiar the rock density’ magnetic Suscepadvantage that integrating smoothes the StatistiCS, but has the
tibility, ore concentrations. Unfortunately, these generally @dded attraction of being insensitive to anisotropies (as long
require in situ measurements so that the corresponding ho@s the latter are scaling; it doesn't involve integration over
izontal fields are only known over sparse (possibly fractalcircles). Finally the method can be used to design new kinds
(Lovejoy et al., 1986)) sets of sample locations. In prin- of anisotropic filters useful for prospecting.
ciple this demands special multifractal interpolation tech- As a first example of an in situ horizontal analysis, we
nigues (Salvadori et al., 2001), but an operational methodconsider the famous de Wijs (1951) zinc concentration series
is still lacking. Cheng et al. (1994) has proposed a partial sowhich has been discussed in the literature many times and
lution to this sparse measurements problem; the “Integrate@lso reanalyzed many times including via spectral techniques
spatial-spectrum Analysis” method. The first step is to use(Agterberg, 1974; although not on a log-log plot to test the
traditional Kriging methods to obtain a 2-D field on a uni- scaling); we return to this series in Sect. 4.10 structure func-
form grid. If the data are not too sparse (essentially they mustions and other analyses). In Fig. 3a we show the original
be 2-D but with perhaps uniformly distributed “holes”), this de Wijs series of Zn concentrations and in Fig. 3b the cor-
may be adequate. The Kriging is followed this by spectralresponding spectrum witfi,~1.12. Although the number
analysis. However instead of plotting the spectral density a®f points is very small, the general power law form of the
a function of the modulus of the wavenumber (after integrat-spectrum is visible. A somewhat higher quality horizontal
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Fig. 5a. Horizontal borehole species: left to right gamma emis-
-1 sion, rock density and seismic velocity absolute reference slopes =
Br=1.4, adapted from Leary (1997).
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Fig. 4a. Magnetic susceptibility spectra in the horizontal: Power
spectra for two sets of magnetic susceptibilities in the horizontal 5 _
obtained by Pilkington and Todoeschuck (1993, 1995). The straight?,
line shows the theoretical slopg=1.32.
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Fig. 5b. Vertical borehole analyses for the same quantities and
from the same region as Fig. 5a, the absolute reference slopes have
By=1.2. Adapted from Leary (1997).

(1997) (Fig. 5a), for gamma emission, rock density and seis-
mic velocity over the range of about 10 m to 1 km. Other ex-
amples of horizontal analyses of in situ fields are hydraulic
conductivity (see Fig. 6a), (Tchiguirinskaia, 2002) and car-
bonate concentration (see Figs. 7a and 8a) (Tubman and
Crane, 1995). These figures provide some of the rare ex-
-1 0 amples where both horizontal and vertical exponents from
log, k (cycles/m) essentially the same regions have been analyzed; we could
also mention the horizontal and vertical spectra in Shiomi et
Fig. 4b. Magnetic susceptibility power spectra from vertical bore- &l (1997). In Table 1, we summarize some of these results
hole logs in sedimentary (top) and igneous (bottom) rock from theand we return to their implications for the stratification in
same region as Fig. 4a (Pilkington and Todoeschuck, 1995). Thésect. 2.4.
straight line has the slope of 1.22. As discussed in Lovejoy et
al. (2001) a values g8,~1.4 andg,~1.2 gives a good explanation 2.3 Vertical scaling
for the observed surface gravity anomalies in the same (Canadian
shield) region. The high wavenumber fall-off for the igneous seriesWe started out our survey of evidence for wide range scal-
is probably due to slight oversampling. ing in the solid earth by considering the horizontal direction;
with the exception of the topography and remotely sensed
radiances, surprisingly little is known about the horizontal
spectrum is shown in Fig. 4a (Pilkington and Todoeschuck,scaling due to the difficulty in obtaining the necessary large
1995) which was obtained after Hankel transforming the ra-quantities of in situ data. Although the geopotential fields
dial autocorrelation function from a sample of several thou-(geomagnetism, geogravity) are relatively well measured (at
sand in situ susceptibility measurements. Due to the inadleast in certain regions) and do give us information about the
equate sampling, the spectrum is not perfectly scaling, buhorizontal structure, they also depend on the vertical struc-
coupled with a corresponding vertical (borehole) spectrumture and for their interpretation require anisotropic scaling
Fig. 4b, it turns out to be roughly what is required to explain models of rock susceptibility and density respectively, see
magnetic surface anomaly spectra discussed in Sect. 2.4 b&ect. 2.4.
low. Perhaps the most convincing of the horizontal in situ  We now turn our attention to evidence for scaling in the
spectra are the 1-D “horizontal borehole” spectra of Learyvertical. It is perhaps surprising that for many geophysical

log, E(K)

N W A 0O N @
T

1 E 1 1 1 1
-3 -2
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Fig. 6a. Ensemble power spectra (25 samples, from the MADE

site, Tennessee); horizontal measurements, a straight line indicate  , ,
Br=1.66, units are such that the lowest wavenumber is about 250 m, Si6 o 6 3
highest about 10 m. Frequency

Fig. 7a. Horizontal power spectrum of the density of carbonate rock
13,0 well the last factors of 2 high frequency are a bit too smooth due to
limitations of the data (no units given in the original). Reproduced

“-—\_\_\_ from Tubman and Crane (199%),~0.86.
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Fig. 6b. Same, but vertical measurements, straight black lines
indicate 8,=2.2 for hydraulic conductivity (bottom points) and @ A
Bv=1.5 for the logarithm conductivity data (top points), how-
ever the red line shows that the lower valig=1.3 (correspond-

ing to H,=0.66/0.3=2.22) is a better fit for all except the highest
wavenumbers. Units are such that the lowest wavenumber is abou
5m, highest about 30 cm. Adapted from Tchiguirinskaia (2002).

0.001 0.01 0.1 1
Frequency

parameters the vertical structure is better known than the horFig. 7b. Same as (a) except for vertical spectrum. Reproduced from
izontal due to the large number of borehole analyses. ExTubman and Crane (1999,~0.78. Together with (a), this implies
amples of scaling spectra from boreholes (gamma emissiori;=1.57.

rock density, magnetic susceptibility, sonic velocity, porosity,

electrical resistivity) are Pilkington and Todoeschuck (1990),
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Fig. 9. Power spectrum of the KTB susceptibility (top) and density
10? ) ) ) ) ) (bottom) over the top 5596 m and 9098 m depths, respectively (2m
10" 1° 10" 10° 100 10t 10° resolution; wavenumberin units of (2m)1). The reference slope
SPATIAL FREQUENCY (CYCLES/KM) hasp=1.2 (authors’ analyses).

Fig. 8. Power law scaling of 3 well log and 3 small-scale resistivity

(FMS) power spectra over 5 decades of spatial frequency lengtlone happens to be exactly at the critical point there will only

(0.3 cycles/km to 60 cycles/km). Power law scaling expongpts  be scaling over a finite range of scales with a drastic break-

are 1.06 (P-wave sonic), 1.16 (S-wave sonic), 1.26 (density), 1.0&jown for larger scales. In addition, this critical scale diverges

(FMS 1), 1.06 (FMS 2), 1.12 (FMS 3). Reproduced from Leary 4t the critical point so that one would expect to see scale

(2003b). breaks whose value depends sensitively on some physical pa-
rameter such as porosity (indeed the possibility of such sen-

Todoeschuck et al. (1990), Todoeschuck and Jensen (1991§ItIVe dependence of magma strength on porosity due to per-

Bean and McCloskey (1993), Molz and Boman (1993); Molz Vg:i};z; ce):fn?utti)c?rlzs(gzl\z::gﬂ :tu glgezs(t)eoz azsazgsﬁgsnrl]sm for
and Liu (1997), Wu et al. (1994), Hollinger (1996), Leary P o £999, 9

(1997), Dolan et al. (1998). Leonardi andifipel (1999). there are large fluctuations these are expected in scale invari-

Tchiguirinskaia (2002). Leary (2003a), Marsan and Beanam systems and the well logs all demonstrate wide range

S scaling with no obvious systematic or strong breaks. From
(1999, 2003), Dimri (2005). Other parameters such as ther; ) : . ) . )
mal conductivities (Dimri and Vedanti, 2005) have also beenthe perspective of scale invariant dynamics (multifractal cas

shown to be scaling using other analysis techniques. Fi cades, see below), the scaling can be roughly explained as
9 9 Y ques. F9%ows: the scaling is due to the absence of a strong scale
ures 4b, 5b, 7b show some of the rare cases where both

. . - ) VeBreaking mechanism and the valgeclose to one due to
tical and horizontal statistics can be compared allowing

ust 13 ”
. . he fact that the observed processes are close to “conserved
to deduce the stratification exponéiit (Eq. 8). Figures 8, . . . . .

9, 10 are shown because they are particularly striking exam[n ultifractal processes which generically give spectra ith

: . . . littl low one (if n intermittent). The empirical val-
ples: Fig. 8 is a composite, butthespectracollectlvelycovera ttle below one (if not too intermittent). The empirical va

. ; es slightly above 1 are due to small degree of hon scale b
a range of scales from centimeters to several kilometers, anH ghtly 9 y

. . Scale conservation; a paramefét0, see below.
Figs. 9, 10 show spectra of various parameters from the deep ) : .
The second important point about the vertigal(as men-
(KTB) borehole.

tionned by Leary, 1997) is that the vertical and horizontal

. T\.NO aspect_s of the_se analyses are partlcularly wprt_h menéxponents are somewhat different. Indeed, the vertical expo-
tioning. The first — widely recognized — is the proximity of

) o ~_ nents are systematically a bit closer to 1. As pointed out by
many O.f t.heﬂ va_Iues to 1! hgnce the. term Lt noise ..Th|.s Schertzer and Lovejoy (1985a) in the context of atmospheric
term originates in the ubiquitous noise in electrical circuits

due f le t tact ith simil tra. Indeed stratification (and Lavalle et al., 1993) in the context of to-
(L ue o;ge;?n;]p eto COZ ?r? ?)tv; f5|m|.ar slp)ec;tra. N Ee 'pography); if the horizontal and vertical scalings are differ-
cary .( ) as argued tha Jis of sonic velocities, rocx ent, then the corresponding structures will exhibit differential
densities, H density (porosity), gamma activity and resistiv-

ity, porosity and permeability are all approximately unity (al- strat|f|c§t|on; thg key quantlfty IS the raﬂ@. (Eq. 8) which
thc’>ugh with fluctuations of order 0.2-0.4) and he has argueq.ve saw is the ratio of the horizontal t_o vertical structure func-
that this could best be understodd frc;m a phase transitio |on/\_/§1r|o_gram exponents. From Figs. 4_.8 we see .th.a.lt the
. . ! . "Lratification exponentl;~1.7-2 for magnetic susceptibility
type mechanism such as percolation (for an introduction, see
Stauffer, 1985, for applications to rock conductivity see Bahr, = 2Gaonac’h, H., Lovejoy, S., Nunes-Carrier, M., Schertzer, D.,
2005, and references therein). The obvious problem with thisand Lepine, F.: Percolating magmas in three dimensions, Nonlin.
as a general explanation is that in phase transitions, unlesBrocesses Geophys., in review, 2007.
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gamma (Cajon Pass)

Fig. 11. Vertical cross-section of the magnetization scale function
assumingH,=2 and a spheroscale of (40000 km) The scale is

in kilometers and the aspect ratio is 1/4. Reproduced from Lovejoy
etal. (2001).

the value H,~5/9 is found both theoretically and empiri-

10 cally (see e.g. Schertzer and Lovejoy 1985a; Lilley et al.,
2004) and the sphero scale is typicatyl m so that atmo-
spheric structures become more and more stratified at larger
and larger scales.

2.4 Combining Horizontal and vertical statistics: geopo-
tential fields

Although over huge ranges of scale the processes which pro-
duce variations in the lithospheric properties are undoubtedly
highly nonlinear, some are sources for geopotential fields
(notably geogravity, geomagetism) and are related to them by
purely linear relations (Poisson’s equation, Maxwell's equa-
10° . x " tions). Indeed, the relations are particularly convenient to
10 10 10 10 10 deal with in Fourier space so that we can obtain very simple
10" . , relations between the magnetic susceptibility spectiym
and the spectrum of the surface magnetic figgdor between
the rock density and geogravity specBaandP,.

The example of magnetism and susceptibility has been
studied in particular detail in Lovejoy et al. (2001) and Pec-

f . knold et al. (2001). With various reasonable assumptions
10° 10" 10 (that there is a scalar magnetic potential, that over the limited
wavenumber k (in 1/m) region of the study that the magnetic anomaty énd sus-
ceptibility (M) have roughly constant directions so that only

Fig. 10. Power spectra of five logs from various boreholes, from top their magnitudes are variable), one obtains (see e.g. Blakely,
to bottom:(a) gamma log from the Cajon Pass boreh@g;S-wave 1995):

sonic log from the KTB main borehole, Germar(g) resisitivity

log from the KTB main borehol€d) neutron porosity log from the e K2

KTB borehole;(e) P-wave sonic log from the Nirex 1 borehole at pPg (K) = / ——— Py (K, k) dk, (16)

Sellafield UK. The dashed black lines give power law fitdv of K2+ kzz

the spectrum decay, with spectral expongptequal to (a) 1.22,

(b) 0.98, (c) 1.31, (d) 1.37, (e) 1.4. All four boreholes probe the The integration in the above is over all wavenumbers higher

crystalline part of the upper crust. Reproduced from Marsan ancthan the Curie wavenumbet 27 /z. wherez. is the Curie

Bean (2003). depth at which all magnetization ceases due to high tempera-
tures;z,~30-80 km). In order to model the horizontal strat-
ification, we takeP,, to be of the general anisotropic scaling

(Lovejoy et al., 2001) and{,~3 for rock density; (see Ta- form (Eqg. 5). Using the susceptibility as a surrogate for the

ble 1). A valueH,>1 means that while the rock strata are magnitude of the magnetizatiad, from the data in Fig. 4a,

very thin (highly flattened structures in vertical sections), b (see also Fig. 9), the valugg;~1.2, 8,,~1.4 can be used

that they nonetheless become progressively rounder at largeo determines~4.4, H,~2 (Eq. 8) (Lovejoy et al., 2001).

and larger scales (see Figs. 11, 14). In these examples, the Using Eq. (5) for an anisotropic scaling field in Eq. (16)

sphero-scale is typically found to be quite large, thousanddor P we can see that due to both the Curie depth and

of kilometers. This is the opposite of the atmosphere wherghe sphero-scale, there will be breaks in the horizostal

V, (Sellafield)

ke
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Fig. 13. Theoretical and experimental power spectra of surface

Fig. 12. Power spectra of aeromagnetic anomaly fields from two re-magnetic fields.  The high wavenumber points are from data
gional studies over the Canadian shield (triangles and circles). SuSet 2 (circles) of Fig. 12, the high wavenumber points are from
perposed reference are lines with the theoretical high and low-wavdhe global Magsat determined spherical harmonicsl(taken as
number slopes3z;,=2, B3;=1 (see Eq. 17). The spectra have been (40 OQO km)‘l, from Langel and Estes, 1982). Reproduced from
normalized so that the high wave number regions roughly coincide LoVejoy etal. (2001).

Reproduced from Lovejoy et al. (2001).
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Iog10 (cycles/m)

Maus and Dimri (1995, 1996) used this relation but with an
spectrum; Fig. 12 shows that this is indeed the case on reisotropic (unstratified)P, in order to model high wavenum-
gional B anomaly fields. The various relevant regimes are: ber surface gravity fields, Bourlon et al. (1998) proposed us-
Ban=s—2: K > k. ing anisotropic scaling. See also Bansal and Dimri (2005)

B’_“ _ 3.’ k KL K 17 which includes scaling analyses of the horizontal anisotropy
Pri _S; e > B> Ric @0 o gravity anomalies. As in the case of the susceptibil-
Por==3 K < Kic ity/magnetic anomaly relation, there are complications in the

e\ Y H: _ vertical so that there appear to be three regimes in the sur-
where.KiC:ks (k_> _ |sthe'hor|zonta| wavenumber corre- ¢ .o o avity field: essentially they are due to a) the mantle
sponding to the vertical Curie wavenumligr and thez's  (jow wavenumbers), b) the variable lithospheric thickness
are the horizontal spectral exponents of the anomaly surfacgoypled with the strong mantle/lithosphere density gradient
magnetic field angp, pi, Bpi are the high. intermedi-  (intermediate range), c) the high wavenumber regime domi-
ate and low wavenumber spectral exponents. Since in the réjateqd by vertical and horizontal lithospheric heterogeneities
gion studied it was found thag~10~km*, ke~(30km)™*  (scales smaller than a hundred kilometers or so). While a de-
and H.~2, this impliesK;~(1000km)* so that the low  tajled analysis of these contributions to the integral (Eq. 18)
wavenumber regime is masked by the contribution from thejg iy 4 forthcoming paper (Lovejoy et al., 2007a), the pa-
core, hence we only expect to see fg,, s regimes with  rameters=5.3, H.=3 are roughly compatible with the high
a break neak.. Figure 13 shows that with~4.4, we can  \yayenumber regime and the horizontal and vertical density
explain both: the same wide range but anisotropic Sca“n%pectra published in Shiomi et al. (1997) and Leary (1997)
can explain the large scale earth magnetic anomalies up t@see Figs. 5, 9). Also, the mantle regime has been briefly dis-
several thousand kilometers (at larger scales it is dominategzssed in Lovejoy et al. (2005) and on the basis of an analysis
by the main dynamo component form the liquid core). Fig- of the equations of mantle convection, the parametess
ure 14 shows how stratified multifractal simulations (using z7 =3 were proposed.
the empirically determined universal multifractal parameters;  gefore leaving the topic of geopotentials, we could men-
see Sect. 5 below) can be used to simulate the magnetizapon recent work by Bahr (2005) to link rock conductivity
tion, and Fig. 15 shows the correspondifigields. See also  ith electric fields. A final example of scaling geofields
Tennekoon et al. (2005) for scaling analyses of geomagnetignied by linear equations is the thermal properties of the
fields and Fedi (2003) for multifractal analysis of borehole earth's crust: the thermal conduction coefficient, the temper-

susceptibilities. _ ature and the distribution of radioactive sources of heat, see
Essentially the same type of relations hold between thepjmyj and Vedanti (2005).

vertical component of the surface gravity fielg) (@nd the
density of the rock/):

P, (K, k;
Py (K) = / %dkz (18)
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Fig. 14. (a)SimulatedM field for horizontally isotropic crustal magnetization. The vertical anisotropythasl.7,s=4 and the universal
multifractal parameter&/=0.2,C1=0.08,0=1.98. The sphero-scale was taken to be e#iB500 km; the simulation region is 3B2x 16 km

with resolution 250 m. This is a reasonably realistic crustal section, although the sphero scale was taken to be a bit too small in order that
strata may be easily visible. The directionMfis assumed to be fixed in the z directigh) SimulatedM for horizontally isotropic crustal
magnetization; same parameters as (a). The simulation ig 128« 32 km; the resolution is 1 km and only the portion above the Curie

depth of 10 km is shown(c) SimulatedM field for horizontally isotropic crustal magnetization; same parameters as (a). The simulation is
512x512x 16 km; the resolution is 4 km(d) SimulatedM field the simulation is 44x 16 km, resolution is 62.5m. The cut-out shows the
stratification and the presence of anomalies at all depths. Reproduced from Pecknold et al. (2001).

3 From fractal sets to multifractal fields, the limitations quantifying complexity (roughness, sparseness) by a unique

of classical geostatistics fractal dimension. Many of the seductive early fractal sim-
ulations were of precisely quasi-gaussian processes (essen-
3.1 Box counting, functional box counting tially the “fractional Brownian motions” generalizations of

Brownian motion), where there is a single basic exponent so
Using Fourier spectra, we have seen that many solid eartfat is simply related to the (unique) fractal dimensibn
fields display wide range scaling in both horizontal and ver-0f exceedance sets (the set of points exceeding a fixed thresh-
tical directions. Spectra were first widely used to character-0ld) by the simple formulaD=(7—p)/2 (valid for the frac-
ize turbulence, and in the early 1970s in conjunction with tal dimension of monofractal surfaces witk £<3). Indeed
the development of quasi-gaussian statistical closure mod@ great many papers were published which simply assumed
els, the theoretical or empirical determination of the spec-that fields were monofractal and estimated the supposedly
tral exponent became a key task. During the same perioddhiqueD from g (for many examples of this, see Scholz and
Mandelbrot (1977) proposed using fractal geometry with its Mandelbrot, 1989; Turcotte, 1989; Takayasu, 1990; Korvin,
appealing promise of simplifying the description and model- 1992).
ing of geoprocesses; in topography and geomorphology by
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o Ry

Fig. 15. (a)The surfaceB field from simulations shown in Fig. 14a. The Curie depth=16 km so that nearly the entire field shown is in the
smooth, high wave number reginfg=2. (b) The surfaceB field corresponding to Fig. 14b. Since the entire region simulated is 128 km
across and the Curie depth is 10 km, the transition from high to intermediate wave number regime is in the middle of the range shown; the
high wave number structures are noticeably smoother than the lower @h&#$e B field corresponding to Fig. 14c; the entire simulation
represents a region 512 km across, the Curie depth is 16 km so that most of the field shown with the exception of the very highest wave
number structures is in the (rough) intermediate wave number regimeswvith (d) The same buB for Fig. 14d, the entire field is in the

smooth high wave number regime. Reproduced from Pecknold et al. (2001).

However, by the early 1980s, the development of cascadand then the use of box-counting to systematically degrade
models to study turbulent intermittency lead to the realizationthe resolution of the sets, determining the fractal dimension
that in general an infinite number of dimensions were neededusing the formula:

The generic result of a cascade process (see Sect. 4 below) is
that the cascade quantity at resolutigrhas the statistics: N7 (L) o« L") Pr(L) ~ Np(L)/L™ ~ LD

c(T)=d — D(T) (20)
(ef) = 1K@ (19)

where N7 (L) is the number ofL x L sized boxes needed
wherek (g) is (convex) the moment scaling function anis to cover the set of points satisfyingx)>7. SinceL~¢ is
the ratio of the largest (outer) cascade scale and the scale dfie total number of boxes in the space at resolufio®y is
observation. The symbok” is used for the turbulent (scale the probability that a box (siz&) placed at random on the
by scale) energy flux. Below, we discuss the link betweenset will cover part of the set.D(T) is the dimension and
these scaling exponents aé¢) introduced earlier for the ¢(T) defines the statistical codimension function; a prob-
g-th order structure function and the spectral exporfent ability exponent. Since probability exponents can be de-

Viewed from the point of multifractals, spectra are sec- fined without reference to the embedding space of the pro-
ond order statistics so that the spectrum provide only a verycess (i.e. whether it occurs in a 1-D, 2-D... or for stochas-
partial statistical description. A more complete and directtic processes, in infinit® probability spaces), codimensions
description follows from the use of thresholdB)(to con-  are generally needed for stochastic fractals and multifractals
vert fieldse(x) into exceedance sets {s a position vector), (see below for the populaf(«), t(g) dimension formalism
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Fig. 16b. A log-log plot of the areasq7 (L)~L2L~P1)) of SPOT
0
10

satellite radiances of Mauna Lao volcano (visible, 20 m resolution)
exceeding a radiance threshdle:R (in digital counts), with corre-
sponding fractal dimensions indicated. Each line has been offset by

2 orders of magnitude for clarity. Reproduced from Lafeiand
Fig. 16a. Functional box-counting on French topography data at Gaonac’h (1999).

1km resolution. For each threshold, the scaling is quite accurate,
but as the threshold increases, the slope systematically decreases gfferent analysis techniques were applied to different data
that the topography is apparently not monofractal. The line with sets commonly gave different values Bf In particular the
slope—2 is shown since this is the theoretical assumption of classi- . :
- - empirical topography spectral exponghit2 (Fig. 1) would
cal geostatistics. Adapted from Lovejoy and Schertzer (1990). imp?y D=2 5p fcg)]r n?ozof?actal surfgcefm(el 5( fogr m)o nofractal
vertical sections) whereas the (rare) direct estimates (Good-
] ] child, 1980; Aviles et al., 1987; Okubo et al., 1987; Turcotte,
of multifractals). Indeed wheneve?(T)<d, the stochastic 1989y commonly gave a diversity of values (see the reviews
codimension functiore(7") defined by Eq. (20) is equal to Klinkenberg and Goodchild, 1992; Maliverno, 1995).

the geometric codimension functieh-D(T); however, in The use of simplistic monofractal ideas had consequences
generale(T) will be unbounded. For the corresponding ex- beyond a failure to reach consensus on a supposedly

treme events, if one use3(7)=d—c(T), one would obtain  «nique” fractal dimension of the topography. Due to their
the geometrically impossible valué&7)<0. By using the  r5n40m singularities, multifractals have such strong vari-
statistical codimension we thus avoid the paradox negative ofjjity that they violate many conventional geostatistical as-

‘latent” dimensions (Mandelbrot, 1983). sumptions so that normal multifractal variability can easily
When this “functional” box-counting (Lovejoy et al., be misinterpreted in terms of spurious scale breaks, spurious
1987) was applied to the topography (Fig. 16a) it was foundnonstationarity etc. The loss of interest in scaling was en-
that the scaling was excellent: the power law Eq. (20) wascouraged by the extensive use of (low variability) fractional
accurately obeyed for alf, L. However — as expected for a Brownian motion (fBm) models of topography. As argued
multifractal —D(T) systematically decreases with threshold, in Gagnon et al. (2006), the topography in fact has excellent
it is not constant as assumed in the monofractal models. Inmultiscaling (multifractal) properties (see Figs. 1, 16a, 18) —

deed, from the point of view of multifractals, it would have but an infinite hierarchy of fractal dimensions; this requires
been a miracle if for each threshold each (different) set new analysis techniques.

had exaCtly the same fractal dimension. Figure 16b shows the An unfortunate consequence of this reliance on Simp”s-

results of functional box-counting on reflected visible radi- tic monofractal models was that by the end of the 1990s the
ances from lava flows, ShOWing both the excellent wide rangémainstream surface geomorpho|ogy Community had “moved
scaling of the flows and also the systematic decreag&®)  on”, relegating fractals to narrow ranges of scale and to very
with 7'. In this figure we directly see a consequence: the artechnical applications. This near abandonment of scaling oc-
eas of lava flows exceeding a threshold depend in a powegyrred in spite of the fact that entire fields of research such
law way on the resolutionA 7 (L)~L2L~P), we retumnto a5 surface hydrology are riddled with scaling laws which
this important point below. virtually require the topography to respect some form of
If the topography could be adequately modeled as a geoscaling (see e.g. the review Rodriguez-Ilturbe and Rinaldo,
metrical fractal set, then many different techniques (includ-1997). Classical examples include power law relations be-
ing spectral analysis) could be used to estimate its unique ditween river basin size area and stream length, basin area to
mensionD. However, due to the multifractality evidenced in discharge, the relation between velocity, width and depth
the functional box-counting (Fig. 16), on the contrary, whento discharge (Leopold and Maddock, 1953). Lack of an

100 10] 102 10°
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Fig. 17. Lava flows from mount Etna 1900-1974 taken from a geological map at 43 m resolution. The resolution is then successively
degraded by factors of 2 using box counting. Reproduced from Gaonac’h et al. (1992).

adequate theoretical framework for scaling has thus led thelirection opposite the arrows) more and more fine details.

baby to be thrown out with the bathwater. Over this scale factor, the area decreases by a factor of about
5 corresponding to a fractal dimension of the areas of about
3.2 Consequences for classical geostatistics 1.58; the fractal dimension of the perimeter set is 1.42 so that

it is a little bit sparser.
It is worth mentioning that the functional box-counting re-  If we express the field values as powers of the resolution
sults (Fig. 16) have direct and important consequences fowith random exponentg, i.e. if we write TocA?” then we
classical geostatistics (e.g. Matheron, 1970) which assumebtain:
(explicitly or implicitly) that geomeasures such as the areas y —ep)
of the topography exceeding a threshold are regular with rePex > T) = Prie, > 47) oc A (21)
spect to Lebesgue measures. If this assumption were trugypare
then the areas above a given threshdldvould be well-
defined independently of the resolutidni.e. the expression
LNz (L) would be independent df for small L; however
sinceD(T) <2 we see that generally it vanishedas 0. Ul-
timately at small scales — probably millimeters or less —the3.3  Evidence for multiscaling of statistical moments
scaling will break down yielding a finite limit of. 2Nz (L).
However the area estimatdcP N7 (L) will depend on the ~ We have shown that for many geophysical fields in both the
very small scale details; at any larger resolutions the resulhorizontal and vertical, that the spectrum shows evidence of
will be subjective depending on the observing resolution  power law behaviour — scaling — over wide ranges of scale.
While Fig. 16b shows this directly on various sets defined byHowever, (functional) box-counting on exceedance sets de-
radiance thresholds on volcanoes, Fig. 17 shows the same efined by higher and higher field thresholds showed that many
fect visually, using step by step degradation of the resolutionexponents were needed to characterize the scaling of the low
of lava flow maps determined by geological mapping tech-and high regions of the topography, weak and strong radi-
niques. The usual box-counting method is used to succesances etc. Although for the topography, the multiscaling is
sively degrade the resolution of the flows. As the resolutiondemonstrated by functional box counting (Fig. 16a), we can
improves by a factor of 512/16=32, we see (moving in thedirectly test the multiscaling of the moments (Eq. 19) and

“Pr” indicates “probability”. For cascade processes,
we derive this result directly in Sect. 4.3. Since the moments
(Eq. 19) are integrals over the probability densdi(), c(y)
determinesX (¢); we discuss this link in Sect. 4.7.
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quently unwarranted. Perhaps the most important source of

181 - gzz‘om misinterpretation is the fact that scale invariance is a statisti-
1.6 = = iEeci cal symmetry which is almost surely broken on every single
ral S T / ::illh.sl;i s realization, hence it is important t(_) hgve alarge data base (i.e.
12k S ) oy large range of scales, many realizations) to average fluctua-
=5 || ETOPOS e 2" B tions and to approximate the theoretically predicted ensem-
fo.s e th S ble average scaling. In fact_, due to the_singularities Qf all or-
°'%o<> \ LT e ders (see the previous section) the variability of multifractals
: 7 oo is much greater than that of classical stochastic processes;
04r .37 es e y for example, rare (extreme) singularities are produced by the
e : il = I (GUIS(?PO3O process yet they are almost surely absent on any given real-
0 S S S —— ization. This means that multifractal processes generally do
021 M: not have the property of “ergodicity”. What may be noth-
3 5’000 k]m 2 3 4 5 6 7 SSCm ing more than normal multifractal statistical variability can

I
log, A

thus easily be interpreted as breaks in the scaling. A second
reason for unwarranted rejections of scaling is the assump-
Fig. 18. Log-log plot of the normalized moments versus the scale tion that the scaling is isotropic. If the scaling is anisotropic,
ratio A=Louter! (With Loute=20 000 km) for the three DEM's (Cir-  there may be breaks in the scaling on 1-D subspaces (e.g.
cles correspond to ETOPOS, X's to U.S. (GETOPO30), and squaregransects) but not for the full process in the higher dimen-
(Lower Saxony). The solid lines are there to distinguish betweensional space in which they evolve. A third reason discussed
each value of (from top to bottomg=2.18, 1.77, 1.44, 1.17, (.)'04’ in more detail in Gagnon et al. (2006) is that there can be
0.12, 0.51) The trace moments of the Lower Saxony DEM with rees ic bi d h f diti | - h
for ¢g=1.77 andy=2.18 are on the graph (indicated by arrows). The SyStemaF'C lases due to t_ e use of conditional statistics suc
theoretical lines are computed with the glolialg) function dis- @S Studying transects that just happen to pass through special
features (such as high mountains).

cussed with universal multifractal parametersl.79,C1=0.12. At

scales<40m, in this Lower Saxony data set, the effect of trees be- There are also nonclassical statistical effects which can
comes important, apparent increasing the variability at the smallestead to yet other misinterpretations of the data. One of these
scales. Reproduced from Gagnon et al. (2006). is a consequence of the fact that the strong singularities in
multifractals leads to apparent nonstationarities: e.g. to quite
different morphologies which can often be found in close
proximity. This is often interpreted in terms of nonstationar-
we take for the multifractal field, the absolute gradients of ities/spatial inhomogeneities — different processes at work in
the topography at the finest resolution of the dataAset./! different regions or at the very least, variations in the param-
whereL is the external scale (taken as 20 000 km here)land eters of a single basic model. However, with multifractals
is the pixel scale (see Sect. 4.10 for more discussion of this)such interpretations would be unwarranted: the basic multi-
The result of degrading the high resolutieg to intermedi-  fractal processes are statistically stationary/homogeneous in
ate scale ratios is shown in Fig. 18 (using the same data the strict sense that over the region over which they are de-
sets as in Fig. 1). We can see that the multiscaling holds verfined (which is necessarily finite), the ensemble multifractal
well over a factor of more than $0n scale. Indeed, Gagnon statistical properties are independent of the (space/time) lo-
et al. (2006) estimates that the “reduced momeﬁrsi”>1/’1 cation (and this — contrary to certain affirmations in the liter-
for all g<2 can be reproduced to withtt45% using just a  ature — for any spectral slogh. Rather than discussing this

2 parameter “universal multifractal” fit to th&€(¢) function at an abstract level, let us see what happens when we analyse
(Eq. 45; see Sect. 4.6). Other relevant examples of multifraca self-similar 1024 1024 multifractal simulation (Fig. 19a).

tal analysis are soil moisture (Dubayah et al., 1997), LAND- In the simulation, consider the “regional” variability in the
SAT TM channels (Cheng, 1999), sonic velocities (Marsanspectral exponeng by dividing it into 8x8 squares, each
and Bean, 1999) and neutron porosity (Marsan and Beanwith 128x 128 pixels. Figure 19b shows the histogram of the
2003); Figs. 25a, b (the latter two in the KTB borehole). In 64 regression estimates of the spectra compensated by the
Sect. 4.10 we perform various multifractal analyses on the deheoretical behaviour i.g (k)/(k—Fteom) with Btheory=2.17.

Wijs (1951) Zn concentration series. As expected, the mean is close to zero but we see a large scat-
ter implying that there are some individual regions hayéng

as low as 1.2, some as high as 2.7; the standard deviation is
+0.3. As we shall see later, this would imply a random vari-

In spite of the systematic finding of scaling or near scal-ation in local estimates of the nonconservation paraméter

ing statistics, many geophysicists instinctively reject all wide of £0.3/2=£0.15. Although it is of the order of the differ-
range scaling; they consider a priori that the scaling is bro-ence observed between continents and oceans, this spread in
ken. However conclusions about broken scaling are fre-8, H will decrease as the size of the data set increases. In

determine the moment scaling exponéhiy). To do this,

3.4 Multifractality and spurious breaks
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-0.75-05-025 0 025 0.5

Fig. 19b. After dividing Fig. 19a into 64 128128 squares, we
calculated the isotropic spectrum in each, and fit the slope to the
lowest factor 16 in scale (we remove the highest factor 4 due to
numerical artifacts at the highest wavenumbers). The resultiiig

is given in the left; it is twice the\H, showing that H can vary by
0.5 over a single region. From Gagnon et al. (2006).

17.5

15
Fig. 19a. A self-similar multifractal (with some trivial anisotropy) 12.5
simulated on a 10-241024 poihnt grid with observed universal 10
multifractal parameters{=0.7,C1=0.12,a¢=1.9); the spectral exp- 75
nentisp=1+2H —K (2)=2.17. Adapted from Gagnon et al. (2006). 5
25

Fig. 19c, we can also see the large variations in the log pref- 0 05 1 15 2 25 3

actors (logoE1; E(k)=E1k~#). If Eq is interpreted in terms

of roughness, the roughest of the 64 regions has about 10Fig. 19¢. A histogram of the logoE; (E1 is the spectral prefactor:
times the variance of the smoothest. While it would obvi- E(k)=E1k—#) showing variation of 1000 from the smoothest to
ously be tempting to give different interpretations to the pa-roughest subregion. From Gagnon et al. (2006).

rameters in each region, this would be a mistake. The phys-

ical interpretation of such a model is that the roughest and  cagcades were first proposed as a dynamical mechanism in
the smopthest are associated Wl'th huge variations in the COlsrder to explain atmospheric dynamics by Richardson (1922)
responding e.r05|onal, orographic and other processes; this, his celebrated poem: “Big whorls have lesser whorls
would follow if these processes are also scaling and wouldha¢ feed on their velocity and lesser whorls have smaller

have correlated variations. whorls and so on to viscosity (in the molecular sense)”.
While Richardson had the idea of structures breaking up into
smaller and smaller structures, an independent idea going
4 Cascades and multifractals back somewhat earlier, was the “law of proportional effect”
(Kapteyn, 1903), in which a random variable is the product
4.1 Ore distributions, the de Wijs binomial cascade, theof other random variables leading under certain assumptions
lognormal versus Pareto debate to the log-normal distribution, see e.g. Aitchison and Brown
(1957). Although they weren't explicitly mentioned, both
We have seen that there is much evidence for the wide rangthe cascade idea and the law of proportional effect provided
scaling of various geophysical fields in both the horizontal the impetus for proposals for log-normal distributions of rock
and vertical directions from sub metric to the largest scaledragments (Kolmogorov, 1941a) and energy dissipation in
probed by the deepest boreholes (several kilometers) in theurbulence (Kolmogorov, 1962). Starting with the monofrac-
vertical and from sub metric to planetary scales in the hori-tal “pulse in pulse” model (Novikov and Stewart, 1964), ex-
zontal. So far, we have not made a serious attempt to explaiplicit cascade models began to appear systematically in the
these results except to comment that since scale invariance tarbulence literature in the 1960s; notably Yaglom (1966)'s
a symmetry principle, the nonlinear dynamics which are re-lognormal model followed by Mandelbrot (1974)’s criticism
sponsible for the wide range heterogeneity must repeat scaleoncerning the divergence of statistical moments. In spite of
after scale in a cascade like manner. We now turn to thehese later developments it is interesting that they were all
generic cascade process. anticipated by a mining engineer (de Wijs, 1951, 1953).
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1,000 I T fractal method” involving plotting the logs of the areas of
metal bearing ores exceeding various concentration thresh-
olds, the latter also plotted on a log scale.

. 4.2 The binomial/p model and themodel

100 . . In order to demonstrate how a roughly log-normal distribu-
. tion of ores might arise, de Wisj considered a 1-D section
which he successively divided into two equal halves; he then
reasoned that various processes might concentrate the mate-
rial in the left segment by a factor (#¥ reducing the con-
10 ol centration on the right segment by the factor{) where
. 0<d<1 is the “dispersion index”; empirically for many ore
concentration series, de Wijs fourld=0.2 (typical of iron
. and zinc deposits), although for precious metals, values as
high as 0.45 were obtained (see also Agterberg, 2007, for
more examples). He then considered the effect of repeating
this multiplicative construction to smaller and smaller scales
(but without considering the nontrivial mathematical limit).

In order to understand this, let's change the notation and

1 1 .|
10 100 1,000 10,000

Fig. 20. Ore valuations of a South African Mine; “cumulated Pare- lize this slightly. D ¢ the divisi fi d
tian graphs” i.e. doubly logarithmic plots of the numbers of valua- generalize this slightly. Denote bythe division ratio, an

tions exceeding a given valuation. The distribution is nearly hyper-th€ multiplicative factors by.e; (in analogy with the symbol

bolic (linear on this plot) with exponent, near one (Krige, 1960) ~Ax” for an additive increment), where™indexes the fac-
(reprinted in Mandelbrot, 1995). tors (left or right which can be chosen randomly); andhe

dimension of the space. de Wijs’s model thus corresponds
to A=2, D=1 and the valuege=(1+d), ue_=(1—d) were
De Wijs was interested in the concentration of ores andalways chosen together (left or right) so that they satisfy:

was debating the form of their probability distributions. )

Along with Lasky (1950), he defended the idea that the prob-i Z pei =1 (22)

abilities were log-normal, criticizing (Van Tongeren, 1950) A? P l

who on the contrary defended algebraic (power law) distri- _
whereue;=pe4 or ue—. The sum ensures that the increase

butions. In order to help prove his point he proposed a sim- : . :
ple cascade model which he called the “binomial” model. (decrease) in ore in the left half is exactly compensated by a

At the time, some of the proponents of log-normality even decrease (increase) in the right half.Alf2 and/or if D>1
went so far as to propose it as a the first law of geochemistr)}he”fhere can”be several states but at each step, each “parent”
(Ahrens, 1953). The debate about lognormality versus powefnd “daughter” structures satisfy the restriction Eq. (22). In
law (often called “Pareto” in this context) continued through 2nalogy with _statlstlcat! mechanics, th'f’ strict scale by scale
the 1960s to the 1980s, with notably Matheron (1962) Sidingconservatllon is called mlcrocanonlcgl (Mandelbro_t, 19?4).
with the lognormal camp; see also Cargill et al. (1981) and To obtain the more gengral “canonlcal’.’ cascade, it suffices
Agterberg (2007). In the 1980s, this binomial model was [ réplace the microcanonical conservation by:

rediscqvered by_ and applied in geology to the _distribution g) =1 (23)

of fossils (Plotnick and Prestegaard, 1995), while Turcotte

(1986) made a drastic modification to the cascades so as tohere “<.>" indicates ensemble averaging; in the canoni-
generate a Pareto distribution (see Sect. 4.8 below). In theal cascade the left and right hand factors are thus chosen
turbulence literature the binomial model became known adndependently of each other. The resulting two state model
the “p model” (Meneveau and Sreenivasan, 1987); we shallin any dimensionD) was called the & model” (Schertzer

see below that it is actually a microcanonical restriction onand Lovejoy, 1985a) (see Fig. 21) in order to distinguish it
the “@ model” (Schertzer and Lovejoy, 1985a). from the pure fractal 8 model” (Frisch et al., 1978). To un-

To put the debate in perspective, we show Fig. 20 whichderstand the statistics of these binomial processes, write the
is an example of the distribution of ore grades indicating thatProbabilities of the model states as follows:
empirically, they can be far from Iog-nqrmal (Krige, 1960; Pr(je = 37+) = A~¢(> 1= increase)
reprinted in Mandelbrot, 1995); see Fig. 3 and below for Priue = 37-) = 1— 3—°(< 1=> decrease)
a re-examination of the de Wijs data). Note that Cheng
et al. (1994), and Cheng (2000a) proposed a variant of thevith parameterg,. andy_ corresponding to the maximum
method of plotting in Fig. 20 called the “Concentration-area and minimum singularities that the model can produce. The

(24)
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Fig. 21a. |lllustration of the @ model: heres, =ue-¢,_1.

The weak sub-eddies have an associated probability "
Pr(ue=)"-)=1—)"°(¥_ <0) whereas thestrong sub-eddies bare density
have Ptue=1"+)=2"¢(¥+ >0).

Dressed density
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Fig. 21b. Schema of tree of singularities for a one-dimensianal
model the “+” indicates a choice pf, the “~",y_ , with proba-
bilities as above. The microcanonical “de Wisj” (or “binomial” or
“p" model) would have “+” and “~" always occurring in pairs so

that at each scale and each location, the total ore amount is rigidly Coscade = evel
conserved. bare density

Fig. 21c. The o model in 2-D showing both the bare (left) and
de Wijs model is recovered with the parametgr®, c=1, dressed cascades (right). Reproduced from Wilson (1991).
y+=logue/logr=log, (1+d), y_=logue_/logr=log;(1—d)
and with the additional condition that the only randomness

is to choice of which of the two is left or right. step through a complex successionyaf and y,, as illus-
In the @ model, the canonical conservation condition im- trated in Fig. 21b. Figure 21c shows a 2-D example ofathe
plies: model which we will study in more detail in the next section.
) ) In other words, leaving the simplistic alternative dead or alive
M 1-079)=1 (25) (B model”) for the alternative weak or strongx(model”)

leads to the appearance of a full hierarchy of levels of sur-

because of this constraint outgfy; andy_, there are reall . e . . ,
y+ = y vival, hence the possibility of a hierarchy of dimensions.

only two free parameters, this is valid for any D. For
the microcanonical model, the conservation cond|t|0|;1 on the4.3 Renormalizing discrete cascades
contrary depends not only dn but also onD. A purely “all

or nothing” process called th@“model” (Frisch etal., 1978)  \ynat is the behavior as the number of cascade stepso?

is obtained withy_=—oco; this is the monofractal limit; the  consjder two steps of the process, the various probabilities
nonzero region is a fractal set with codimension and random factors are:

Whenevery_ >—oo and the process is iterated, the pure
orders of singularityy_ andy, lead to the appearance of Pr(ue = A?"+) = 1
mixed orders of singularity, (thex*model”). Mixed singu- Pr(pe = A+ T7-)=217°(1— A=) (one boost and one decreafPB)
larities of different ordery (y _<y <y,) are builtup stepby  Pr(ue = 227-) = (1 — );C)Z (two decreases)

—2 (two boosts)
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This process has the same probability and amplification facThis is a basic multifractal relation for cascades. We now

tors as the three-statemodel with a new scale ratio 6f, simplify this using the *” sign which absorbs the multi-
i.e., plicative (p(y)) as well as taking into account the logarith-

y . mic number of terms in the sum (which can lead to logarith-
Priue = 0.3 = (12 mic prefactors corresponding to “sub-codimensions”). With
Priue = 07+ T77%) — 20277 _ 207 (27)  this understanding about the equality sign, we may write
Pripe = 03" =1-20)""*+627

Pr(e; > AY) ~ =W (34)
Iterating this procedure, after=n""+4n" steps we find: ) )
Each value of; corresponds to a singularity of ordgrand
codimensiore(y). Note that strictly speaking the expression

n B B (28) “singularity” applies toy >0 (for A—o0), wheny <0 itis a
Pr(ue = ) ntnm) = (n+> AT (L= “regularity”.

In the geophysics literature, there has also been a variant

n) . S ) on the microcanonical cascade called the “bounded cascade”
where( | is the number of combinations efobjects taken  (cahalan, 1994) in which the cascade is progressively killed

nty,+n"y

+=
o 1,....n

Yo+ n— =

k at a time. This implies that we may write: as the cascade proceeds by multiplying eachel-by r"
where O<r <1 andn is the number of cascade steps from the
Prie;n > (W) = > Pij (WY (29) beginning of the cascade. In this way, the dispersion coef-
J

ficientsd algebraically decreasesd,+1=rd, so that rapidly

The p;;’s are the “submultiplicities” (the prefactors in the all theue;~1. This has the drastic effect of essentially de-
above),c;; are the corresponding exponents (“subcodimen-Stroying the multlpllcat!ve nature of the ggscade at the small
sions”) andA” is the total ratio of scales from the outer scales, effectively turning it into an additive process (Love-
scale to the smallest scale. Notice that the requirement thdfy and Schertzer, 2006). In the small scale limit we ob-
(ne)=1 implies that some of the” are greater than one tain essentially a truncated Brownian motion with only triv-
(boosts) and some are less than one (decreases), that is sofaemultifractality. Another variant on the basic microcanon-
>0 and some; <0. Note also that the-model will have  ical model has been proposed by Cheng (2005). In this 2-D

bounded singularities: model, there are 4 different weights which are chosen de-
terministically always in the same 2X2 pattern. The resulting
V- <vi <vy+ (30) cascade is generally anisotropic. Although Cheng notes that

) . ) ] ] ] no scale by scale conservation property generally holds on 1-
(i.e., the maximum attainable singulariynax is equal to  p sections (this presumably leads to nontrivial problems of

v+)- The final step in “renormalizing” the cascade is to re- convergence in the small scale limit), this model is proposed
place the above n-step (ratlg, 2-state cascade by a single for anisotropic multifractal fields.

A" step cascade with+1 states. Note that we are not saying
that there is absolutely no difference between the n-state 4.4 Unlocalized versus localized singularities
model with ratioa and the corresponding{1)-state model
with ’=1"; however their properties will be identical for Note that while the above form of the probability distribu-
integral powers of.’. Finally, doing this and making the re- tions/histogram Eq. (34) is valid at every step of the cascade
placement"—2, and the limita—oo, one of the terms in  process (every finite), this in no way implies that there is
the sum will dominate (that with the smallest). Hence  convergence of at a given mathematical point Indeed
defining for canonical cascades, in general we hAave liog, (£, (x))

—> 00

(31) doesnot converge to a well defined (point singularity) value

¢, =minjciit = c¥;
! feis} = e y(x). Viewed from a single mathematical point, the local

yields foriA—oo: resolution singularities;y; =Log, (¢(x)) perform random
_ _ walks as\ increases, they are therefore generatit/‘H dlder
Pr(e;, > AV1) = pi -2~ € (32)  exponents”. In contrast, many multifractal papers (includ-

. . . ) o ing the original proposal by Parisi and Frisch (1985) and the
wherec; is the codimension ang; is the multiplicity. If we 4o ngjon formalism of multifractals, Halsey et al. (1986),
™ (this allows for the possibility

now drop the subscripts simply assume a priori that the singularities are localized.

?f adcgntmuu_rfn of statei, eg., the or|g|ggl P[)OC_GSS bhelng desince then, wavelets have been extensively applied to mul-
ined by a uniform or other continuous distribution) then We yiqactals. However, since wavelets are tools of functional

obtain: analysis whereas multifractals generated by cascades are not
" —ey) dc mathematical functions but rather densities of singular mea-
Prig;, = A™) ~ 27 -p(r); dy 0 (33)  sures — the applications of wavelets (Bacry et al., 1989)
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Fig. 22. The anatomy of a singularitya) Upper left is full (continuous in scale) simulatioﬁGZong with universal multifractal parameters
«=1.8,C1=0.05 (close to de Wijs data values for Zn ore). Black is the full resolution data, pink is low resolution, degraded by a factor of
64. (b) The upper right shows a zoom (factor 16) into the section with the maximum \altbge lower left is a zoom by a further factor

20 near the maximum; the arrows show the position of the high resolution maximum as well as the centre of the low resolution maximum.
(d) The lower right is the same but on log-log plot using distance from the maximum. The pink shows the approach to the maximum
low resolution singularity on the low resolution series with the green being the rms fit giving the estimate 0.63 (the absolute slope) for the
maximum singularity, showing it's extrapolation to the full resolution of the process; the low resolution tends to over estimate the high
resolution singularity. The black is the actual approach to the maximum singularity, while the blue is the approach to the centre of the low
resolution singularity showing that the latter is a poor estimator of the position.

may not always be justified. This is particularly true of cer- lution than the actual ore concentration series. Figure 22b
tain complex derived analysis methods such as the “modulushows a blow up by a factor 16 and Fig. 22c by a further fac-
maximum” analysis technique which is designed to “zoom” tor of 20. This is a 1-D simulation of the idea proposed by
into point singularities. While these methods may work to Cheng (2006, 2007) of prospecting by zooming in on major
some extent, they are not fully justified for multifractals gen- ore deposits by extrapolating singularities. In Fig. 22d we
erated from general cascade processes. For an example béve plotted on a log-log plot the distance from the maxi-
the use of wavelets in this way in boreholes, see Fedi emum of the low resolution series (pink) as well its log-log
al. (2005); the local singularity estimates he obtains is veryregression line (green). Also shown is the log-log plot of the
similar to that those described in the next paragraph. approach to the actual maximum singularity at high resolu-
tion as well as the centre of the low resolution singularity;
ing into singularities, we refer the reader to Fig. 22a whicht.hiS _is presumably th_e best estimate OT the singularity loca-
tion if only low resolution data were available. Note also that

shows a universal multifractal continuous in scale multifrac- . . ) .
. . . . the extrapolation of the low resolution regression yields an
tal simulation with parameters close to those obtained for de

Wijs for his binomial model of ores (Sect. 4.10). A low reso- estimate of the maximum which is about 5 times too large,

lution (degraded by factor 64) curve is superposed; this sim-WhIIe the centre value is about 10 times smaller.

ulates an empirical transect which would be at lower reso-

In order to graphically appreciate the difficulties of zoom-
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In this case, we zoomed into the centre of the low reso-algebraic probabilities was not as convincing as it seemed;
lution singularity, other choices would have given different whereas his binomigl/ model does have finite moments of
small distance behaviour, but since the multiplicative factorsall orders; the same is not true of the superficially simiar
are statistitically independent, the low resolution data givesmodel which has algebraically distributed extremes; we re-
little indication of where within the low resolution element turn to this question of “divergence of moments” in Sect. 4.7.
that the highest singularity is located. This graphically indi-
cates that the low resolution approach to a singularity lacks#.6 ~ Universality

predictive power for locating the position of singularities at ) .
high resolution within low resolution elements. Of course, AS presented above, the problem with cascades is that we

singularities in real ore concentration fields may have moreN€€d an entire (nearly arbitrary) convex functiirig) for
localized singularities than those generated by cascades, af@€ir specification. Yaglom (1966) sensed the problem and
Cheng (2006)'s method uses sparse 2-D data (rather than reglready argued — essentially on the basis of the law of pro-
ular 1-D data as here), so that it is possible that the methodpOrtional effects — for approximate “log-normality” on the
may nevertheless prove useful; indeed, Cheng (2007) showRasis of the usual central limit theorem applied tocladter

some success for finding Sn, Cu, As and other deposits it large number of cascade steps (see also Venugopal et al.,
China. 2006) for similar arguments on the smaliness of the high or-

der terms of the cumulant generating functikiig)). The

4.5 The statistical moments, cumulants, second characteproblem is that the cascade requires a scale by scale conser-
istic functions vation principle, otherwise there are no well defined small

scale cascade limits, and it turns out that this normalization
The simplest way to investigate the statistical properties of &s in contradiction with the normalization required for central
cascade developed over a scale rahgis to consider their  limit convergence. In other words, as seen above (Eq. 37, due
“moment scaling function exponenk (q): to the O (¢3) terms) anx or binomialjp model remains only
“approximately” log normal even after an arbitrary number
of cascade steps. This lead notably (Mandelbrot, 1989) to

K(g) is the “second (basg, Laplace) characteristic func- declare that “in the strict sense, there is no universality what-

tion”, or “cumulant generating function” of the random vari- SO€Ver. ..this fact about multifractals is very significant in

able Log ue. This is valid for both canonical and micro- their theory and must be recognized...”. However multi-

canonical conservation; the differences will appear when weractal universality classedo exist; two different routes to
consider the integrals of completed cascades over finite set4niversality have been proposed; both consider a cascade de-
the “dressed properties” (Sect. 4.7). Due to the statistical’€/0PP€d only over a finite range of scales. Only after cen-
independence of the cascade facioesit is enough to con- tral limit theorem convergence has been achieved does one

sider a single step of the cascade process. To see this nof@nsider the small scale limit. The first route to universality
that thek, (¢) which is thek (¢) for n cascade steps is: (Schertzer and Lovejoy, 1987) relies on a “densification” of
the cascade, adding more and more intermediate scales in a

n q 1 n q cascade defined over a finite range; an “infinitely divisible”
1€ ZZLOQA H(“Ei ) |=K@ (36)  orcontinuous (in scale) cascade. An easier to analyze route —

=1 i=1 the nonlinear “mixing” of cascade processes — was proposed

We now note that for the model, binomialp model we have by Schertzer et al. (1991); indeed this very practical ques-

K (q) = Log, (¢7) (35)

Kn (Q):LOgA" <

1

the expansion: tion of multifractal universality was the the subject of debate
- . during the 1990s (Gupta and Waymire, 1993; Schertzer and

K (¢) = log, (A"*27¢ + 297~ (1~ 27°)) Lovejoy, 1997); see also Brax and Pechanski (1991), Kida
— A Aoa?+ 0 (43 37 (1991) for the closely related issue of Log-Levy cascades.

9+ A+ (q ) 37) We should also mention that a weaker “log-Poisson” univer-

we have used the fact that the normalization of the probaSality has also been proposed by She and Levesque (1994)
bility density implies quite generally for nonzero processestt this is only “|nf|n_|tely divisible” (continuous in scale),
that K (0)=0 (if the cascade is only nonzero on a fractal sup-Not stable nor attractive.

port, thenk (0)=—C, whereC; is the codimension of the In order to obtain an exactly log-normal cascade we may
support). If we keep only the terms up to second order, weconsidere which is the result of nonlinear (renormalized,
have a log normal cascade; de Wijs realized that his modefmultiplicative) interaction ofN (generally non-lognormal)
was only approximately log-normal, but this was sufficient discrete cascades over a cascade with a total range of scale
for his purpose. Agterberg (2007) numerically studied the?:

difference between the binomial model and the lognormal N 1/by

model and introduced a variant, the “random cut” model. . _ (1‘[ 8_1)

However de Wijs didn't realize that this argument against =i AN
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Lo 2 3 ' .
Ky(q)=Ng (Al— gAaN) fANL AN (3g) complete treatment of random sums. The final normaliza-
by by bn tion step needed for small scale convergence (following the

here, indexes theV independent cascade processesgand ~ °9-normal derivation) leads to:

by are recentring and renormalizing constants which must bex (4) = QCTll @*—q);0<a<2 (45)
chosen so that the limit of many interacting procegéesoco

is well defined. Indeed, for the model it suffices to choose
ay, by such that:

(Schertzer and Lovejoy, 1987); far=1 we haveCi¢logg,
(see Fig. 23 for simulations). The constant has been writ-
ten this way so thakK’(1)=Cy; see below. As a final com-
_ Log,an (39) ment, wheny <2, andg <0, thenk (g)=o0; this is a conse-
T by guence of the extreme Levy tail on the negative (but not pos-
itive) fluctuations of log. The possibility (even likelihood)
of (sj{)—>oo for ¢ <0 means that extreme caution should be
Koo(@) = lim Ky(g) = A2q2 (40) used when analyzing negative moments of empirical data.
N—oo While finite data sets will always have finite negative mo-
i.e. the higher order terms disappedf,.(¢) is a pure  Mments their values would sensitively depend on the data and

quadratic, it is the moment scaling function of a pure lognor-would yield spurious scaling properties.
mal multifractal. Once the central limit theorem convergence .

has been achieved, one then considers the small scale limft7 Bare/dressed, SOC, divergence of moments
(Sect. 4.7); here we must normalize the pure log-normal profUp until now, we have only considered cascades constructed
cess so that the small scale cascade limit is well behaved, this

. . . . over a finite range of scales, and de Wijs's log normal ar-
is easily performed by noting that an unnormalizeday be ument looks superior to Van Tongergen’s argument for hy-
normalized bye—¢/{¢) so thatK (q)— K (¢)—¢g K (1) and 9 P gerg 9 y

o perbolic behaviour (even with a few caveats about possible
we obtain: L : . .
log-Levy generalizations). However, in the limit;> oo it
K(q) = C1(¢° — q) (41) is not obvious that there will be any small scale convergence
properties at all since the momenit§ @ generally diverge

where we have used the notation for the constant A(see  as)—oc. Indeed, to obtain any convergence properties, we
below). must consider integrals over finite sets; “dressed” cascade

The above argument explains how using only a small vari-properties as opposed to the “bare” ones discussed up until
ant, de Wijs could have argued for a pure (rather than approxnow. This corresponds to the right hand side of Fig. 21c. To
imate) lognormal multifractal process. However, the abovesee this, define the partially dressed “flux”:
argument is apparently much more general than simply a bi-
nomial processg or « model). Indeed, it simply relies on Tl (B)) = /sAde (46)
the fact thatK (¢) is analytic at the origin and then uses the
Taylor expansion (Eg. 37). Unfortunately — as pointed out by
Levy (1925) in the context of sums of independent random
variables — this does not exhaust the possibilities. Indeed
more generally we must allow for the possibility of nonana-
lytic K (g) with the following smally expansion:

bNZNl/Z; Al

and we obtain:

B;,

which represents the spatial integral ovePadimensional
“ball” B, of resolutioni of a cascade constructed down to
Scale ratioA. B is a finite scale set of scale ratig e.g. a
segment in 1-D, a square or circle in 2-D etc. This allows us
to define the dressed flux density:

K(q) = Auq® + A19A29% + 0(g°) (42) i A )
&g = 1M
if the new nonanalytic tern, g% hasa <2, then, repeating A—oco VOIB;,
the above universality argument, with the choice: which is ai resolution average over a completed cascade.

Since measurements are typically made at scales much larger

by = NV A5 = Loguan (43) than the true inner scale of the process; corresponds to
by a typical empirical quantity, whereas the bafeis purely
we obtain: theoretical. Figure 21c shows that even thogegh takes into
account smaller scale cascade steps whergamly takes
Kx(q) = Auq”; O0<a <2 (44)  into account the larger scale ones, that most of the time for a

fixed A the bare and the dressed fluxes are roughly the same.
Nevertheless, there are a few spikes in4he fields which
are much stronger than in the correspondingIn order to
understand this, we can use the factorization property of the
cascade, to derive the following relation betwegn ande;.

(note that whemr=1, the nonanalytic term must be taken as
glogg). As a technical pointK(q)=A,q% corresponds
to a random log which follows an “extreme asymmetric”
Levy distribution, sufficient for cascade processes (the “mul-
tiplicative central limit theorem”); see Samorodnitsky and
Taqqu (1994) for the more general Levy’'s needed for thegs ) = €xI1o(B1) (48)
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Fig. 23. Isotropic (i.e. self-similar) multifractal simulations showing the effect of varying the parametensl # (C1=0.1 in all cases).

From left to right, H=0.2, 0.5 and 0.8. From top to bottoma=1.1, 1.5 and 1.8. A# increases, the fields become smoother and as
decreases, one notices more and more prominent “holes” (i.e. low smooth regions). The realistic values for topegtaphy’§=0.12,

H=0.7) correspond to the two lower right hand simulations. All the simulations have the same random seed. Reproduced from Gagnon et
al. (2006).

where the factofl., (B1) represents the complete spatial in- relation reduces to a Legendre transform between the expo-
tegral of a completed cascade. In a generalization of an amentsK (q), c¢(y):
gument first given by Mandelbrot (1974), it was shown with

the help of “trace moments” (Schertzer and Lovejoy, 1987) K( (q)) :r:]naa)é’((qy _IEEV)))) (52)
cly) = qy — K \gq

that:
Equation (52) (valid for large enougl) proves that there is
q .
(Moo (B1)?) — 00 g =¢p (49)  ; one to one relation between the singularities and moments:
h i itical order of di iven by:
wheregp is a critical order of divergence given by g=c(): y=K(q) (53)
C(gp) =D; C(g) = K@ (50) using the Legendre transform on the dres&edy), we find

-1 that the relation between bare and dressed codimensions (and

whereC(q) is a new codimension function (not to be con- hence probabilities) is:
fused withc(y)). Using this result, we find:

caty)=c(y); v <vp (54)
(€9 ,) ~ aKa@ ci(y) =qpy —K(gp); v =vp
Ka(q) = K(“I); 4 <4p (51) whereyp=K'(gp) is the critical singularity contributing to
Ka(qg) =00; q=4qp the divergence of moments. In termseoE 1Y, we find that

whereK is the dressed moment scaling function. the extreme behaviour of thedistribution is:

N In order to understand the implications fqr t_he probabil- Prie, > 5) ~s~90; s> 1 (55)
ities, we can use the link between the statistical moments

and the probabilities. Using the method of steepest descentse. we have the algebraic distributions proposed by Van Ton-
Parisi and Frisch (1985) showed that for large enaughis geren! In other words, a rather minor modification in de
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Fig. 24c. Turcotte model (black), binomigl/ model (pink), «
Fig. 24a.The Turcotte cascade for (de Wijs paramet&r®.2 hence  model (blue) (offset by 2 units for clarity). All models have the
ne4+=1.2 hencey1=0.27). same parameters: the de Wijs valu€s0.2 henceie=1.2 (hence
y+=0.27 for alpha model).
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Fig. 24b. The singularity in the Turcotte model with singularity
shifted to the originy is the distance from the peak, logs in base
(the of mean of 16 simulations with3 each were used witt=0.5

henceue=1.5 hencey;=0.58, ¢=1 fit slope=0.62 compared to

Fig. 24d. Comparisons of ensemble spectra for 16 realiza-
tions of the Turcotte (black) model and 16 realizations of the

0.58 theory. binomiallp model (pink) with ne=1.5 along with theoretical
slopes (0.83=2(1-logue), 0.678=1K(2)=1-logp <ue?>, re-
spectively).

Wijs's model (the use of canonical conservation combined

with the consideration of spatial integrals of the process) .

gives algebraic tails, not the near log-normals that de Wisj D" rather thangp for the probability exponent. Rather

promoted. than relaxing the microcanonical constraint and obtain-
We can now understand why microcanonical cascades d§'d “Pareto”/hyperbolic distributions via the above dressing

not display divergence of moments. From Eq. (22) we notice_mechamsm on canonical cascades, he kept the microcanon-

that the largest singularity that a microcanonical cascade calf@! constraint and profoundly modified the cascade mech-
produce in aD dimensional space occurs when all tfg ~ anism. In these modified cascades, at each step it is only

“daughter” multipliers havece; =0 except for a single one of the single most concentrated region (“daughter cell”) which
them which haswe;=A", i.e. it hasy;=log; ue;=D so that participates in the next cascade step. In this way most of
in general we see that<D. However, Eq. (54) shows that the region participates in only a few steps, it is little affected
the singularities which are responsible for the divergence oy the cascade. This model is essentially an adaptation of a
moments are>y5=K'(¢p)=(¢p—1) C'(gp)+C(gp). But  Fock fragmentation model presented in Turcotte (1989) and
C(¢p)=D (Eq. 50) and sinc€ () is an increasing function, C€an produce anyp < D. Figure 24a shows the result of such

C’(¢)>0, henceyp>D i.e. it is beyond the range of micro- & cascade. Figure 24c compares it with the binomialbdel
canonical cascades. anda model with the same parameters. From the construc-

tion, around each side of the unique maximum, the ore con-
4.8 Turcotte’s cascade and divergence of moments centration is a nondecreasing function, in fact, it is very close

to the nonrandom singularity=”*+ where y, =logus/logh
Turcotte (1986, 1989) argued in favour of power law dis- (see Fig. 24b); in this model, =y . In fact, the density pro-
tributions which he termed “fractal” using the symbol file is so close to this nonrandom singularity that the spectral
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Fig. 25a. Structure function analysis of the first three moments of
the neutron porosity estimated from the KTB main borehole. Re-
produced from Marsan and Bean (2003).

Fig. 25b. &(q) from the slopes of Fig. 24a (and for other g val-
ues). From the valué(1)=H~0.13, we see that this is close
to the value for the de Wijs Zn ore series Sect. 4.10, and from
&'(1)=H—C1~0.10 we see that1~0.03 (see Eg. 58). Also shown

exponentg is well reproduced by the theoretical value of a is the envelope of the errors (continuous curves, and well agihe
randomly positioned singularity '+ estimated by the method of Extended Self-Similarity (this plots one

of the moments, usually the third against the others, see Benzi et al.,
B=21—-vyy) (56) 1993). Reproduced from Marsan and Bean (2003).

(see Fig. 24d).

In spite of the term “fractal” it is clear that — contrary to s thus the cascaded quantity. This leads to the famous Kol-
all the cascades and their variants proposed elsewhere in thogorov (1941b) law for isotropic turbulence which relates
literature — this is the only cascade whose exceedance setRe energy flux to velocity gradienta ) as follows:
are all strictlynonfractal (a consequence of the fact that on "
each side of the unique maximum, it is nondecreasing). EverAvy = 54", H=1/3; a=1/3 (57)
ignoring the unrealistic nonfractal spatial varlg_t)_|||ty_o_f the The usual interpretation of this equation is that the equality
model, even as a model for power law probabilities it is not. . . .

. . L is in the sense of scaling laws so that, takingghi powers
so attractive since it is limited t9p <D and many examples of both sides and ensemble averaging. we obtain-
exist with gp> D which are therefore outside of its range. ging. '
: .
The (_jresse_d mechanism presented above_ha§ _the advar?ta%v;z) _ (sf{/ ) gH _ 5£@. £(q) = Hq — K(q);
of being quite general and is also more flexible; it can easnyK _x 58
havegp>D. As a final note on the debate on log-normal ver- X (4) = Ke(aq) (58)

sus algebraic distributions, we could mention that Mandel-\yie can see that the typical observables have an extra lin-
brot (1995) suggests that ore concentrations and distributiong 5, scaling ternHqg and where the (generalized) structure
of other geological quantities, are in fact Levy distributions f,ction exponeng (¢) from Sect. 2, Eq. (11) has been used.
(i-e. with exponent restricted to valugp <2, notlog-Levy); g thys characterizes the distance from the (conserved) pure
hence presumably it is the result of additive rather than mu"multiplicative processg; it is the degree of non (scale by
tiplicative cascade processes. scale) conservation of the process. Note that since the power

spectrum is the Fourier transform of the autocorrelation func-

tion, we have the following relation with the spectral expo-
yl-nent:

4.9 Observables and Nonconservative multifractals

The results of behavior described by Eq. (19) is called “m
tiscaling” because each statistical moment is scaling with a5 _ 142H —K(2) (59)
different exponent; it is the generic result of a scale by scale

conservative multiplicative cascade. However, there is nan Fig. 25a, we show an example of the multiple scaling of
reason to assume a priori that ore concentrations should bearious moments of the KTB porosity estimates taken from
the direct result of a multiplicative cascade. The classic ex-Marsan and Bean (2003), other examples of more classical
ample is turbulence where it is the energy flux which is con-semi variograms¢=2) are more common, see e.g. Cheng
served by the nonlinear terms of the dynamical equations; i{2000a) for an application to Cu concentrations.
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Fig. 26a. Log-log plot of the first order structure function: for the

de Wijs data for g=0.25, 0.5, ... 3. . . "
) q T Fig. 27. Double Trace Moment analysis of the de Wijs Zn data

g=2, 0.5 (left, right), slopesg=1.76, 1.78,C1=0.023, 0.022, re-
§@ spectively.

It is worth noting that we have used the usual structure
function, based on the statistics of fluctuations defined as the
differences in the concentration. Defining the fluctuations
as differences in this way is sometimes called the “Haar” or
01| i “poor man’s wavelet”; other choices of definition are possi-

ble; wavelets provide a systematic framework for this (see
0.05 e.g. Holschneider, 1995). However even in 1-D there are an
' infinite number of possible wavelets and there is usually no
05 I 15 2 25 > compelling reason to use one rather than another. In prac-
tice, the use of differences is usually adequate, the main re-
Fig. 26b. The slopes of the structure functio§gg). The slope and  striction being that it is only appropriate whercf <1, a
value neag=1 yield 7=0.090,C1=0.018. condition which is usually (although not always) satisfied
in geophysical applications (here we fouRd=0.090). For
4.10 Multifractal analysis: the example of the de Wisj data example, wheni>1, one must measure fluctuations with

| der to d irate th . id di d ab respect to a local linear trend; this can be done either by
n order to demonstraté the various 1deas discussed a 0V"Fr’::lctionally differentiating the process (power law filtering,

we analyzed the ori_ginal de Wijs c_iata_ set: 118 horizontff‘”ySchertzer and Lovejoy, 1987), using appropriate wavelets
Spa_c?d values of Zinc concentration in the P_ulaqayo M'ne'(Bacry et al.,, 1989) or using the “Multifractal Detrended

Bolivia, spgcegs t irlnhlnterr\]/arlls_ (data_ slhow_n in Fig. 3a, thﬁFIuctuation Analysis” technique (Kantelhart et al., 2002; see
spectrum Fig. 3b). Although this spatial series is very sma Telesca and Lapenna, 2005) for application to self-potential

for our purposes, It Is freely.avallable (in the de Wijs pa- fio4q associated with seismic areas. Note that using the
per) and has the interest that it has been re-analyzed by MaRXjiener-Khintchin theorem, we obtain a simple relation be-

authors since including Matheron (1962), Agterberg (1974),,. <o the second order structure function ex
ponent and the
Cheng and Agterberg (1996), Cheng (1997, 2000b). spectral exponentp=1+£(2); this is indeed approximately

r;l_'ohb_egin, we note thﬁt the sp”ectrlum ,gleg 3b3jﬁaﬂﬁ1]2 verified. Finally, we could mention another scaling analysis
which is consistent with a small value &f(2) and . The technique which has been used on occasion in geophysics;

first step is to calculate the structure functions (Fig. 26a); We e rescaled range method (“R/S analysis”), Mandelbrot and

note that the sc.aling s quite_ good _considering the Sm"’“lne“:@\/allis (1969) (applied for example to borehole thermal con-
of the Sa”?p'e size. On the r.|g_ht (F'g'.Z.Gb)’ we see the SIUCHyctivities in Dimri and Vedanti, 2005). The difficulty with
ture function exponend(g); it IS surprisingly linear. From s yathod is not so much that it determines only a single
thedslo_pg%fgzl, Wi <?an estlmate: tlh.e é/aluseSH:T(r)].Ogol, exponent, but more that the unique value is only easily inter-
and€1=0.018 ¢ =£(1); H—C1 = &'(1); Eq. 58). The rel- pretable for quasi-gaussian processes. While the R/S expo-
atively small value ofC; with respect toH indicates that nent is also denotedi” in honour of Hurst (1951), it is not

the multifractality is weak enough that the deviation from generally the same as ti discussed here: indee’d as far as
conservationk/) will be dominant except for quite high mo- o know, its relation to the basic parameters of a multifractal

ments. This means that pure multiplicative models will nmgrocess are not at present known (Schmitt et al., 1995).
be too accurate for the lower order moments (they assum

H=0).

0.15
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@) is typically sufficient (the absolute value is necessary since

[ the multiplicative cascade flux respeets0; see however for
complex and vector cascades Schertzer and Lovejoy, 1995).
Since usually & H <1, a first order finite difference is typi-
cally sufficient. One simply takes the absolute differences at
the finest available resolutiar, and degrades them:

ex = (ea)n;  €a ~ |Apal (60)

where again the notatiofz ), indicates the average of the
finest resolution data, over the intermediate resolution
Oncee has been estimated by the absolute value of the dif-
=02 =0 2 02 ferences at the finest resolution, the DTM uses the following:

Fig. 28.c(y) for fluxes estimated from the de Wijs Zn data at reso- ((})7) = A% (61)
lutions of 2, 4, 8, 16, 32 m reference slope is 3.2.
i.e. one degrades thgpower of the flux at the highest reso-

lution A down to an intermediate resolutionand then de-

We can see that (as expectédy) is concave downwards. termines the scaling of thgth power result. The advantage
We have already quantified the behaviourég§) near the  Of this method is that the new exponefiitg,n) is related to
mean §=1; we used’(1)=H—K’(1) whereC1=K’'(1)isthe ~ K(q)=K(g,1) as:

“codimension of the mean”); it remains to characterize the

remaining nonlinear palt (¢). Although this value appears Kig,m = K(gm —qKmn) (62)
small, typical values in turbulence are only a bit larger €.9.5q that for universal multifractals, (c.f. Eq. 45) we have:
C1~0.07 for the horizontal wind in the horizontal (Schmitt et

al., 1992, 1994), and'1~0.04 for passive scalars in the hor- K(g,n) =n*K(gq, 1) (63)
izontal (Lilley et al., 2004). The corresponding valuesinthe ) )

vertical are about H,=9/5 times larger; this is as predicted which is a convenient power law of Figure 26 Sh_OWS the
by the 23/9D model of scaling stratification (Schertzer and"€Sult for two values of with varying . We findg=2, 0.5
Lovejoy, 1985a). Finally, topography h&g~0.12 (pretty (Ieft', right), the slopes=1.76, 1.78, re;pectlvely, and from
much the same for both continents and oceans). For an earf{j€ intérceptsc’1=0.023, 0.022, respectively (close to the es-

review of these and other results, see Lovejoy and SchertzdfMaté aboveC1=0.018 from the structure function). Our
(1995). structure function and DTM analyses have thus shown that

contrary to the previous analyses, that the ore concentration

To more fully characterize th&(g) function, we can test : ) A o
process is neither purely multiplicative, nor is its generator a

whether it belongs to a universality class and attempt to es ;
timate the Levy indext of the generator (see above). One G2ussian. . .

convenient way is to use the Double Trace Moment tech- " nally, we can estimate the(y) function and check the
nique (DTM, Lavalée et al., 1993). We have seen that the behaviour of the extremes (are these hyperbolic as expected

generic statistical properties of processes which are reperclte_féfr extreme enough events?). A simple way to estiragio

scale after scale are characterized by a nonlinear exponetlﬁ simply:

{( (¢), and .that the obse.rvables will generally have_ an extrac(y) ~ —Log; e, (64)
linear scaling termgH. Since at least for lovwy; the linear

termgH is often larger than the nonline&r(g), in analyses, (see Eq. 34). In this approximation, we ignore the (slowly
it can mask the latter. It is therefore advantageous to firstvarying) prefactors. Lavae et al. (1991) discuss this Proba-
estimate the conserved fluxfrom the observed, and the  bility Distribution Multiple Scaling PDMS technique as well
estimateK (¢) directly. From Eq. (57), we see that in prin- as ways of improving the approximation Eq. (64). In Fig. 28
ciple, this can be done by removing the’ scaling. Todo  we do this for the fluxes estimated at resolutions of 1, 2, 4, 8,
this, note that if we start with a field and fractionally inte- 16 units. Due to the very small sample, the results are vari-
grate it byH; (a power law filterk—, see Sect. 5), that the able for largery. However, we see a hint of linear behaviour
resulting field will have the fluctuation statistics indicated by at largey (black line, absolute slope ¢,=3.2). Certainly if

Eq. (58) (see Marsan et al., 1996). This suggests that in orthe origin of the divergence of moments is the “dressing” of
der to obtain a flux from (i.e. a conserved field witlif=0), the ore over a set of dimension 1 discussed above, then for
that it suffices to invert the power law filter, i.e. to fraction- near 2, we hav€ (¢)~C1q (see Eq. 50), so that the solution
ally differentiate it by an ordeH. It turns out that a finite  to C(gp)=D is simplygp~D/Ci. In this case, sinc€; is
difference approximation to an integer ordéf>H differ- small, we expectyp to be too large to be observed except
entiation followed by taking the absolute value of the resultperhaps on huge data sets. However caution should be used
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in applying Eq. (50) to determingy: experience in turbulent  since “Number’? probability, we obtain:

systems has shown thap can be sufficiently small so that

— if dressing is the correct explanation — it would imply that /p(@p) = D —c(y); ap=D—y (68)

D is less than one; in turbulenceraof the order .0'3 WOUI_d Finally, the partition functions can be used to define scaling
be necessary (see Lazarev et al., 1994). At this stage in O'“gxponents for the moments:

undertanding of scaling processes, it is perhaps best to sim-

ply regardgp as an empirical parameter characterizing the Z Moo? (Bii) ~ A~ ™(q) (69)
system. A

. . , . i ; izay—1
4.11 Other multifractal formalisms: singular densitigs (Where the sum is over all theballs B, ; sizeA™" needed to
c(y)) versus singular measures (()) cover theD-dimensional phase space regidn Sincep is

non random, we have:
At the same time as multifractal cascades were being devel-
oped in turbulence, they were also being developed for ap-<z (P AD)Q> — Dy —aD (pZ)
plications in strange attractors and chaos. In strange attrac\“z
tors, one has a large number of poiddswhich are gener- — 3~ @-DD+K (@) _ ;—(q) (70)
ated either by mappings or flows with a finite (usually small)
number of degrees of freedom (equal to the dimension otherefore we obtain:
the phase space, denot&J. The density of points in the
limit of the number of points tending to infinity is interpreted 70(¢) = (¢—1) D—K(q)=(¢—1)D(q);
as being a realization of a multifractal probability measure. D(g) = D—C(q) (71)
The probability density, at resolution is estimated by the ]
“partition function method” covering the space with.a” As Igng as we deal with strange attractors and study the full
sized grid (boxes) and using.=n;/N for each box g, is  D-dimensional phase space, g, fp(ap), to(g) (and
the number of points in the box). The probability measure isP(¢)) notation is adequate. However, if we are interested in
a geometric multifractal since although it represents the probf@ndom multifractals (involving probability spaces;— o),

ability of finding the system at a point in the phase space, ito" if we are interested in looking at subspaces with dimen-
is not itself random at all! sion smaller tharD, the D dependence is respectively a fun-

Halsey et al. (1986) wrote an influential paper proposingdamental limitation or an unnecessary complication. The tur-
a notation for dealing with these “geometric attractor” mul- PUlenty, ¢(y), K(g) andC(g) notation always has the ad-
tifractals. Rather than considering the density of the multi-@ntage of being intrinsic to the process (itisndependent).

fractal measureg, (the non-random analogue of the cascade
&), they considered the measure itself integrated over a balg Models
(box) sizerLi.e. B.
We use the symbdll (B,) since itis the analogue of the 5 1 Singularities and morphology
energy fluxITy, and the volume oB; is A~ P. The p; de-
fined this way is really a dressed quantity, but for these mul-In Sect. 2 we discussed the fact that the horizontal and verti-
tifractals the bare/dressed distinction is irrelevant. Halsey etal scaling in the lithosphere has different exponents and that
al. (1986) then defined the order of singulatity of the flux this is associated with scale dependent vertical stratification.

rather than the density of the flux: In Sect. 4, we discussed the fact that in general scaling is
characterized by an infinite hierarchy of exponents {lig)
Moo (B)) = / pdPx=p, 2 7P ~ (65)  or c(y) function) and that this can be modeled with multi-
Bi plicative cascades. However, we presented only unrealistic

. Y . o (discrete scale ratio) cascades and indicated that typical ob-
(the subscript D" was not used in the original; we have
. . : stervables are not scale by scale conserved, that they have an
added it to underscore the dependence on the dimension g : . ) .
. . extragH in their moment scaling exponent (Eq. 58). In this

the system). In cascade/turbulence notation, we may write_ . . . . .
D, ~ 17" we thus obtain: Section, we bnefly.dlscuss how_to make continuous in scale

» ' ' and nonconservativei{>0) multifractal processes, and we
(66) compare these with other scaling models.

Itis natural to model scaling processes using combinations

Each box can thus be indexed according o The number  of scale invariant basis functions i.e. mathematical singular-
of boxes at each resolution corresponding focan then be  ities. For the topography, an early model is the Turcotte and

ap=D—y

used to define the (box counting) dimensif(ap): Oxburgh (1967) model for the variation of altitude as a func-
. tion of distance from mid-ocean ridges, mathematically the
Number Moo (By) = A~ 2] ~ A/p@0) (67)  form is indicated in Table 2. Mandelbrot (1975) proposed

www.nonlin-processes-geophys.net/14/465/2007/ Nonlin. Processes Geophys., 14, 465-502, 2007



494

Table 2. An intercomparison between various models of the topography showing the essential similarities and differences in their mathe-

S. Lovejoy and D. Schertzer: Multifractals and the solid earth

matical structure, statistical properties. H&e2 for horizontal planes and the dimensib is the fractal dimension of lines of constant
altitude in the horizontal. The deterministic mid-ocean ridge model is represented here by a fault in unit directiontheotagh the point

x0. Here the variables are nondimensionalized and the height of the fault is normalized to one. N&is th&lirac delta function. The
model of Turcotte and Oxburgh us&s=1/2. The monofractal fractional Brownian motion (fBm) model involves a fractional integration of
order H' with a flux ¢»(x) which is simply a (§ correlated”) gaussian white noise with variarce Note that the symbat=¢» indicates
equality in probability distributions, i.e==9b<Pr(b>s)=Pra>s) for all s, “Pr” indicates “probability”. It results in altitude fluctuations
with gaussian statistics, linear structure function expogép} and altitude independent surface codimensiqor dimensionDg). The
value H=1/2 is compatible with the commonly cited vallig-=1.5 for the level sets ob=1+1.5=2.5 for the dimension of points on the
surface. The fLm is the generalization obtained by replacing Gaussian variables by stable Levy variables with{fiBdeis obtained in

the casex=2). These have diverging momenmtdor ¢>«. Finally, the multifractal Fractionally Integrated Flux (FIF) model has the same
structure, except that the white noises are replaced by multifractal ngiseerex is the resolution. The multifractal noigg is the result

of a continuous in scale multiplicative cascade, mathematically it is given by

s
F/\(x=/
\

Yo (x)dx’ .
lx —x'|D—-H’

p(x = e

H =DA-1/a)

ya (x) = independent Levy noise, index amplitude depends afy, Ty, is an fLm process called the “generator”. It is multiplicative because
of the exponentiation of the additive proc&ssp=e" . We again findd~1/2, although now there are an infinite number of codimensions
(or dimensionsD g (y)) that depends on the threshold given)By. (y is an order of singularity; not to be confused with the subgenerator
ya)- In all casesH can in principle be determined by dimensional analysis so that the Turcotte- Oxburgh exfierig@tmay be valid

for all the models, c.f. Lovejoy (1995). To generalize fBm, fLm and FIF to anisotropic topographies, we must replace the distances in the

fractional integration denominators by anisotropic scale functions as discussed in the text. Reproduced from Gagnon et al. (2006).

Model

Altitude inerements

(and statistics)

Codimension (c)
of level sets

Mid-oeean ridge

(deternunistic)

Monofractal fBm

(stochastic)

Monofractal fLm

(stochastic)

Multifractal FIF

(stochastic)

Altitude

(and noise statistics)
1 gl B(x'—Xp)

hG)=1-J dx Ir-(x—x")|—#

(No noise statistics)

i (X')

a__ I A A B
;?(Z\)—J dx |$—S"|D_H'r

@2 (x)=Gaussian white noise

H'=H+D/2

@a[:‘i;]
|$_£'|D—.H'r
¢y (x)=Levy noise (0= =2)

hix)= [ dx'

H'=H+D/a

h ()= [ ds' LX)

|K—X"|D_H
Gy Kig)
()=

Ahox| Ax|f

(No altitude statistics)

AR L gy Ax|H

(|AR]7) o) Ax] @)
E(g)=qH

1,
Ah = ¢o|Ax|H
(1AR|T)od Ax|* (@)
gH forg=«
Elg)=
5(@) 0 forgzw
Ah=¢;| Ax|?
(|AR|)oc| Ax|F(@)
£(q)=qH—K(q)

c=D—-Dp
Dp=1

c=H

Dp=D—¢

c=H
D_F:D—f‘

c(y)=maxg{gH—K(q))}
Dp(y)=D—c(y)

a model based on the idea of making singular faults the babe produced by using singularities of a quite different shape;
sic shapes by summing large numbers of faults with randomTable 2 (second row) indicates a model with point rather than
centers and orientations with Gaussian amplitudes; he proline singularities; in this form the mathematics is more con-
duced a Gaussian process with long range (power law) corvenient for comparison with the other singular topography
relations. Due to the central limit theorem (the gaussian spemodels summarized in Table 2. In this case, in the limit of
cial case), a process with the same statistical properties camany faults, because all of the singularities have nearly the
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Fig. 29. Comparison of isotropic versus anisotropic (with symmetric scale functions) simulations for three different scaling models. Top
row shows scale functions. From left to right, we change the anisotropy: the left column is self-similar (isotropic) while the middle and
0.8 —0.05
0.05 12
for the right one it has the for® (6")=1+0.65c08’ (in polar coordinates in the nonlinearly transformed space, see Eq. 74). Second, third
and fourth rows show the corresponding fBm (wh#+0.7), fLm @=1.8, H=0.7) and multifractal¢=1.8, C1=0.12, H=0.7) simulations.

We note that in the case of fBm, one mainly perceives textures, there are no very extreme mountains or other morphologies evident. One
can see that the fLm is too extreme, the shape of the singularity (particularly visible in the far right) is quite visible in the highest mountain
shapes. The multifractal simulations are more realistic in that there is a more subtle hierarchy of mountains. When the contour lines of the
scale functions are close, we change the sftalle=2 rapidly over short (Euclidean) distances. For a given order of singularity” will

therefore be larger. This explains the strong variability depending on direction (middle bottom row) and on shape of unit ball (right bottom
row). Indeed, spectral exponents will be different along the different eigenvect@rs of

right columns are anisotropic and symmetric with respeﬁi@( ) The middle column has unit ball circular at 1 pixel, while

same amplitude (Gaussian variables are rarely more than @y, ¢,). The lesson from fBm is that if we are to explain real
few standard deviations from the mean), the basic singularityopography by such a singular model, then the statistics of the
shape is not important, we end up a rough texture but withousingularities must be more extreme than gaussian so that the
any more interesting morphologies. basic singularity shape may remain important in the limit of a
large number of large singularities (i.e. after integration over
In Table 2 we see that all the stochastic models are obthe noise). One way to make some of the singularities always
tained by convolutions with singularities, such convolutions siand out is to use the fractional Levy motion model obtain
are “fractional integrations” of ordeil’ (if H'<0, there are by replacing the Gaussian noise by a Levy noise indekhe
differentiations; the difference betweéh H' for fractional | evy random variables can be regarded as a generalization of

Brownian motion (fBm), fractional Levy motion (fLm) are  the Gaussian variables to the case where the variance (second
necessary to take into account the scaling of the basic noises
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Euclidean distances by scale functions. We therefore digress
a moment to discuss scale functions. In order to change the
shape of the singularities while conserving the basic statisti-
cal properties of the process, it turns out to be sufficient to
make the replacement everywhere in Table 2:

|Ar[ — ||Ar[|; D — D (72)

i.e. to replace the usual distancé|{J by a “scale function”
(“IlIM and usual dimension of space by an “elliptical dimen-
sion” D.; which satisfies the following basic equation scal-

ing:
ITarll = 27Yrll; Tw = A7C; Dy = TraceG (73)

whereT, is a scale changing operator which reduces the scale
of a vector by a factok. In order for the scale function to
be scaling (i.e. have no characteristic scale), it must satisfy
group properties, hence it must admit a gener&aas in-
dicated. Once all the unit vectorg are specified the scale
Eqg. (73) uniquely specifies the scale of all vectors; all the
nonunit vectors (r, || =1; A#1) are then generated by the
Fig. 30. This self-affine simulation illustrates the “phenomenologi- action Of.T’\: r)‘:T.Arl (See. Schertzer.and Lovejoy, 19.85b’
cal fallacy” since both the top and bottom look quite different while for technical details on this Generallzed Scale Invariance,
having the same generatof3 {s diagonal with elements 0.8, 1.2), GSI). The set of all vectorgr|| < is called a “ball”, de-
same (anisotropic) statistics at scales differing by a factor of 64 (tophoted By ; for physical scale functions; must be strictly
and bottom blow-up). The figure shows the proverbial geologists’decreasing (i.eBy CB;; A'<1). We can see that if the re-
lens cap at two resolutions differing by a factor of 64. Seen from placementyr—r'| — |r—r’| ; D— D,; are made in the de-
afar (top), the structures seem to be composed of left to right ridgesnominators of the models in Table 2, with scale functions sat-
however closer inspection (bottom) shows that in fact this is notjsfying the scale Eq. (72) (in fact they then define the notion
the case at the smaller scales (adapted from Lovejoy and Schertzegca|e) then the convolutions will have power law dependen-
2007). cies under “zooming”, i.e. the models will be scaling as long
as the noises are also scaling (hence the special choices of
Gaussian or Levy noise, or in the multifractal case, multi-
moment) is infinite; they have long probability tails such the frgcta) noise).
statistical momentg orderg >« and higher diverge. Dueto  \hen scale functions are used as the basic singularities,
the (generalized) central limit theorem, sums of independentp,q shapes can be extremely varied, hence demonstrating
(possibly weighted) Levy variables are still Levy variables. {he possibility of modeling geomorphologies in this way.
Figure 29 shows a comparison with the corresponding fBmigirst considerG = the identity: the resulting models will
several strong mountain peaks stand out; in fact, the strongg “self-similar” in the sense that their statistics will vary
peaks are too strong — although far from Gaussian — real toy, power law ways under isotropic “zooming” (blow-ups).
pography empirically seems to have finite variance so thisynhen the unit ball is a circle (or more generallydadimen-
cannot be a good model. Finally, we note that the continu-gjgng) sphere), then we obtaln| = |r|. However when the
ous in scale conservative multifractal process is obtained by,nit pall is not circular (spherical), then there will still be

using an additive Levy process for the log, and the egta  referred directions. These preferred directions will be the
needed to obtain the nonconservative multifractal process iggme at all scales, the anisotropy is “trivial” (see Fig. 23
modeled by an extra fractional integration ord&rFig. 23 in for examples). Things become more interesting as soon
Sect. 4.7 showed the effect of varying tHe o parameters. as G is no longer the identity. IfG is a diagonal ma-
trix, then the singularities order: |r|| =" are quite differ-
5.2 Modelling, Anisotropic fractals, multifractals, the scale ent in different directions, the resulting fractals/multifractals
function are “self-affine”. The case whef@ is nondiagonal and the
eigenvalues are real is a generalization in which the main
Let’s consider the singularity shape in more detail. The shapestretching/shrinking occurs along nonorthogonal eigendirec-
of line (fault-like) and point singularities depends on powerstions; Fig. 29, 30 shows the resulting differential stratifica-
of distances from either a line or a point; in order to gener-tion. When the eigenvalues are complex, then the eigen-
alize this it turns out to be sufficient to replace the standardvectors rotate continuously as functions of scale. Finally,
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we can consider noncircular/nonspherical unit balls, Fig. 29were arguably more inspirational than practical. However in
shows how the basic singularity shapes are clearly visible inthe 1980s two developments were made which were essen-
the fLm. In the multifractal case, the effect of the singu- tial for geoscience applications: the generalization from scal-
larity morphology is still important for the result; but things ing geometric sets to scaling fields (multifractals), and the
are more subtle. Figure 29 shows the effect of changing theeneralization from isotropic (self-similar) to quite general
scale function while maintaining th@. Finally — outside our  anisotropic scaling (“Generalized Scale Invariance”).
present scope but presumably important for realistic topog- Partly in order to limit our scope, and partly because of
raphy modelling — we can consid@ras a nonlinear operator their fundamental importance, in this review we concentrated
(rather than a matrix). In this case, the anisotropy dependsn scaling geofields in the solid earth and topography. Us-
not only on scale but also on the location. This allows foring the (somewhat) familiar method of power spectra, we
spatially varying morphologies. In this case, the linear GSlreviewed evidence that many geofields including the topog-
discussed above in simply a local approximation. raphy, ore concentrations, rock density, magnetic suscepti-
To understand the relation between usual distances andility and others were scaling over considerable ranges of
generalized scales, consider a (real) ZsDmatrix which horizontal and vertical scale. From the relatively small num-

in a diagonal frame isG= (Hx 0 >; the nonlinear co- ber of studies where proximate vertical and horizontal data
0 H, were available, we argued that generally the scaling was
ordinate transformation’=sgnx |x|Y " ; y'=sgny |y|¥Hr anisotropic with the exponent ratiéi, in the rangex~1.5—
transforms the problem into a problem wigi=1= identity; = 3. This — combined with estimates of the “sphero-scale”
this shows that the basic scale function is: near planetary scales — implies that structures in lithospheric

g 2/Hy 2/Hy\1/2 vertical cross-sections typically start off very stratified but
G, MIF=r(@)(x +yT) (74) that at larger and larger scales they become less and less so
wherer(9’) is an arbitrary function of the polar angtg (exactly the opposite of the behaviour observed in the atmo-

(in the nonlinearly transformed space i.e tday’/x’). Fig- sphere). However, power spectra are only second order mo-
ure 29 shows the effect of varying the unit balls ahdna-  ments; using “functional box-counting” to systematically de-
trices for various topography models. termine the fractal dimensions of sets exceeding higher and
) higher thresholds — we argued that geofields are in fact mul-
5.3 The phenomological fallacy tifractal. Since this implies that areas above thresholds are

. . . ower law functions of resolution (box size), this contradicts
Geophysicists commonly derive their models from phe-p ( )

. e 7 .~_assumptions of classical geostatistics which assume that the
nomenological classifications based largely on classmafl

scale bound) notions of scale and shape. Once a heelevant Lebesgue measures are well defined lengths, areas,
( ) , : Pe. PN%ind volumes (i.e. that they have no significant resolution de-
nomenon has been defined - often involving somewhat sub- .
S L ) pendencies).
jective criterion — models are constructed to explain them.

However we hav N that lina or it based Having argued that the lithosphere is largely the prod-
owever we have seen hal scaling processes — as€lct of scaling processes involving dynamical mechanisms
on sufficiently strong anisotropic singularities, can lead to

. . . . repeating scale after scale, we concentrated on the result-
quite different looking structures at different scales even b 9

thouah the basic underlving mechanism is scale in ar'ant'ing cascade processes. The history of the development of
ugr icu ying ; IS 1S invarl explicit cascade models has many lessons for geoscientists.
see Fig. 30 for an example. This possibility demonstrate

hat Il the “oh logical fallacy” i.e. the d fSThey were first developed by de Wijs (1951) in an attempt
what we call the ‘phenomological faflacy™ 1.€. the danger oty refte the idea that mineral ore concentrations had alge-
inferring process from appearance.

braic (“Pareto”) distributions and to support the notion that
they were at least roughly lognormal. However, later de-
6 Conclusions velopments of cascades (in the 1960s, 1970s for applica-
tions in turbulence) showed that they could only at best give
Central problems in the geosciences are those of resolutioapproximately log-normal distributions; Mandelbrot (1974)
and scale. It is quite typical for fields and structures to haveshowed that the “dressed” cascades generally displayed the
variability ranging over factors of over 1®in scale. Start- phenomenon of “divergence” of moments —i.e. precisely the
ing in the early 20th century, there were isolated insightsalgebraic behaviour that de Wijs had fought against.
into the nature of such wide range variability. However, it But the issue of algebraic versus lognormality continued
wasn't until the 1970s that new ideas of deterministic chaosto be deepened. On the one hand, Bak et al. (1987) made
and fractals began to spark wide interest in the problem. Deanother connection between fractals and algebraic probabili-
terministic chaos is essentially a low number of degrees ofties: Self-Organized Criticality, the prototypical model being
freedom paradigm whereas (stochastic) fractals provide athe sandpile in which grains are added one at a time pro-
attractive large number of degrees of freedom alternative. Invoking avalanches with algebraic distributions. In this con-
the original form of fractal geometry of self-similar (and oc- text, the multifractal phase transition route to algebraic prob-
casionally self-affine) sets (Mandelbrot, 1977, 1983), fractalsabilities is sometimes called “nonclassical SOC”. Finally, in
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the 1980s it was demonstrated that cascade processes haseale (differential) anisotropy and also those with anisotropy
stable, attractive behaviours so that most of the details ofarying from place to place.
the dynamical mechanism are irrelevant, only three param- In many ways we are living in a “golden age” of geo-
eters will generally be enough to determine the behaviouphysical data; to fully take advantage of this manna re-
(Schertzer and Lovejoy, 1987). This was a kind of “multi- quires scaling techniques. Unfortunately, many of the neces-
plicative central limit theorem”; it shows that even approx- sary techniques and notions are still little known sometimes
imate log-normality compatible with the divergence of mo- even among practioners. An unfortunate consequence is that
ments (which only affects the extreme tail of the probabil- mainstream geoscientists have found many of the applica-
ity distributions) is a special case; real world systems in facttions of scaling too restrictive or simplistic leading them to
had approximately log-Levy distributions and with the Levy discard scaling ideas altogether. An example of this is the
parameter typically <2; the log-normal value=2 being  debate in the 1990s about the value of the supposedly unique
special. Indeed we saw thatestimates for topography and fractal dimension of the topography. Lack of agreement be-
ore concentration (using de Wijs’s original data) have valuestween disparate analysis techniques on diverse data sets lead
of @~#1.8, close to values for the susceptibility and magneticmany to conclude that scaling only held over narrow ranges
field anomalies. The existence of universality classes turnsf scale. In actual fact, as modern multifractal analyses am-
out to be essential for the application of cascades and mulply show — the topography displays excellent (multi) scaling
tifractals to the real world: without it, every scaling process over more than 10in scale. If the geofields really do re-
would require an infinite number of parameters either to em-spect some (generalized) scaling principle, then this fact will
pirically characterize or to model. transform the geosciences.

In order to clarify these ideas, we included a long discus-
sion of cascade models. This was partly pedagogical, but wascknowledgements. This research was performed purely for
also aimed at highlighting areas where clarification was nec-scientific purposes, it was unfunded.
essary. Key additional points were a) the important distinc-
tion between microcanonical and canonical conservation, bfEdited by: A. Tarquis o
the distinction between “bare” and “dressed” cascade propReviewed by: F. Agterberg and V. Dimri
erties c) the nonlocal nature of cascade singularities (they
are generallynot Holder exponents), d) the codimension (
c(y)) versus dimensiono, f(«)) formalism for multifrac-

tals ar.'|<.j €) th? fact that typical observables are genemelly Agterberg, F.: Geomathematics, 596 pp., Elsevier, 1974.
quantities which are conserved scale by scale, they are genefgterperg, F.: New Applications of the Model of de Wisj in regional

ally not the direct result of cascade processes but involve an geochemistry, Math. Geol., 39, 1-25, doi:10.1007/s11004-006-
extra linear terngH in their moment scaling exponekt(q) 96063-7, 2007.

(requiring fractional integrations of cascades to model). InAhrens, L. H.: A fundamental law of geochemistry, Nature, 172,
Sect. 5 we intercompared various scaling models and dis- 1148-1152, 1953.

cussed how to make (realistic) continuous in scale cascadeditchison, J. and Brown, J. A. C.: The lognormal distribution, with
We also show how — by introducing an (anisotropic) scale spepial .reference to its uses in economics, 176 pp., Cambridge
function in the place of the usual (isotropic) distance func- University press, 1957. _ _

tion, we can model anisotropic multifractals, and we gave”V1eS: C- A., Scholz, C. H., and Boatwright, J.. Fractal Analy-
several examples of topography simulations. The recogni- sis Applied to Characteristic Segments of San Andreas Fault, J.

. . Geophys. Res., 92, 331-344, 1987.
tion that real world scaling systems have both scale and locaBacry A., Ameodo, A., Frisch, U., Gagne, Y., and Hopfinger, E.:

tion dependent anisotropy is fundamental in geophysics since \yayelet analysis of fully developed turbulence data and measure-
without it we could not explain the coexistence of diverse  ment of scaling exponents, in: Turbulence and coherent struc-
geomorphologies and scaling. Indeed, GSI demonstrates the tures, edited by: Lessieur, M. and Metais, O., pp. 703-718,
“phenomenological fallacy” i.e. the fact that mechanism can-  Kluwer, 1989.

not be phenomenologically inferred from form: the same Bahr, K.: The route to fractals in magnetotelluric exploration of the
process at small and large scales can have drastically dif- crust, in: Fractal behaviour of the earth system, edited by: Dimri,
ferent phenomenologies yet be produced by the same scale V- P Springer, Heidelberg, 2005. . o
invariant mechanism. Bak, P., Tang, C., and Weiessenfeld, K.: Self-Organized Criticality:

The problem of structures within structures occurring over A1 €xplanation of 1/f noise, Phys. Rev. Lett,, 59, 381-384, 1987.
f scale is a unifying geoscience problemlg’ak' P., Tang, C., and Weiessenfeld, K.: Self-Organized Criticality,
€normous ranges o Phys. Rev. Lett., A 38, 364374, 1988.

atic and advances over the Ia.St 30 yearg have shown that .S.U(éﬁétlmino, G.: The spectra of the topography of the Earth, Venus and
SyStemS have many — sometimes surprising — commonalities Mars, Geophys. Res. Lett., 20(11)‘ 1063-1066, 1993.

over vastly disparate scales. This is possible because it igaimino, G., Lambeck, K., and Kaula, W.: A spherical harmonic
now known that scale invariance is a symmetry principle of analysis of the Earth’s topography, J. Geophys. Res., 78(2), 478—
great generality encompassing systems with both scale by 481, 1973.
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