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Abstract. Starting about thirty years ago, new ideas in non-
linear dynamics, particularly fractals and scaling, provoked
an explosive growth of research both in modeling and in ex-
perimentally characterizing geosystems over wide ranges of
scale. In this review we focus on scaling advances in solid
earth geophysics including the topography. To reduce the
review to manageable proportions, we restrict our attention
to scaling fields, i.e. to the discussion of intensive quantities
such as ore concentrations, rock densities, susceptibilities,
and magnetic and gravitational fields.

We discuss the growing body of evidence showing that
geofields are scaling (have power law dependencies on spa-
tial scale, resolution), over wide ranges of both horizontal
and vertical scale. Focusing on the cases where both hori-
zontal and vertical statistics have both been estimated from
proximate data, we argue that the exponents are systemati-
cally different, reflecting lithospheric stratification which –
while very strong at small scales – becomes less and less
pronounced at larger and larger scales, but in a scaling man-
ner. We then discuss the necessity for treating the fields as
multifractals rather than monofractals, the latter being too re-
strictive a framework. We discuss the consequences of multi-
fractality for geostatistics, we then discuss cascade processes
in which the same dynamical mechanism repeats scale af-
ter scale over a range. Using the binomial model first pro-
posed by de Wijs (1951) as an example, we discuss the issues
of microcanonical versus canonical conservation, algebraic
(“Pareto”) versus long tailed (e.g. lognormal) distributions,
multifractal universality, conservative and nonconservative
multifractal processes, codimension versus dimension for-
malisms. We compare and contrast different scaling models
(fractional Brownian motion, fractional Levy motion, con-
tinuous (in scale) cascades), showing that they are all based
on fractional integrations of noises built up from singularity
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basis functions. We show how anisotropic (including strati-
fied) models can be produced simply by replacing the usual
distance function by an anisotropic scale function, hence by
replacing isotropic singularities by anisotropic ones.

1 Introduction

The surface topography and lithosphere are extremely vari-
able over huge ranges of scales displaying structures smaller
than millimeters, and as large as the planet; a ratio of at least
1010. The mathematical modeling of this variability has long
stimulated mathematicians and physicists. For example Per-
rin (1913) considered the problem of differentiability: “Con-
sider the difficulty in finding the tangent to a point of the
coast of Brittany... depending on the resolution of the map
the tangent would change. The point is that a map is simply
a conventional drawing in which each line has a tangent. On
the contrary, an essential feature of the coast is that ... with-
out making them out, at each scale weguess the details which
prohibit us from drawing a tangent...”. The converse prob-
lem – integrability (“rectifiability”) was considered by Stein-
haus (1954): “... The left bank of the Vistula when measured
with increased precision would furnish lengths ten, hundred,
and even a thousand times as great as the length read off a
school map. A statement nearly adequate to reality would
be to call most arcs encountered in nature as not rectifiable.
This statement is contrary to the belief that not rectifiable
arcs are an invention of mathematicians and that natural arcs
are rectifiable: it is the opposite which is true...”. Richard-
son (1961) quantified integrability by considering the empir-
ical scaling of the coast of Britain and of several frontiers
using the “Richardson dividers” method. In his paper Man-
delbrot (1967) “How long is the coast of Britain?” Richard-
son’s scaling exponent was interpreted in terms of a fractal
dimension. Also among the early pioneers, we could cite
Vennig-Meinesz (1951) who argued that the spectrumE(k)
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466 S. Lovejoy and D. Schertzer: Multifractals and the solid earth

of the earth’s topography was of the “remarkable” scaling
form k−β with spectral exponentβ=2; close to the modern
valueβ≈2.1 (k is a wavenumber, see below for discussion),
and de Wijs (1951) who – for the distribution of ores – first
suggested an explicit cascade model.

Until Mandelbrot (1977)’s seminal “Fractals: form,
chance and dimension” these pioneering papers were iso-
lated. However, the 1970s were a period of explosive growth
of nonlinear dynamics, particularly after the discovery by
Feigenbaum (1978) and others of quantitative universality in
deterministic chaos: the geoscience community was primed
for new ideas. In this context, and riding on the back of
the computer graphics revolution, Mandelbrot’s proposal that
fractals are ubiquitous in nature struck a responsive chord. It
promised to characterize and model many of the messy prob-
lems of geocomplexity using unique fractal dimensions.

When it came to geophysical applications, this audacious
idea turned out to have serious limitations: most geofields
of interest are mathematical fields (i.e. they have a value at
each space-time point such as the atmospheric temperature
or rock density), and – in spite of many attempts – they can-
not be reduced to geometric sets of points. They therefore
cannot generally be characterized by unique fractal dimen-
sions. Furthermore, the proposed fractal sets were only scale
invariant under isotropic scale changes or occasionally under
the slightly more general “self-affine” scale changes in which
different exponents act in different orthogonal directions.

Since Mandelbrot’s original proposal of applying fractal
geometry to natural systems, geoscience applications – espe-
cially in turbulence – played an important role in stimulating
advances. There are four key developments on which we
focus here. The first is the realization that a generic conse-
quence of scale invariant dynamics – where the same basic
mechanism repeats scale after scale from large to small – are
multifractal fields i.e. it requires the transition from fractal
geometry to multifractal processes. In these “cascades”, the
variability is built up scale after scale; the generic result is
that the extremes are particularly singular, they display “di-
vergence of moments” or equivalently algebraic/power law
(“Pareto”) distributions (also called the “multifractal but-
terfly effect” (Lovejoy and Schertzer, 1998)). Since Bak
et al. (1987, 1988), the combination of fractals combined
with algebraic probabilities has been termed “Self-Organized
Criticality” (SOC), therefore cascades can be said to pro-
vide an alternative nonclassical “multifractal phase transi-
tion” route to SOC (Schertzer and Lovejoy, 1994). The third
advance was the realization that when – over a finite range
of scales – such a scaling process interacts with many others
or is iterated enough, that the resulting behaviour is stable
and attractive. This implies that it doesn’t depend on many
of the details of the dynamics; i.e. that there exist “univer-
sality classes” for multifractal processes. This essentially re-
duces the number of exponents from infinity to only three
and finally allows multifractals to be manageable. This is a
kind of multiplicative central limit theorem. The fourth key

advance was the recognition that scale invariance is a very
general (although nonclassical) symmetry principle. The de-
velopment of this “Generalized Scale Invariance” (GSI) ef-
fectively extended scale invariance from the restrictive and
unrealistic isotropic (“self-similar”) fractals and multifrac-
tals to highly anisotropic systems. In scaling but anisotropic
systems, as one “zooms” into a structure, one finds that the
“blown up” structure is (statistically) equivalent to the start-
ing structure only if in addition to the magnification, one
“squashes” and/or rotates the structures by an amount which
depends on a scale invariant rule. When viewed using tradi-
tional (isotropic, Euclidean) notions of scale, one finds that
structures at different scales and possibly different locations
– can be quite different. GSI thus demonstrates the “phe-
nomenological fallacy”: that one is not justified in infering
dynamics from phenomenological appearance. More con-
cretely, the common geophysical approach of making a hier-
archy of different dynamical models to cover different ranges
of scales is often unjustified.

In this review, we focus on the scaling of geophysical
quantities that can best be represented as mathematical fields,
i.e. having a value (e.g. altitude) or intensity (e.g. rock den-
sity) at each point. From these intensive variables, various
extensive quantities can be derived. For example, the dis-
tribution of islands (the “Korcak law” (Korcak, 1938)), the
size of ore deposits (e.g. Barton and Scholz, 1995; Crovelli
and Barton, 1995) are geometric sets which can be derived
from the fields (the topography, ore concentration fields in
these examples) and will be outside our scope. Similarly, we
will not discuss the literature on the scaling of rock fractures
(e.g. Barton, 1995; Leary, 2003a) nor on rock fragment dis-
tributions (e.g. Turcotte, 1989; Kaminski and Jaupart, 1998);
many examples can be found in Turcotte (1989). Finally, the
burgeoning literature on scaling in seismology (starting with
the famous Omori, 1895, and then Gutenberg and Richter,
1944, laws) generally treat earthquakes as sets of points and
only considers the distribution of intensities their without ref-
erence to their locations (hence not as fields or measures) and
are also outside our scope (see however Hooge et al., 1994).
Earthquakes are also fertile ground for classical SOC type
models which build upon the classical slider-block model
(Burridge and Knopoff, 1967; see Carlson et al., 1994, for
a review, and Weatherley and Abe, 2004, for a recent exam-
ple).

This paper is organized as follows. In Sect. 2 we use spec-
tral analysis and many examples, to argue that scaling in the
solid earth and topography cover huge ranges of scale in both
the horizontal and vertical directions. We argue that the scal-
ing is systematically different in the two directions and that
this is a symptom of the vertical lithospheric stratification.
In Sect. 3, we show – again with examples – that the scal-
ing of the intense and weak field regions is different, that
the fields are typically multifractal not monofractal, and we
examine some of the consequences for classical geostatis-
tics. In Sect. 4 we consider the generic multifractal process
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– cascades – concentrating on aspects which require partic-
ular clarification, especially the issues of the type of scale
by scale conservation, singularity localization, divergence of
moments, universality, the dimension and codimension mul-
tifractal formalisms. Finally in Sect. 5 we compare and con-
trast various scaling models and show how to take into ac-
count anisotropic scaling. In Sect. 6 we conclude.

2 Wide range scaling

2.1 Anisotropic scaling and vertical stratification of struc-
tures

Scale invariance – no matter how theoretically appealing –
would not be of general geophysical interest were it not for
the basic empirical fact that geofields display wide range
scaling. Perhaps the most straightforward way to show this
is by using spectral analysis which is both fairly familiar to
geoscientists and has the advantage of being very sensitive to
scale breaks. In addition, it can also be useful for studying
anisotropy. Consider the geophysical fieldI (r) wherer is a
position vector. We define the spectral densityP(k):

P(k) = 〈|Ĩ (k)|2〉; Ĩ (k) =

∫

eik·rI (r)dr (1)

wherek is a wavevector. SinceP is quadratic inI , it is a
second order statistic. In the definition, we have included the
theoretically motivated ensemble average (denoted “<.>”)
although in fact, oftenP is estimated from a single realiza-
tion using a fast Fourier algorithm on gridded (finite reso-
lution) data; in this case, it is more properly called a “pe-
riodogram”. We may then define the “isotropic” spectrum
E(k) obtained by angle integratingP :

E(k) =

∫

|k′|=k

P(k′)dk
′ (2)

wherek is the modulus of the wavevector (the notation in-
dicates angle integration in Fourier space). If the statistical
properties ofI (r) are both isotropic and scaling thenE is of
the power law form:

E(k) ∝ k−β (3)

whereβ is the “spectral exponent”. Note that sometimes an-
gle averaging (rather than integration) is performed; in 2-D,
the corresponding exponent isβ−1. The advantage of using
the present (turbulence based) definition is that if the process
is isotropic, thenβ is independent of the dimension of space
so that 1-D sections will have the same exponent.

The exponents of isotropic spectra are invariant under the
scale changek→λk (corresponding in real space to the scale
reductionr→λ−1

r); the spectra – which keeps its form but
which changes by the factorλ−β – is called “scaling”. In

physics the term “scaling” is generally reserved for invari-
ance under scale transformations in space, time or space-
time, although occasionally it is also used to describe the tails
of algebraic probability distributions, (in this case it refers to
scaling in a probability space; see the discussion of SOC be-
low). In the geosciences there is an unfortunate tendency to
use “scaling” to denote the general problem of changing from
one scale to another even if there are no conserved proper-
ties; below we reserve the term for the more precise physics
sense which implies some invariant properties under (possi-
bly anisotropic) scale changes.

In the following we will be interested in the ver-
tical stratification which – if scaling – will mani-
fest itself in different horizontal and vertical spectral
exponents although for simplicity, we will assume
isotropy in the horizontal plane. In this case, we have
P (k) dk=P (K, θ, kz) KdKdθdkz=2πP (K, kz) KdKdkz

where (K,θ) are the horizontal polar coordinates. We
therefore have the following 1-D spectra:

E (K) = 2π

∫

KP (K, kz) dkz;

E (kz) = 2π

∫

P (K, kz) KdK;

K2 = k2
x + k2

y (4)

wherek=(kx, ky, kz) is a wavevector. In order to model the
horizontal stratification – the fact that the 1-D spectra will
typically be different in the horizontal and vertical directions
– we takeP to be of the general anisotropic scaling form:

P (K, θ, kz) ∝ ‖(K, kz)‖
−s ;

‖(K, kz)‖ =

(

(

K
ks

)2
+
(

kz

ks

)2/Hz
)1/2 (5)

whereK=(kx, ky) is a horizontal vector, and we have in-
troduced the (Fourier) scale function‖(K, kz)‖, the “sphero
wavenumber”ks at which Fourier structures are roughly
spherical, the spectral exponents, and the anistropic expo-
nent Hz. From Eqs. (4), (5) we obtain the horizontal and
vertical scaling exponents (βh, βv):

E (K) ≈ K−βh; E (kz) ≈ k
−βv
z (6)

with exponentsβh, βv satisfying:

βh ≈ s − Hz − 1; s > Hz

βv ≈ s−2
Hz

; s > 2 (7)

i.e.:

Hz = (1 − βh)/(1 − βv); s =βh + Hz + 1 (8)

Equation (5) assumes horizontal isotropy and we have delib-
erately given the very simplest possible scale function which
leads to 1-D horizontal/vertical spectra with different expo-
nents (Eq. 6). In fact, in order for Eqs. (6), (7), (8) to follow
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from Eq. (5, top), the scale function need only be a solution
of the functional “scale” equation:

‖Tλ (K, kz)‖ = λ−1 ‖(K, kz)‖ ; Tλ = λ−GT (9)

whereTλ is an operator which reduces the scale of a vec-
tor by a ratioλ, andG is the (real space) generator of the
anisotropy (“T ” means “transpose”, necessary for the Fourier
generator). In this case:

G =





1 0 0
0 1 0
0 0 Hz





leading to stratification. In this section, we will only need this
simple case with diagonal matrixG=GT corresponding to
“self-affine” scale changes (whenHz=1,G is the identity and
the system is invariant under isotropic scale changes, i.e. it is
“self-similar”). However, the basic formula Eq. (9) (“Gen-
eralized Scale Invariance”, GSI developed in the context of
atmospheric turbulence (Schertzer and Lovejoy, 1985b)) is
valid whenG has off-diagonal elements (corresponding to
differential rotation as well as squashing of structures) and
for generalizations in which the anisotropy depends on loca-
tion (“nonlinear” GSI,G is then a nonlinear operator); see
Sect. 5. We may note that here it is the real space verti-
cal cross-sections (i.e. the linesI (x,z)=constant) which are
self-affine. This is quite different from the self-affinity of
monofractal functions such as fractional Brownian Motion
(fBm) which have self-affinegraphs. For example, con-
sider an fBm model of the ore concentrationc(x,y), i.e. the
concentration in two dimensional (x, y) space. The graph
of c – which is the surface defined in the (x, y, c(x, y))

space – has self-affine (x, c(x, 0)) sections (i.e. for constant
y=0), yet the real-space iso-concentration lines defined by
c(x,y)=constant will be self-similar.

The connection between the Fourier and real space struc-
tures can be established by using structure functions. Con-
sider theq th order “structure function”Sq defined by:

Sq (1r) =
〈

|1I (1r)|q
〉

; 1I (1r) =I (r+1r) −I (r) (10)

where 1r is a displacement vector in (x,y,z) space:
1r=(1R, 1z) where1R=(1x,1y) is a horizontal displace-
ment vector. Equation (10) assumes thatI is statistically in-
dependent ofr. Note that the fluctuations can more generally
be defined by wavelets; the1I in Eq. (10) is in fact a “Haar”
or “poor man’s” wavelet generally adequate for our purposes.
If the field I (r) is scaling, then:

Sq(1r) ∝ ||1r||ξq (11)

whereξ(q) is the structure function exponent, and||1r|| is
the scale function (the real space counterpart of‖(K, kz)‖ of
Eq. (5):
∥

∥

∥
λ−G (1R, 1z)

∥

∥

∥
= λ−1 ‖(1R, 1z)‖ (12)

(in spite of the notation, the real space and Fourier space
scale functions are not the same, and the Fourier generators
GT is the transpose of the real space generatorG). If we
consider horizontal and vertical displacements1R, 1z, re-
spectively), then this reduces to:
〈

|1I (1R)|q
〉

∝ |1R|ξh(q) ;

1I (1R) = I (r + 1r) − I (r) ;

1r = (1R, 0)

〈

|1I (1z)|q
〉

∝ |1z|ξv(q) ;

1I (1z) = I (r + 1r) − I (r) ;

1r = (0, 0, 1z)

(13)

where:

ξh (q) = ξ (q)

ξv (q) = Hzξ (q)
(14)

Hz is thus the ratio of the horizontal and vertical structure
function exponents. If we takeq=2, this reduces to the
usual structure function exponent (applied to a single real-
ization, i.e. without ensemble averaging, this is termed the
“semi-variogram”). Due to the Wiener-Khintchin theorem
(the spectrum of a homogeneous process is the Fourier trans-
form of the autocorrelation function), we then obtain:

ξ (2) = s − 2 − Hz

βh = ξh (2) + 1
βv = ξv (2) + 1

(15)

We therefore see that the ratio(βh−1)/(βv−1) is the ra-
tio of the variances in the horizontal and vertical directions
so that if we define the extent of typical structures by their
variances, then a structure of horizontal extent|1R| has a

corresponding vertical extent:1z=ls

(

|1R|
ls

)Hz

wherels is

the real space counterpart ofks ; it is the scale at which the
real space structures are roughly “roundish”:1z≈ |1R| =ls ;
Fig. 11 shows a vertical cross-section of the magnetic sus-
ceptibility (see below) showing how structures start out very
flat/stratified at small scales becoming less and less stratified
at larger scales.

2.2 Horizontal structures

We now attempt to demonstrate that many geofields, includ-
ing some of the most important such as the topography and
rock density – are scaling over wide ranges of scale. We first
consider the topography which is of particular importance
since it is not only relatively well measured, but is a fun-
damental geophysical field. Starting with Vennig-Meinesz
(1951), many spectral analyses of the earth’s topography
have been made (Balmino et al., 1973; Bell, 1975; Berk-
son and Matthews, 1983; Fox and Hayes, 1985; Gibert and
Courtillot, 1987; Balmino, 1993; Mareschal, 1989; Lavallée
et al., 1993; Tchiguirinskaia et al., 2000; Gagnon et al., 2003)
all finding approximately power law (isotropic) spectra (also
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Fig. 1. Log/log plot of the spectra for four Digital Elevation Maps
(DEMs). From right to left: Lower Saxony (with trees, top), Lower
Saxony (a sub-region without trees, bottom), the U.S. at 90 m (in
grey), at 30′′ (about 1 km, GTOPO30) and the earth (including
bathymetry) at 5′ (about 10 km), ETOPO5. A reference line of slope
−2.10 is on the graph to show the overall slope of the spectra. The
small arrows show the frequency at which the spectra are not well
estimated due to the inadequate dynamical range of the data; see
Gagnon et al. (2006) for this theoretical estimate (for ETOPO5, it
is well estimated over the whole range). The “semi error bar” sym-
bols indicate the amount of offset due to the resolution dependent
factorλK(2) (see Gagnon et al., 2006) for this necessary resolution
dependent correction). Reproduced from Gagnon et al. (2006).

relevant are similar results on Venus topography (Kucinkas
et al., 1992)). Although the exponents are somewhat vari-
able from region to region (see the discussion in Sect. 3.4),
the values ofβ are not so different; the overall conclusion
of Gagnon et al. (2006) is that it varies from about 1.6 for
oceans to 2.1 for continents. Figure 1 shows a recent spectral
analysis of topography covering the range 1 m to 20 000 km,
showing the excellent scaling over at least planetary scales
down to about 40 m where vegetation starts becoming an is-
sue.

Others surface fields – especially from remote sensing
have also been shown to have wide range spectral scaling.
Some – such as the reflected visible radiances and thermal
infra red emissions from volcanoes over the range of roughly
50 cm to 2 km (Fig. 2) (Harvey et al., 2002; Laferrière and
Gaonac’h, 1999) have implications for the subsurface, while
others primarily reflect soil, vegetation and other surface
characteristics. Using remote sensing many surface fields
and their surrogates have been shown to exhibit wide range
scaling, for example soil moisture (Dubayah et al., 1997) and
humidity indices (Lovejoy et al., 2007b1).

1Lovejoy, S., Tarquis, A., Gaonac’h, H., and Schertzer, D.:

Fig. 2a. Spectra from three images near the Puu Oo volcanic vent.
Spectra from the visible.

Fig. 2b. Same but spectra from thermal infrared images. All spectra
were shifted vertically for clarity. Corresponding values ofβ are
indicated. Reproduced from Harvey et al. (2002).

The horizontal scaling of the topography and other sur-
face fields is significant because the geophysical processes
responsible for them (including orographic, erosional, hydro-
logical etc.) are strongly nonlinearly coupled so that the scal-
ing in one is strong evidence for scaling in another. We can
be fairly confident of this because scale invariance is a sym-
metry principle and one generally assumes that symmetries
are respected unless specific symmetry breaking mechanisms
can be found. Another way of viewing the same argument is
to consider a dynamical process which generates structures
over a wide range of scales and then to decompose it into
a finite number of different scaling regimes each valid over
various sub ranges. The principle of parsimony demands that

Single and multiscale remote sensing techniques, multifractals and
MODIS derived vegetation and soil moisture, Vadose Zone J., sub-
mitted, 2007b.
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470 S. Lovejoy and D. Schertzer: Multifractals and the solid earth

Table 1. A comparison of estimates of the stratification exponentHz from horizontal and vertical spectra. SinceHz=(βh−1)/(βv−1), it can
be very sensitive to small errors in the theβ ’s. Although theoretically, the simplest model involves the same degree of stratification for all
the fields, this is not strictly necessary. From these limited data, we conclude thatHz is likely to be in the range 1.5 to 3.

Quantity βh βv Hz

Mean of rock density, gamma emission, seismic velocity (Leary, 1997) 1.34±0.12 1.10±0.12 3.4
Carbonate rock density (Tubman and Crane, 1995) Figs. 7a, b 0.86 0.78 1.57
Susceptibility (Figs. 4a, b, KTB, Fig. 9) 1.32 1.22 (1.2, KTB) 1.45
Susceptibility inferred from regional magnetic anomalies, (two regions) 0.6, 1.4 0.8, 1.2 2
Rock Density inferred from high wavenumber surface gravity 1.3 1.1 3
Hydraulic conductivity (Tchiguirinskaia, 2002) 1.66 1.3 2.22

Fig. 3a. de Wijs Zinc concentration data from the Pulacayo mine,
Bolivia, with x the horizontal distance in units of 2 m data (blue)
simulation (pink with parametersα=1.8,C1=0.03,H=0.090), both
normalized to unity (the mean concentration is 15.6%).

we start with the assumption of a single regime and then only
add new additional regimes when absolutely necessary.

Nevertheless, it is still important to directly verify the scal-
ing on as many geophysically significant fields as possible;
we discuss in particular the rock density, magnetic suscep-
tibility, ore concentrations. Unfortunately, these generally
require in situ measurements so that the corresponding hor-
izontal fields are only known over sparse (possibly fractal
(Lovejoy et al., 1986)) sets of sample locations. In prin-
ciple this demands special multifractal interpolation tech-
niques (Salvadori et al., 2001), but an operational method
is still lacking. Cheng et al. (1994) has proposed a partial so-
lution to this sparse measurements problem; the “Integrated
spatial-spectrum Analysis” method. The first step is to use
traditional Kriging methods to obtain a 2-D field on a uni-
form grid. If the data are not too sparse (essentially they must
be 2-D but with perhaps uniformly distributed “holes”), this
may be adequate. The Kriging is followed this by spectral
analysis. However instead of plotting the spectral density as
a function of the modulus of the wavenumber (after integrat-

Fig. 3b. de Wijs spectrum: Red line is theory: 1–K(2)+2H with
K(2)=0.05 (trace moments),H=0.090 (first order structure func-
tions), henceβh≈1.12.

ing in circles in Fourier space, see Eq. 2 above), the (Fourier
space) log areas exceeding a log spectral density is plotted. If
the process is isotropic in 2-D space, with spectral exponent
β, then the result will be linear but with slope−1/(β−1) (the
reciprocal because of the interchange of the ordinate and ab-
scissa; the−1 because of the cumulation of all the values be-
low a spectral density threshold). The method has the usual
advantage that integrating smoothes the statistics, but has the
added attraction of being insensitive to anisotropies (as long
as the latter are scaling; it doesn’t involve integration over
circles). Finally the method can be used to design new kinds
of anisotropic filters useful for prospecting.

As a first example of an in situ horizontal analysis, we
consider the famous de Wijs (1951) zinc concentration series
which has been discussed in the literature many times and
also reanalyzed many times including via spectral techniques
(Agterberg, 1974; although not on a log-log plot to test the
scaling); we return to this series in Sect. 4.10 structure func-
tions and other analyses). In Fig. 3a we show the original
de Wijs series of Zn concentrations and in Fig. 3b the cor-
responding spectrum withβh≈1.12. Although the number
of points is very small, the general power law form of the
spectrum is visible. A somewhat higher quality horizontal
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Fig. 4a. Magnetic susceptibility spectra in the horizontal: Power
spectra for two sets of magnetic susceptibilities in the horizontal
obtained by Pilkington and Todoeschuck (1993, 1995). The straight
line shows the theoretical slopeβh=1.32.
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Fig. 4b. Magnetic susceptibility power spectra from vertical bore-
hole logs in sedimentary (top) and igneous (bottom) rock from the
same region as Fig. 4a (Pilkington and Todoeschuck, 1995). The
straight line has the slope of 1.22. As discussed in Lovejoy et
al. (2001) a values ofβh≈1.4 andβv≈1.2 gives a good explanation
for the observed surface gravity anomalies in the same (Canadian
shield) region. The high wavenumber fall-off for the igneous series
is probably due to slight oversampling.

spectrum is shown in Fig. 4a (Pilkington and Todoeschuck,
1995) which was obtained after Hankel transforming the ra-
dial autocorrelation function from a sample of several thou-
sand in situ susceptibility measurements. Due to the inad-
equate sampling, the spectrum is not perfectly scaling, but
coupled with a corresponding vertical (borehole) spectrum
Fig. 4b, it turns out to be roughly what is required to explain
magnetic surface anomaly spectra discussed in Sect. 2.4 be-
low. Perhaps the most convincing of the horizontal in situ
spectra are the 1-D “horizontal borehole” spectra of Leary

Fig. 5a. Horizontal borehole species: left to right gamma emis-
sion, rock density and seismic velocity absolute reference slopes =
βh=1.4, adapted from Leary (1997).

Fig. 5b. Vertical borehole analyses for the same quantities and
from the same region as Fig. 5a, the absolute reference slopes have
βv=1.2. Adapted from Leary (1997).

(1997) (Fig. 5a), for gamma emission, rock density and seis-
mic velocity over the range of about 10 m to 1 km. Other ex-
amples of horizontal analyses of in situ fields are hydraulic
conductivity (see Fig. 6a), (Tchiguirinskaia, 2002) and car-
bonate concentration (see Figs. 7a and 8a) (Tubman and
Crane, 1995). These figures provide some of the rare ex-
amples where both horizontal and vertical exponents from
essentially the same regions have been analyzed; we could
also mention the horizontal and vertical spectra in Shiomi et
al. (1997). In Table 1, we summarize some of these results
and we return to their implications for the stratification in
Sect. 2.4.

2.3 Vertical scaling

We started out our survey of evidence for wide range scal-
ing in the solid earth by considering the horizontal direction;
with the exception of the topography and remotely sensed
radiances, surprisingly little is known about the horizontal
scaling due to the difficulty in obtaining the necessary large
quantities of in situ data. Although the geopotential fields
(geomagnetism, geogravity) are relatively well measured (at
least in certain regions) and do give us information about the
horizontal structure, they also depend on the vertical struc-
ture and for their interpretation require anisotropic scaling
models of rock susceptibility and density respectively, see
Sect. 2.4.

We now turn our attention to evidence for scaling in the
vertical. It is perhaps surprising that for many geophysical
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Fig. 6a. Ensemble power spectra (25 samples, from the MADE
site, Tennessee); horizontal measurements, a straight line indicates
βh=1.66, units are such that the lowest wavenumber is about 250 m,
highest about 10 m.

Fig. 6b. Same, but vertical measurements, straight black lines
indicate βv=2.2 for hydraulic conductivity (bottom points) and
βv=1.5 for the logarithm conductivity data (top points), how-
ever the red line shows that the lower valueβv=1.3 (correspond-
ing to Hz=0.66/0.3=2.22) is a better fit for all except the highest
wavenumbers. Units are such that the lowest wavenumber is about
5 m, highest about 30 cm. Adapted from Tchiguirinskaia (2002).

parameters the vertical structure is better known than the hor-
izontal due to the large number of borehole analyses. Ex-
amples of scaling spectra from boreholes (gamma emission,
rock density, magnetic susceptibility, sonic velocity, porosity,
electrical resistivity) are Pilkington and Todoeschuck (1990),

Fig. 7 a,b 
Fig. 7a.Horizontal power spectrum of the density of carbonate rock
well the last factors of 2 high frequency are a bit too smooth due to
limitations of the data (no units given in the original). Reproduced
from Tubman and Crane (1995),βh≈0.86.

Fig. 7b. Same as (a) except for vertical spectrum. Reproduced from
Tubman and Crane (1995),βv≈0.78. Together with (a), this implies
Hz=1.57.
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Fig. 8. Power law scaling of 3 well log and 3 small-scale resistivity
(FMS) power spectra over 5 decades of spatial frequency length
(0.3 cycles/km to 60 cycles/km). Power law scaling exponentsβv

are 1.06 (P-wave sonic), 1.16 (S-wave sonic), 1.26 (density), 1.08
(FMS 1), 1.06 (FMS 2), 1.12 (FMS 3). Reproduced from Leary
(2003b).

Todoeschuck et al. (1990), Todoeschuck and Jensen (1991),
Bean and McCloskey (1993), Molz and Boman (1993); Molz
and Liu (1997), Wu et al. (1994), Hollinger (1996), Leary
(1997), Dolan et al. (1998), Leonardi and Kümpel (1999),
Tchiguirinskaia (2002), Leary (2003a), Marsan and Bean
(1999, 2003), Dimri (2005). Other parameters such as ther-
mal conductivities (Dimri and Vedanti, 2005) have also been
shown to be scaling using other analysis techniques. Fig-
ures 4b, 5b, 7b show some of the rare cases where both ver-
tical and horizontal statistics can be compared allowing us
to deduce the stratification exponentHz (Eq. 8). Figures 8,
9, 10 are shown because they are particularly striking exam-
ples: Fig. 8 is a composite, but the spectra collectively cover
a range of scales from centimeters to several kilometers, and
Figs. 9, 10 show spectra of various parameters from the deep
(KTB) borehole.

Two aspects of these analyses are particularly worth men-
tioning. The first – widely recognized – is the proximity of
many of theβ values to 1, hence the term “1/f noise”. This
term originates in the ubiquitous noise in electrical circuits
(due for example to contacts) with similar spectra. Indeed,
Leary (1997) has argued that theβ ’s of sonic velocities, rock
densities, H2 density (porosity), gamma activity and resistiv-
ity, porosity and permeability are all approximately unity (al-
though with fluctuations of order 0.2–0.4) and he has argued
that this could best be understood from a phase transition
type mechanism such as percolation (for an introduction, see
Stauffer, 1985, for applications to rock conductivity see Bahr,
2005, and references therein). The obvious problem with this
as a general explanation is that in phase transitions, unless

 

Fig. 9. Power spectrum of the KTB susceptibility (top) and density
(bottom) over the top 5596 m and 9098 m depths, respectively (2m
resolution; wavenumberk in units of (2 m)−1). The reference slope
hasβ=1.2 (authors’ analyses).

one happens to be exactly at the critical point there will only
be scaling over a finite range of scales with a drastic break-
down for larger scales. In addition, this critical scale diverges
at the critical point so that one would expect to see scale
breaks whose value depends sensitively on some physical pa-
rameter such as porosity (indeed the possibility of such sen-
sitive dependence of magma strength on porosity due to per-
colation of bubbles has been suggested as a mechanism for
volcanic eruptions (Gaonac’h et al., 2003, 20072). Although
there are large fluctuations these are expected in scale invari-
ant systems and the well logs all demonstrate wide range
scaling with no obvious systematic or strong breaks. From
the perspective of scale invariant dynamics (multifractal cas-
cades, see below), the scaling can be roughly explained as
follows: the scaling is due to the absence of a strong scale
breaking mechanism and the valueβ close to one due to
the fact that the observed processes are close to “conserved”
multifractal processes which generically give spectra withβ

a little below one (if not too intermittent). The empirical val-
ues slightly above 1 are due to small degree of non scale by
scale conservation; a parameterH>0, see below.

The second important point about the verticalβs (as men-
tionned by Leary, 1997) is that the vertical and horizontal
exponents are somewhat different. Indeed, the vertical expo-
nents are systematically a bit closer to 1. As pointed out by
Schertzer and Lovejoy (1985a) in the context of atmospheric
stratification (and Lavallée et al., 1993) in the context of to-
pography); if the horizontal and vertical scalings are differ-
ent, then the corresponding structures will exhibit differential
stratification; the key quantity is the ratioHz (Eq. 8) which
we saw is the ratio of the horizontal to vertical structure func-
tion/variogram exponents. From Figs. 4–8 we see that the
stratification exponentHz≈1.7–2 for magnetic susceptibility

2Gaonac’h, H., Lovejoy, S., Nunes-Carrier, M., Schertzer, D.,
and Lepine, F.: Percolating magmas in three dimensions, Nonlin.
Processes Geophys., in review, 2007.
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g. 10

Fig. 10.Power spectra of five logs from various boreholes, from top
to bottom:(a) gamma log from the Cajon Pass borehole;(b) S-wave
sonic log from the KTB main borehole, Germany;(c) resisitivity
log from the KTB main borehole;(d) neutron porosity log from the
KTB borehole;(e) P-wave sonic log from the Nirex 1 borehole at
Sellafield UK. The dashed black lines give power law fitsk−βv of
the spectrum decay, with spectral exponentβv equal to (a) 1.22,
(b) 0.98, (c) 1.31, (d) 1.37, (e) 1.4. All four boreholes probe the
crystalline part of the upper crust. Reproduced from Marsan and
Bean (2003).

(Lovejoy et al., 2001) andHz≈3 for rock density; (see Ta-
ble 1). A valueHz>1 means that while the rock strata are
very thin (highly flattened structures in vertical sections),
that they nonetheless become progressively rounder at larger
and larger scales (see Figs. 11, 14). In these examples, the
sphero-scale is typically found to be quite large, thousands
of kilometers. This is the opposite of the atmosphere where

Fig. 11 

Fig. 11. Vertical cross-section of the magnetization scale function
assumingHz=2 and a spheroscale of (40 000 km)−1. The scale is
in kilometers and the aspect ratio is 1/4. Reproduced from Lovejoy
et al. (2001).

the valueHz≈5/9 is found both theoretically and empiri-
cally (see e.g. Schertzer and Lovejoy 1985a; Lilley et al.,
2004) and the sphero scale is typically<1 m so that atmo-
spheric structures become more and more stratified at larger
and larger scales.

2.4 Combining Horizontal and vertical statistics: geopo-
tential fields

Although over huge ranges of scale the processes which pro-
duce variations in the lithospheric properties are undoubtedly
highly nonlinear, some are sources for geopotential fields
(notably geogravity, geomagetism) and are related to them by
purely linear relations (Poisson’s equation, Maxwell’s equa-
tions). Indeed, the relations are particularly convenient to
deal with in Fourier space so that we can obtain very simple
relations between the magnetic susceptibility spectrumPM ,
and the spectrum of the surface magnetic fieldPB or between
the rock density and geogravity spectraPρ andPg.

The example of magnetism and susceptibility has been
studied in particular detail in Lovejoy et al. (2001) and Pec-
knold et al. (2001). With various reasonable assumptions
(that there is a scalar magnetic potential, that over the limited
region of the study that the magnetic anomaly (B) and sus-
ceptibility (M) have roughly constant directions so that only
their magnitudes are variable), one obtains (see e.g. Blakely,
1995):

PB (K) =

∞
∫

kc

K2

K2 + k2
z

PM (K, kz) dkz (16)

The integration in the above is over all wavenumbers higher
than the Curie wavenumber (kc≈2π /zc wherezc is the Curie
depth at which all magnetization ceases due to high tempera-
tures;zc≈30–80 km). In order to model the horizontal strat-
ification, we takePM to be of the general anisotropic scaling
form (Eq. 5). Using the susceptibility as a surrogate for the
magnitude of the magnetizationM, from the data in Fig. 4a,
b (see also Fig. 9), the valuesβM≈1.2,βhv≈1.4 can be used
to determines≈4.4,Hz≈2 (Eq. 8) (Lovejoy et al., 2001).

Using Eq. (5) for an anisotropic scalingM field in Eq. (16)
for PB we can see that due to both the Curie depth and
the sphero-scale, there will be breaks in the horizontalB
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Fig. 12 

Fig. 12.Power spectra of aeromagnetic anomaly fields from two re-
gional studies over the Canadian shield (triangles and circles). Su-
perposed reference are lines with the theoretical high and low-wave
number slopes,βBh=2, βBi=1 (see Eq. 17). The spectra have been
normalized so that the high wave number regions roughly coincide.
Reproduced from Lovejoy et al. (2001).

spectrum; Fig. 12 shows that this is indeed the case on re-
gionalB anomaly fields. The various relevant regimes are:

βBh = s − 2; K > kc

βBi = s − 3; kc > K > Kic

βBl = −3; K < Kic

(17)

whereKic=ks

(

kc

ks

)1/Hz

is the horizontal wavenumber corre-

sponding to the vertical Curie wavenumberkc, and theβB ’s
are the horizontal spectral exponents of the anomaly surface
magnetic field andβBh, βBi , βBl are the high. intermedi-
ate and low wavenumber spectral exponents. Since in the re-
gion studied it was found thatks≈10−5 km−1, kc≈(30 km)−1

and Hz≈2, this impliesKic≈(1000 km)−1 so that the low
wavenumber regime is masked by the contribution from the
core, hence we only expect to see theβBh, βBi regimes with
a break nearkc. Figure 13 shows that withs≈4.4, we can
explain both: the same wide range but anisotropic scaling
can explain the large scale earth magnetic anomalies up to
several thousand kilometers (at larger scales it is dominated
by the main dynamo component form the liquid core). Fig-
ure 14 shows how stratified multifractal simulations (using
the empirically determined universal multifractal parameters;
see Sect. 5 below) can be used to simulate the magnetiza-
tion, and Fig. 15 shows the correspondingB fields. See also
Tennekoon et al. (2005) for scaling analyses of geomagnetic
fields and Fedi (2003) for multifractal analysis of borehole
susceptibilities.

Essentially the same type of relations hold between the
vertical component of the surface gravity field (g) and the
density of the rock (ρ):

Pg (K) =

∫

Pρ (K, kz)

K2 + k2
z

dkz (18)

Fig. 13. Theoretical and experimental power spectra of surface
magnetic fields. The high wavenumber points are from data
set 2 (circles) of Fig. 12, the high wavenumber points are from
the global Magsat determined spherical harmonics (n=1 taken as
(40 000 km)−1, from Langel and Estes, 1982). Reproduced from
Lovejoy et al. (2001).

Maus and Dimri (1995, 1996) used this relation but with an
isotropic (unstratified)Pρ in order to model high wavenum-
ber surface gravity fields, Bourlon et al. (1998) proposed us-
ing anisotropic scaling. See also Bansal and Dimri (2005)
which includes scaling analyses of the horizontal anisotropy
of gravity anomalies. As in the case of the susceptibil-
ity/magnetic anomaly relation, there are complications in the
vertical so that there appear to be three regimes in the sur-
face gravity field; essentially they are due to a) the mantle
(low wavenumbers), b) the variable lithospheric thickness
coupled with the strong mantle/lithosphere density gradient
(intermediate range), c) the high wavenumber regime domi-
nated by vertical and horizontal lithospheric heterogeneities
(scales smaller than a hundred kilometers or so). While a de-
tailed analysis of these contributions to the integral (Eq. 18)
is in a forthcoming paper (Lovejoy et al., 2007a), the pa-
rameterss=5.3,Hz=3 are roughly compatible with the high
wavenumber regime and the horizontal and vertical density
spectra published in Shiomi et al. (1997) and Leary (1997)
(see Figs. 5, 9). Also, the mantle regime has been briefly dis-
cussed in Lovejoy et al. (2005) and on the basis of an analysis
of the equations of mantle convection, the parameterss=3,
Hz=3 were proposed.

Before leaving the topic of geopotentials, we could men-
tion recent work by Bahr (2005) to link rock conductivity
with electric fields. A final example of scaling geofields
linked by linear equations is the thermal properties of the
earth’s crust: the thermal conduction coefficient, the temper-
ature and the distribution of radioactive sources of heat, see
Dimri and Vedanti (2005).
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ig. 14a,b,c . 14d 

Fig. 14. (a)SimulatedM field for horizontally isotropic crustal magnetization. The vertical anisotropy hasHz=1.7,s=4 and the universal
multifractal parametersH=0.2,C1=0.08,α=1.98. The sphero-scale was taken to be only≈2500 km; the simulation region is 32×32×16 km
with resolution 250 m. This is a reasonably realistic crustal section, although the sphero scale was taken to be a bit too small in order that
strata may be easily visible. The direction ofM is assumed to be fixed in the z direction.(b) SimulatedM for horizontally isotropic crustal
magnetization; same parameters as (a). The simulation is 128×128×32 km; the resolution is 1 km and only the portion above the Curie
depth of 10 km is shown.(c) SimulatedM field for horizontally isotropic crustal magnetization; same parameters as (a). The simulation is
512×512×16 km; the resolution is 4 km.(d) SimulatedM field the simulation is 4×4×16 km, resolution is 62.5 m. The cut-out shows the
stratification and the presence of anomalies at all depths. Reproduced from Pecknold et al. (2001).

3 From fractal sets to multifractal fields, the limitations
of classical geostatistics

3.1 Box counting, functional box counting

Using Fourier spectra, we have seen that many solid earth
fields display wide range scaling in both horizontal and ver-
tical directions. Spectra were first widely used to character-
ize turbulence, and in the early 1970s in conjunction with
the development of quasi-gaussian statistical closure mod-
els, the theoretical or empirical determination of the spec-
tral exponent became a key task. During the same period,
Mandelbrot (1977) proposed using fractal geometry with its
appealing promise of simplifying the description and model-
ing of geoprocesses; in topography and geomorphology by

quantifying complexity (roughness, sparseness) by a unique
fractal dimension. Many of the seductive early fractal sim-
ulations were of precisely quasi-gaussian processes (essen-
tially the “fractional Brownian motions” generalizations of
Brownian motion), where there is a single basic exponent so
thatβ is simply related to the (unique) fractal dimensionD

of exceedance sets (the set of points exceeding a fixed thresh-
old) by the simple formula:D=(7−β)/2 (valid for the frac-
tal dimension of monofractal surfaces with 1<β<3). Indeed
a great many papers were published which simply assumed
that fields were monofractal and estimated the supposedly
uniqueD from β (for many examples of this, see Scholz and
Mandelbrot, 1989; Turcotte, 1989; Takayasu, 1990; Korvin,
1992).
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Fig. 15. (a)The surfaceB field from simulations shown in Fig. 14a. The Curie depth=16 km so that nearly the entire field shown is in the
smooth, high wave number regimeβh=2. (b) The surfaceB field corresponding to Fig. 14b. Since the entire region simulated is 128 km
across and the Curie depth is 10 km, the transition from high to intermediate wave number regime is in the middle of the range shown; the
high wave number structures are noticeably smoother than the lower ones.(c) TheB field corresponding to Fig. 14c; the entire simulation
represents a region 512 km across, the Curie depth is 16 km so that most of the field shown with the exception of the very highest wave
number structures is in the (rough) intermediate wave number regime withβi=1. (d) The same butB for Fig. 14d, the entire field is in the
smooth high wave number regime. Reproduced from Pecknold et al. (2001).

However, by the early 1980s, the development of cascade
models to study turbulent intermittency lead to the realization
that in general an infinite number of dimensions were needed.
The generic result of a cascade process (see Sect. 4 below) is
that the cascade quantity at resolutionελ has the statistics:

〈ε
q
λ〉 = λK(q) (19)

whereK(q) is (convex) the moment scaling function andλ is
the ratio of the largest (outer) cascade scale and the scale of
observation. The symbol “ε” is used for the turbulent (scale
by scale) energy flux. Below, we discuss the link between
these scaling exponents andξ(q) introduced earlier for the
q-th order structure function and the spectral exponentβ.

Viewed from the point of multifractals, spectra are sec-
ond order statistics so that the spectrum provide only a very
partial statistical description. A more complete and direct
description follows from the use of thresholds (T ) to con-
vert fieldsε(x) into exceedance sets (x is a position vector),

and then the use of box-counting to systematically degrade
the resolution of the sets, determining the fractal dimension
using the formula:

NT (L) ∝ L−D(T ); PT (L) ≈ NT (L)/L−d ≈ Lc(T );

c(T ) = d − D(T ) (20)

whereNT (L) is the number ofL×L sized boxes needed
to cover the set of points satisfyingε(x)>T . SinceL−d is
the total number of boxes in the space at resolutionL, PT is
the probability that a box (sizeL) placed at random on the
set will cover part of the set.D(T ) is the dimension and
c(T ) defines the statistical codimension function; a prob-
ability exponent. Since probability exponents can be de-
fined without reference to the embedding space of the pro-
cess (i.e. whether it occurs in a 1-D, 2-D. . . or for stochas-
tic processes, in infiniteD probability spaces), codimensions
are generally needed for stochastic fractals and multifractals
(see below for the popularf (α), τ(q) dimension formalism
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Fig. 16a. Functional box-counting on French topography data at
1 km resolution. For each threshold, the scaling is quite accurate,
but as the threshold increases, the slope systematically decreases so
that the topography is apparently not monofractal. The line with
slope−2 is shown since this is the theoretical assumption of classi-
cal geostatistics. Adapted from Lovejoy and Schertzer (1990).

of multifractals). Indeed wheneverD(T )<d, the stochastic
codimension functionc(T ) defined by Eq. (20) is equal to
the geometric codimension functiond−D(T ); however, in
generalc(T ) will be unbounded. For the corresponding ex-
treme events, if one usesD(T )=d−c(T ), one would obtain
the geometrically impossible valuesD(T )<0. By using the
statistical codimension we thus avoid the paradox negative or
“latent” dimensions (Mandelbrot, 1983).

When this “functional” box-counting (Lovejoy et al.,
1987) was applied to the topography (Fig. 16a) it was found
that the scaling was excellent: the power law Eq. (20) was
accurately obeyed for allT , L. However – as expected for a
multifractal –D(T ) systematically decreases with threshold,
it is not constant as assumed in the monofractal models. In-
deed, from the point of view of multifractals, it would have
been a miracle if for each thresholdT , each (different) set
had exactly the same fractal dimension. Figure 16b shows the
results of functional box-counting on reflected visible radi-
ances from lava flows, showing both the excellent wide range
scaling of the flows and also the systematic decrease ofD(T )

with T . In this figure we directly see a consequence: the ar-
eas of lava flows exceeding a threshold depend in a power
law way on the resolution:AT (L)≈L2L−D(T ), we return to
this important point below.

If the topography could be adequately modeled as a geo-
metrical fractal set, then many different techniques (includ-
ing spectral analysis) could be used to estimate its unique di-
mensionD. However, due to the multifractality evidenced in
the functional box-counting (Fig. 16), on the contrary, when

 

Fig. 16b.A log-log plot of the areas (AT (L)≈L2L−D(T )) of SPOT
satellite radiances of Mauna Lao volcano (visible, 20 m resolution)
exceeding a radiance thresholdT =R (in digital counts), with corre-
sponding fractal dimensions indicated. Each line has been offset by
2 orders of magnitude for clarity. Reproduced from Laferrière and
Gaonac’h (1999).

different analysis techniques were applied to different data
sets commonly gave different values ofD. In particular the
empirical topography spectral exponentβ≈2 (Fig. 1) would
imply D=2.5 for monofractal surfaces (1.5 for monofractal
vertical sections) whereas the (rare) direct estimates (Good-
child, 1980; Aviles et al., 1987; Okubo et al., 1987; Turcotte,
1989) commonly gave a diversity of values (see the reviews
Klinkenberg and Goodchild, 1992; Maliverno, 1995).

The use of simplistic monofractal ideas had consequences
beyond a failure to reach consensus on a supposedly
“unique” fractal dimension of the topography. Due to their
random singularities, multifractals have such strong vari-
ability that they violate many conventional geostatistical as-
sumptions so that normal multifractal variability can easily
be misinterpreted in terms of spurious scale breaks, spurious
nonstationarity etc. The loss of interest in scaling was en-
couraged by the extensive use of (low variability) fractional
Brownian motion (fBm) models of topography. As argued
in Gagnon et al. (2006), the topography in fact has excellent
multiscaling (multifractal) properties (see Figs. 1, 16a, 18) –
but an infinite hierarchy of fractal dimensions; this requires
new analysis techniques.

An unfortunate consequence of this reliance on simplis-
tic monofractal models was that by the end of the 1990s the
mainstream surface geomorphology community had “moved
on”, relegating fractals to narrow ranges of scale and to very
technical applications. This near abandonment of scaling oc-
curred in spite of the fact that entire fields of research such
as surface hydrology are riddled with scaling laws which
virtually require the topography to respect some form of
scaling (see e.g. the review Rodriguez-Iturbe and Rinaldo,
1997). Classical examples include power law relations be-
tween river basin size area and stream length, basin area to
discharge, the relation between velocity, width and depth
to discharge (Leopold and Maddock, 1953). Lack of an
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Fig. 17 

Fig. 17. Lava flows from mount Etna 1900–1974 taken from a geological map at 43 m resolution. The resolution is then successively
degraded by factors of 2 using box counting. Reproduced from Gaonac’h et al. (1992).

adequate theoretical framework for scaling has thus led the
baby to be thrown out with the bathwater.

3.2 Consequences for classical geostatistics

It is worth mentioning that the functional box-counting re-
sults (Fig. 16) have direct and important consequences for
classical geostatistics (e.g. Matheron, 1970) which assume
(explicitly or implicitly) that geomeasures such as the areas
of the topography exceeding a threshold are regular with re-
spect to Lebesgue measures. If this assumption were true,
then the areas above a given thresholdT would be well-
defined independently of the resolutionL, i.e. the expression
L2NT (L) would be independent ofL for smallL; however
sinceD(T )<2 we see that generally it vanishes asL→0. Ul-
timately at small scales – probably millimeters or less – the
scaling will break down yielding a finite limit ofL2NT (L).
However the area estimatedL2NT (L) will depend on the
very small scale details; at any larger resolutions the result
will be subjective depending on the observing resolutionL.
While Fig. 16b shows this directly on various sets defined by
radiance thresholds on volcanoes, Fig. 17 shows the same ef-
fect visually, using step by step degradation of the resolution
of lava flow maps determined by geological mapping tech-
niques. The usual box-counting method is used to succes-
sively degrade the resolution of the flows. As the resolution
improves by a factor of 512/16=32, we see (moving in the

direction opposite the arrows) more and more fine details.
Over this scale factor, the area decreases by a factor of about
5 corresponding to a fractal dimension of the areas of about
1.58; the fractal dimension of the perimeter set is 1.42 so that
it is a little bit sparser.

If we express the field values as powers of the resolution
with random exponentsγ , i.e. if we write T ∝λγ then we
obtain:

Pr(ελ > T ) = Pr(ελ > λγ ) ∝ λ−c(γ ) (21)

where “Pr” indicates “probability”. For cascade processes,
we derive this result directly in Sect. 4.3. Since the moments
(Eq. 19) are integrals over the probability density (dPr), c(γ )

determinesK(q); we discuss this link in Sect. 4.7.

3.3 Evidence for multiscaling of statistical moments

We have shown that for many geophysical fields in both the
horizontal and vertical, that the spectrum shows evidence of
power law behaviour – scaling – over wide ranges of scale.
However, (functional) box-counting on exceedance sets de-
fined by higher and higher field thresholds showed that many
exponents were needed to characterize the scaling of the low
and high regions of the topography, weak and strong radi-
ances etc. Although for the topography, the multiscaling is
demonstrated by functional box counting (Fig. 16a), we can
directly test the multiscaling of the moments (Eq. 19) and
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Fig. 18. Log-log plot of the normalized moments versus the scale
ratioλ=Louter/l (with Louter=20 000 km) for the three DEM’s (cir-
cles correspond to ETOPO5, X’s to U.S. (GETOPO30), and squares
(Lower Saxony). The solid lines are there to distinguish between
each value ofq (from top to bottom,q=2.18, 1.77, 1.44, 1.17, 0.04,
0.12, 0.51) The trace moments of the Lower Saxony DEM with rees
for q=1.77 andq=2.18 are on the graph (indicated by arrows). The
theoretical lines are computed with the globalK(q) function dis-
cussed with universal multifractal parametersα=1.79,C1=0.12. At
scales<40 m, in this Lower Saxony data set, the effect of trees be-
comes important, apparent increasing the variability at the smallest
scales. Reproduced from Gagnon et al. (2006).

determine the moment scaling exponentK(q). To do this,
we take for the multifractal fieldε3 the absolute gradients of
the topography at the finest resolution of the data set3=L/l
whereL is the external scale (taken as 20 000 km here) andl

is the pixel scale (see Sect. 4.10 for more discussion of this).
The result of degrading the high resolutionε3 to intermedi-
ate scale ratiosλ is shown in Fig. 18 (using the same data
sets as in Fig. 1). We can see that the multiscaling holds very
well over a factor of more than 105 in scale. Indeed, Gagnon
et al. (2006) estimates that the “reduced moments”<ε

q
λ>1/q

for all q≤2 can be reproduced to within±45% using just a
2 parameter “universal multifractal” fit to theK(q) function
(Eq. 45; see Sect. 4.6). Other relevant examples of multifrac-
tal analysis are soil moisture (Dubayah et al., 1997), LAND-
SAT TM channels (Cheng, 1999), sonic velocities (Marsan
and Bean, 1999) and neutron porosity (Marsan and Bean,
2003); Figs. 25a, b (the latter two in the KTB borehole). In
Sect. 4.10 we perform various multifractal analyses on the de
Wijs (1951) Zn concentration series.

3.4 Multifractality and spurious breaks

In spite of the systematic finding of scaling or near scal-
ing statistics, many geophysicists instinctively reject all wide
range scaling; they consider a priori that the scaling is bro-
ken. However conclusions about broken scaling are fre-

quently unwarranted. Perhaps the most important source of
misinterpretation is the fact that scale invariance is a statisti-
cal symmetry which is almost surely broken on every single
realization, hence it is important to have a large data base (i.e.
large range of scales, many realizations) to average fluctua-
tions and to approximate the theoretically predicted ensem-
ble average scaling. In fact, due to the singularities of all or-
ders (see the previous section) the variability of multifractals
is much greater than that of classical stochastic processes;
for example, rare (extreme) singularities are produced by the
process yet they are almost surely absent on any given real-
ization. This means that multifractal processes generally do
not have the property of “ergodicity”. What may be noth-
ing more than normal multifractal statistical variability can
thus easily be interpreted as breaks in the scaling. A second
reason for unwarranted rejections of scaling is the assump-
tion that the scaling is isotropic. If the scaling is anisotropic,
there may be breaks in the scaling on 1-D subspaces (e.g.
transects) but not for the full process in the higher dimen-
sional space in which they evolve. A third reason discussed
in more detail in Gagnon et al. (2006) is that there can be
systematic biases due to the use of conditional statistics such
as studying transects that just happen to pass through special
features (such as high mountains).

There are also nonclassical statistical effects which can
lead to yet other misinterpretations of the data. One of these
is a consequence of the fact that the strong singularities in
multifractals leads to apparent nonstationarities: e.g. to quite
different morphologies which can often be found in close
proximity. This is often interpreted in terms of nonstationar-
ities/spatial inhomogeneities – different processes at work in
different regions or at the very least, variations in the param-
eters of a single basic model. However, with multifractals
such interpretations would be unwarranted: the basic multi-
fractal processes are statistically stationary/homogeneous in
the strict sense that over the region over which they are de-
fined (which is necessarily finite), the ensemble multifractal
statistical properties are independent of the (space/time) lo-
cation (and this – contrary to certain affirmations in the liter-
ature – for any spectral slopeβ). Rather than discussing this
at an abstract level, let us see what happens when we analyse
a self-similar 1024×1024 multifractal simulation (Fig. 19a).

In the simulation, consider the “regional” variability in the
spectral exponentβ by dividing it into 8×8 squares, each
with 128×128 pixels. Figure 19b shows the histogram of the
64 regression estimates of the spectra compensated by the
theoretical behaviour i.e.E(k)/(k−βtheory) with βtheory=2.17.
As expected, the mean is close to zero but we see a large scat-
ter implying that there are some individual regions havingβ

as low as 1.2, some as high as 2.7; the standard deviation is
±0.3. As we shall see later, this would imply a random vari-
ation in local estimates of the nonconservation parameterH

of ±0.3/2=±0.15. Although it is of the order of the differ-
ence observed between continents and oceans, this spread in
β, H will decrease as the size of the data set increases. In
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Fig. 19a. A self-similar multifractal (with some trivial anisotropy)
simulated on a 10–24×1024 poihnt grid with observed universal
multifractal parameters (H=0.7,C1=0.12,α=1.9); the spectral exp-
nent isβ=1+2H−K(2)=2.17. Adapted from Gagnon et al. (2006).

Fig. 19c, we can also see the large variations in the log pref-
actors (log10E1; E(k)=E1k

−β ). If E1 is interpreted in terms
of roughness, the roughest of the 64 regions has about 103

times the variance of the smoothest. While it would obvi-
ously be tempting to give different interpretations to the pa-
rameters in each region, this would be a mistake. The phys-
ical interpretation of such a model is that the roughest and
the smoothest are associated with huge variations in the cor-
responding erosional, orographic and other processes; this
would follow if these processes are also scaling and would
have correlated variations.

4 Cascades and multifractals

4.1 Ore distributions, the de Wijs binomial cascade, the
lognormal versus Pareto debate

We have seen that there is much evidence for the wide range
scaling of various geophysical fields in both the horizontal
and vertical directions from sub metric to the largest scales
probed by the deepest boreholes (several kilometers) in the
vertical and from sub metric to planetary scales in the hori-
zontal. So far, we have not made a serious attempt to explain
these results except to comment that since scale invariance is
a symmetry principle, the nonlinear dynamics which are re-
sponsible for the wide range heterogeneity must repeat scale
after scale in a cascade like manner. We now turn to the
generic cascade process.

Fig. 19b. After dividing Fig. 19a into 64 128×128 squares, we
calculated the isotropic spectrum in each, and fit the slope to the
lowest factor 16 in scale (we remove the highest factor 4 due to
numerical artifacts at the highest wavenumbers). The resulting1β

is given in the left; it is twice the1H, showing that H can vary by
0.5 over a single region. From Gagnon et al. (2006).

 

Fig. 19c.A histogram of the log10E1 (E1 is the spectral prefactor:
E(k)=E1k−β ) showing variation of 1000 from the smoothest to
roughest subregion. From Gagnon et al. (2006).

Cascades were first proposed as a dynamical mechanism in
order to explain atmospheric dynamics by Richardson (1922)
in his celebrated poem; “Big whorls have lesser whorls
that feed on their velocity and lesser whorls have smaller
whorls and so on to viscosity (in the molecular sense)”.
While Richardson had the idea of structures breaking up into
smaller and smaller structures, an independent idea going
back somewhat earlier, was the “law of proportional effect”
(Kapteyn, 1903), in which a random variable is the product
of other random variables leading under certain assumptions
to the log-normal distribution, see e.g. Aitchison and Brown
(1957). Although they weren’t explicitly mentioned, both
the cascade idea and the law of proportional effect provided
the impetus for proposals for log-normal distributions of rock
fragments (Kolmogorov, 1941a) and energy dissipation in
turbulence (Kolmogorov, 1962). Starting with the monofrac-
tal “pulse in pulse” model (Novikov and Stewart, 1964), ex-
plicit cascade models began to appear systematically in the
turbulence literature in the 1960s; notably Yaglom (1966)’s
lognormal model followed by Mandelbrot (1974)’s criticism
concerning the divergence of statistical moments. In spite of
these later developments it is interesting that they were all
anticipated by a mining engineer (de Wijs, 1951, 1953).
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Fig. 20. Ore valuations of a South African Mine; “cumulated Pare-
tian graphs” i.e. doubly logarithmic plots of the numbers of valua-
tions exceeding a given valuation. The distribution is nearly hyper-
bolic (linear on this plot) with exponentqD near one (Krige, 1960)
(reprinted in Mandelbrot, 1995).

De Wijs was interested in the concentration of ores and
was debating the form of their probability distributions.
Along with Lasky (1950), he defended the idea that the prob-
abilities were log-normal, criticizing (Van Tongeren, 1950)
who on the contrary defended algebraic (power law) distri-
butions. In order to help prove his point he proposed a sim-
ple cascade model which he called the “binomial” model.
At the time, some of the proponents of log-normality even
went so far as to propose it as a the first law of geochemistry
(Ahrens, 1953). The debate about lognormality versus power
law (often called “Pareto” in this context) continued through
the 1960s to the 1980s, with notably Matheron (1962) siding
with the lognormal camp; see also Cargill et al. (1981) and
Agterberg (2007). In the 1980s, this binomial model was
rediscovered by and applied in geology to the distribution
of fossils (Plotnick and Prestegaard, 1995), while Turcotte
(1986) made a drastic modification to the cascades so as to
generate a Pareto distribution (see Sect. 4.8 below). In the
turbulence literature the binomial model became known as
the “p model” (Meneveau and Sreenivasan, 1987); we shall
see below that it is actually a microcanonical restriction on
the “α model” (Schertzer and Lovejoy, 1985a).

To put the debate in perspective, we show Fig. 20 which
is an example of the distribution of ore grades indicating that
empirically, they can be far from log-normal (Krige, 1960;
reprinted in Mandelbrot, 1995); see Fig. 3 and below for
a re-examination of the de Wijs data). Note that Cheng
et al. (1994), and Cheng (2000a) proposed a variant of the
method of plotting in Fig. 20 called the “Concentration-area

fractal method” involving plotting the logs of the areas of
metal bearing ores exceeding various concentration thresh-
olds, the latter also plotted on a log scale.

4.2 The binomial/p model and theα model

In order to demonstrate how a roughly log-normal distribu-
tion of ores might arise, de Wisj considered a 1-D section
which he successively divided into two equal halves; he then
reasoned that various processes might concentrate the mate-
rial in the left segment by a factor (1+d) reducing the con-
centration on the right segment by the factor (1−d) where
0≤d≤1 is the “dispersion index”; empirically for many ore
concentration series, de Wijs foundd≈0.2 (typical of iron
and zinc deposits), although for precious metals, values as
high as 0.45 were obtained (see also Agterberg, 2007, for
more examples). He then considered the effect of repeating
this multiplicative construction to smaller and smaller scales
(but without considering the nontrivial mathematical limit).

In order to understand this, let’s change the notation and
generalize this slightly. Denote byλ the division ratio, and
the multiplicative factors byµεi (in analogy with the symbol
“1x” for an additive increment), where “i” indexes the fac-
tors (left or right which can be chosen randomly); andD the
dimension of the space. de Wijs’s model thus corresponds
to λ=2, D=1 and the valuesµε+=(1+d), µε−=(1−d) were
always chosen together (left or right) so that they satisfy:

1

λD

λD
∑

i=1

µεi = 1 (22)

whereµεi=µε+ or µε−. The sum ensures that the increase
(decrease) in ore in the left half is exactly compensated by a
decrease (increase) in the right half. Ifλ>2 and/or ifD>1
then there can be several states but at each step, each “parent”
and “daughter” structures satisfy the restriction Eq. (22). In
analogy with statistical mechanics, this strict scale by scale
conservation is called “microcanonical” (Mandelbrot, 1974).

To obtain the more general “canonical” cascade, it suffices
to replace the microcanonical conservation by:

〈µε〉 = 1 (23)

where “<.>” indicates ensemble averaging; in the canoni-
cal cascade the left and right hand factors are thus chosen
independently of each other. The resulting two state model
(in any dimensionD) was called the “α model” (Schertzer
and Lovejoy, 1985a) (see Fig. 21) in order to distinguish it
from the pure fractal “β model” (Frisch et al., 1978). To un-
derstand the statistics of these binomial processes, write the
probabilities of the model states as follows:

Pr(µε = λ
γ+) = λ−c(> 1 ⇒ increase)

Pr(µε = λ
γ−) = 1 − λ−c(< 1 ⇒ decrease)

(24)

with parametersγ+ andγ− corresponding to the maximum
and minimum singularities that the model can produce. The
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Fig. 21a. Illustration of the α model: hereεn =µε· εn−1.
The weak sub-eddies have an associated probability
Pr(µε= λ

γ−)=1− λ−c(γ− <0) whereas thestrong sub-eddies
have Pr(µε= λ

γ+)= λ−c(γ+ >0).
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Fig. 21b. Schema of tree of singularities for a one-dimensionalα

model the “+” indicates a choice ofγ+, the “–”,γ− , with proba-
bilities as above. The microcanonical “de Wisj” (or “binomial” or
“p” model) would have “+” and “–” always occurring in pairs so
that at each scale and each location, the total ore amount is rigidly
conserved.

de Wijs model is recovered with the parametersλ=2, c=1,
γ+=logµε+/logλ=logλ(1+d), γ−=logµε−/logλ=logλ(1−d)

and with the additional condition that the only randomness
is to choice of which of the two is left or right.

In theα model, the canonical conservation condition im-
plies:

λ
γ+ · λ

−c + λ
γ− ·(1− λ

−c)=1 (25)

because of this constraint out ofc, γ+ andγ−, there are really
only two free parameters, this is valid for anyλ, D. For
the microcanonical model, the conservation condition on the
contrary depends not only onλ, but also onD. A purely “all
or nothing” process called the “β-model” (Frisch et al., 1978)
is obtained withγ−=−∞; this is the monofractal limit; the
nonzero region is a fractal set with codimensionc.

Wheneverγ− >−∞ and the process is iterated, the pure
orders of singularityγ− and γ+ lead to the appearance of
mixed orders of singularity, (the “α model”). Mixed singu-
larities of different ordersγ (γ −≤γ≤γ+) are built up step by

 21c 

Fig. 21c. The α model in 2-D showing both the bare (left) and
dressed cascades (right). Reproduced from Wilson (1991).

step through a complex succession ofγ− andγ+, as illus-
trated in Fig. 21b. Figure 21c shows a 2-D example of theα

model which we will study in more detail in the next section.
In other words, leaving the simplistic alternative dead or alive
(“β model”) for the alternative weak or strong (”α model”)
leads to the appearance of a full hierarchy of levels of sur-
vival, hence the possibility of a hierarchy of dimensions.

4.3 Renormalizing discrete cascades

What is the behavior as the number of cascade steps,n→∞?
Consider two steps of the process, the various probabilities
and random factors are:

Pr(µε = λ2γ+) = λ−2c (two boosts)

Pr(µε = λ
γ+ + γ−)=2λ−c(1− λ−c) (one boost and one decrease)

Pr(µε = λ2γ−) = (1 − λ−c)
2

(two decreases)

(26)
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This process has the same probability and amplification fac-
tors as the three-stateα model with a new scale ratio ofλ2,
i.e.,

Pr(µε = (λ2)
γ+

) = (λ2)
−c

Pr(µε = (λ2)
(γ + + γ−)/2

) = 2(λ2)
−c/2

− 2(λ2)
−c

Pr(µε = (λ2)
γ+

) = 1 − 2(λ2)
−c/2

+ (λ2)
−c

(27)

Iterating this procedure, aftern=n++n− steps we find:

γn+,n− =
n+ γ+ + n− γ−

n+ + n− , n+ =1, ..., n

Pr(µε = λ
γ
n+,n− ) =

(

n

n+

)

λ−c n+
(1 − λ−c)

n− (28)

where

(

n

k

)

is the number of combinations ofn objects taken

k at a time. This implies that we may write:

Pr(ελn ≥ (λ
n)

γi ) = 6
j

pij (λ
n)

−cij (29)

The pij ’s are the “submultiplicities” (the prefactors in the
above),cij are the corresponding exponents (“subcodimen-
sions”) andλn is the total ratio of scales from the outer
scale to the smallest scale. Notice that the requirement that
〈µε〉=1 implies that some of theλγi are greater than one
(boosts) and some are less than one (decreases), that is some
γi>0 and someγi<0. Note also that theα-model will have
bounded singularities:

γ− ≤ γi ≤ γ+ (30)

(i.e., the maximum attainable singularityγmax is equal to
γ+). The final step in “renormalizing” the cascade is to re-
place the above n-step (ratioλ), 2-state cascade by a single
λn step cascade withn+1 states. Note that we are not saying
that there is absolutely no difference between the n-stateα-
model with ratioλ and the corresponding (n+1)-state model
with λ′=λn; however their properties will be identical for
integral powers ofλ′. Finally, doing this and making the re-
placementλn→λ, and the limitλ→∞, one of the terms in
the sum will dominate (that with the smallestcij ). Hence
defining

ci = min
{

cij

}

= c(γi) (31)

yields forλ→∞:

Pr(ελ ≥ λ
γi ) = pi · λ

− ci (32)

whereci is the codimension andpi is the multiplicity. If we
now drop the subscripts “i” (this allows for the possibility
of a continuum of states, e.g., the original process being de-
fined by a uniform or other continuous distribution) then we
obtain:

Pr(ελ ≥ λ
γi ) ∼ λ

−c(γ ) ·p(γ );
dc

dγ
> 0 (33)

This is a basic multifractal relation for cascades. We now
simplify this using the “∼” sign which absorbs the multi-
plicative (p(γ )) as well as taking into account the logarith-
mic number of terms in the sum (which can lead to logarith-
mic prefactors corresponding to “sub-codimensions”). With
this understanding about the equality sign, we may write

Pr(ελ ≥ λ
γ ) ∼ λ

−c(γ ) (34)

Each value ofελ corresponds to a singularity of orderγ and
codimensionc(γ ). Note that strictly speaking the expression
“singularity” applies toγ>0 (for λ→∞), whenγ<0 it is a
“regularity”.

In the geophysics literature, there has also been a variant
on the microcanonical cascade called the “bounded cascade”
(Cahalan, 1994) in which the cascade is progressively killed
as the cascade proceeds by multiplying each 1–µεi by rn

where 0<r<1 andn is the number of cascade steps from the
beginning of the cascade. In this way, the dispersion coef-
ficientsd algebraically decreases:dn+1=rdn so that rapidly
all theµεi≈1. This has the drastic effect of essentially de-
stroying the multiplicative nature of the cascade at the small
scales, effectively turning it into an additive process (Love-
joy and Schertzer, 2006). In the small scale limit we ob-
tain essentially a truncated Brownian motion with only triv-
ial multifractality. Another variant on the basic microcanon-
ical model has been proposed by Cheng (2005). In this 2-D
model, there are 4 different weightsµε which are chosen de-
terministically always in the same 2X2 pattern. The resulting
cascade is generally anisotropic. Although Cheng notes that
no scale by scale conservation property generally holds on 1-
D sections (this presumably leads to nontrivial problems of
convergence in the small scale limit), this model is proposed
for anisotropic multifractal fields.

4.4 Unlocalized versus localized singularities

Note that while the above form of the probability distribu-
tions/histogram Eq. (34) is valid at every step of the cascade
process (every finiteλ), this in no way implies that there is
convergence ofγ at a given mathematical pointx. Indeed
for canonical cascades, in general we have lim

λ→∞
Logλ(ελ(x))

doesnot converge to a well defined (point singularity) value
γ (x). Viewed from a single mathematical point, the local
resolutionλ singularities;γλ=Logλ(ε(x)) perform random
walks asλ increases, they are therefore generallynot “Hölder
exponents”. In contrast, many multifractal papers (includ-
ing the original proposal by Parisi and Frisch (1985) and the
dimension formalism of multifractals, Halsey et al. (1986),
simply assume a priori that the singularities are localized.
Since then, wavelets have been extensively applied to mul-
tifractals. However, since wavelets are tools of functional
analysis whereas multifractals generated by cascades are not
mathematical functions but rather densities of singular mea-
sures – the applications of wavelets (Bacry et al., 1989)
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(a) (b)

(c) (d)

Fig. 22. The anatomy of a singularity.(a) Upper left is full (continuous in scale) simulation 216 long with universal multifractal parameters
α=1.8,C1=0.05 (close to de Wijs data values for Zn ore). Black is the full resolution data, pink is low resolution, degraded by a factor of
64. (b) The upper right shows a zoom (factor 16) into the section with the maximum value,(c) the lower left is a zoom by a further factor
20 near the maximum; the arrows show the position of the high resolution maximum as well as the centre of the low resolution maximum.
(d) The lower right is the same but on log-log plot using distance from the maximum. The pink shows the approach to the maximum
low resolution singularity on the low resolution series with the green being the rms fit giving the estimate 0.63 (the absolute slope) for the
maximum singularity, showing it’s extrapolation to the full resolution of the process; the low resolution tends to over estimate the high
resolution singularity. The black is the actual approach to the maximum singularity, while the blue is the approach to the centre of the low
resolution singularity showing that the latter is a poor estimator of the position.

may not always be justified. This is particularly true of cer-
tain complex derived analysis methods such as the “modulus
maximum” analysis technique which is designed to “zoom”
into point singularities. While these methods may work to
some extent, they are not fully justified for multifractals gen-
erated from general cascade processes. For an example of
the use of wavelets in this way in boreholes, see Fedi et
al. (2005); the local singularity estimates he obtains is very
similar to that those described in the next paragraph.

In order to graphically appreciate the difficulties of zoom-
ing into singularities, we refer the reader to Fig. 22a which
shows a universal multifractal continuous in scale multifrac-
tal simulation with parameters close to those obtained for de
Wijs for his binomial model of ores (Sect. 4.10). A low reso-
lution (degraded by factor 64) curve is superposed; this sim-
ulates an empirical transect which would be at lower reso-

lution than the actual ore concentration series. Figure 22b
shows a blow up by a factor 16 and Fig. 22c by a further fac-
tor of 20. This is a 1-D simulation of the idea proposed by
Cheng (2006, 2007) of prospecting by zooming in on major
ore deposits by extrapolating singularities. In Fig. 22d we
have plotted on a log-log plot the distance from the maxi-
mum of the low resolution series (pink) as well its log-log
regression line (green). Also shown is the log-log plot of the
approach to the actual maximum singularity at high resolu-
tion as well as the centre of the low resolution singularity;
this is presumably the best estimate of the singularity loca-
tion if only low resolution data were available. Note also that
the extrapolation of the low resolution regression yields an
estimate of the maximum which is about 5 times too large,
while the centre value is about 10 times smaller.
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In this case, we zoomed into the centre of the low reso-
lution singularity, other choices would have given different
small distance behaviour, but since the multiplicative factors
are statistitically independent, the low resolution data gives
little indication of where within the low resolution element
that the highest singularity is located. This graphically indi-
cates that the low resolution approach to a singularity lacks
predictive power for locating the position of singularities at
high resolution within low resolution elements. Of course,
singularities in real ore concentration fields may have more
localized singularities than those generated by cascades, and
Cheng (2006)’s method uses sparse 2-D data (rather than reg-
ular 1-D data as here), so that it is possible that the method
may nevertheless prove useful; indeed, Cheng (2007) shows
some success for finding Sn, Cu, As and other deposits in
China.

4.5 The statistical moments, cumulants, second character-
istic functions

The simplest way to investigate the statistical properties of a
cascade developed over a scale rangeλ, is to consider their
“moment scaling function exponent”K(q):

K(q) = Logλ〈ε
q〉 (35)

K(q) is the “second (baseλ, Laplace) characteristic func-
tion”, or “cumulant generating function” of the random vari-
able Logλµε. This is valid for both canonical and micro-
canonical conservation; the differences will appear when we
consider the integrals of completed cascades over finite sets;
the “dressed properties” (Sect. 4.7). Due to the statistical
independence of the cascade factorsµε, it is enough to con-
sider a single step of the cascade process. To see this, note
that theKn(q) which is theK(q) for n cascade steps is:

Kn(q)=Logλn

〈

n
∏

i=1

µε
q
i

〉

=
1

n
Logλ

[

n
∏

i=1

〈µε
q
i 〉

]

=K(q) (36)

We now note that for theα model, binomial/p model we have
the expansion:

K (q) = logλ

(

λqγ+λ−c + λqγ−
(

1 − λ−c
))

= A1q + A2q
2 + O

(

q3
)

(37)

we have used the fact that the normalization of the proba-
bility density implies quite generally for nonzero processes
thatK(0)=0 (if the cascade is only nonzero on a fractal sup-
port, thenK(0)=−Cs whereCs is the codimension of the
support). If we keep only the terms up to second order, we
have a log normal cascade; de Wijs realized that his model
was only approximately log-normal, but this was sufficient
for his purpose. Agterberg (2007) numerically studied the
difference between the binomial model and the lognormal
model and introduced a variant, the “random cut” model.
However de Wijs didn’t realize that this argument against

algebraic probabilities was not as convincing as it seemed;
whereas his binomial/p model does have finite moments of
all orders; the same is not true of the superficially similarα

model which has algebraically distributed extremes; we re-
turn to this question of “divergence of moments” in Sect. 4.7.

4.6 Universality

As presented above, the problem with cascades is that we
need an entire (nearly arbitrary) convex functionK(q) for
their specification. Yaglom (1966) sensed the problem and
already argued – essentially on the basis of the law of pro-
portional effects – for approximate “log-normality” on the
basis of the usual central limit theorem applied to logε after
a large number of cascade steps (see also Venugopal et al.,
2006) for similar arguments on the smallness of the high or-
der terms of the cumulant generating functionK(q)). The
problem is that the cascade requires a scale by scale conser-
vation principle, otherwise there are no well defined small
scale cascade limits, and it turns out that this normalization
is in contradiction with the normalization required for central
limit convergence. In other words, as seen above (Eq. 37, due
to theO(q3) terms) anα or binomial/p model remains only
“approximately” log normal even after an arbitrary number
of cascade steps. This lead notably (Mandelbrot, 1989) to
declare that “in the strict sense, there is no universality what-
soever. . . this fact about multifractals is very significant in
their theory and must be recognized. . . ”. However multi-
fractal universality classesdo exist; two different routes to
universality have been proposed; both consider a cascade de-
velopped only over a finite range of scales. Only after cen-
tral limit theorem convergence has been achieved does one
consider the small scale limit. The first route to universality
(Schertzer and Lovejoy, 1987) relies on a “densification” of
the cascade, adding more and more intermediate scales in a
cascade defined over a finite range; an “infinitely divisible”
or continuous (in scale) cascade. An easier to analyze route –
the nonlinear “mixing” of cascade processes – was proposed
by Schertzer et al. (1991); indeed this very practical ques-
tion of multifractal universality was the the subject of debate
during the 1990s (Gupta and Waymire, 1993; Schertzer and
Lovejoy, 1997); see also Brax and Pechanski (1991), Kida
(1991) for the closely related issue of Log-Levy cascades.
We should also mention that a weaker “log-Poisson” univer-
sality has also been proposed by She and Levesque (1994)
but this is only “infinitely divisible” (continuous in scale),
not stable nor attractive.

In order to obtain an exactly log-normal cascade we may
considerε which is the result of nonlinear (renormalized,
multiplicative) interaction ofN (generally non-lognormal)
discrete cascades over a cascade with a total range of scale
λ:

ε =

(

N
∏

j=i

εi

aN

)1/bN
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KN (q)=Nq

(

A1−
LogλaN

bN

)

+A2N
q2

bN

+A3N
q3

bN

+ . . . (38)

here,i indexes theN independent cascade processes, andaN ,
bN are recentring and renormalizing constants which must be
chosen so that the limit of many interacting processesN→∞

is well defined. Indeed, for theα model it suffices to choose
aN , bN such that:

bN = N1/2; A1 =
LogλaN

bN

(39)

and we obtain:

K∞(q) = lim
N→∞

KN (q) = A2q
2 (40)

i.e. the higher order terms disappear,K∞(q) is a pure
quadratic, it is the moment scaling function of a pure lognor-
mal multifractal. Once the central limit theorem convergence
has been achieved, one then considers the small scale limit
(Sect. 4.7); here we must normalize the pure log-normal pro-
cess so that the small scale cascade limit is well behaved, this
is easily performed by noting that an unnormalizedε may be
normalized byε→ε/〈ε〉 so thatK(q)→K(q)−qK(1) and
we obtain:

K(q) = C1(q
2 − q) (41)

where we have used the notationC1 for the constant A2 (see
below).

The above argument explains how using only a small vari-
ant, de Wijs could have argued for a pure (rather than approx-
imate) lognormal multifractal process. However, the above
argument is apparently much more general than simply a bi-
nomial process (p or α model). Indeed, it simply relies on
the fact thatK(q) is analytic at the origin and then uses the
Taylor expansion (Eq. 37). Unfortunately – as pointed out by
Levy (1925) in the context of sums of independent random
variables – this does not exhaust the possibilities. Indeed,
more generally we must allow for the possibility of nonana-
lytic K(q) with the following smallq expansion:

K(q) = Aαqα + A1qA2q
2 + O(q3) (42)

if the new nonanalytic termAαqα hasα<2, then, repeating
the above universality argument, with the choice:

bN = N1/α; A1 =
LogλaN

bN

(43)

we obtain:

K∞(q) = Aαqα; 0 ≤ α < 2 (44)

(note that whenα=1, the nonanalytic term must be taken as
q logq). As a technical point,K∞(q)=Aαqα corresponds
to a random logε which follows an “extreme asymmetric”
Levy distribution, sufficient for cascade processes (the “mul-
tiplicative central limit theorem”); see Samorodnitsky and
Taqqu (1994) for the more general Levy’s needed for the

complete treatment of random sums. The final normaliza-
tion step needed for small scale convergence (following the
log-normal derivation) leads to:

K (q) = C1
α−1 (qα − q) ; 0 ≤ α ≤ 2 (45)

(Schertzer and Lovejoy, 1987); forα=1 we haveC1q logq,
(see Fig. 23 for simulations). The constant has been writ-
ten this way so thatK ′(1)=C1; see below. As a final com-
ment, whenα<2, andq<0, thenK(q)=∞; this is a conse-
quence of the extreme Levy tail on the negative (but not pos-
itive) fluctuations of logε. The possibility (even likelihood)
of 〈ε

q
λ〉→∞ for q<0 means that extreme caution should be

used when analyzing negative moments of empirical data.
While finite data sets will always have finite negative mo-
ments their values would sensitively depend on the data and
would yield spurious scaling properties.

4.7 Bare/dressed, SOC, divergence of moments

Up until now, we have only considered cascades constructed
over a finite range of scales, and de Wijs’s log normal ar-
gument looks superior to Van Tongergen’s argument for hy-
perbolic behaviour (even with a few caveats about possible
log-Levy generalizations). However, in the limit,λ→∞ it
is not obvious that there will be any small scale convergence
properties at all since the momentsλK(q) generally diverge
asλ→∞. Indeed, to obtain any convergence properties, we
must consider integrals over finite sets; “dressed” cascade
properties as opposed to the “bare” ones discussed up until
now. This corresponds to the right hand side of Fig. 21c. To
see this, define the partially dressed “flux”:

53(Bλ) =

∫

Bλ

ε3dD
x (46)

which represents the spatial integral over aD-dimensional
“ball” Bλ of resolutionλ of a cascade constructed down to
scale ratio3. Bλ is a finite scale set of scale ratioλ; e.g. a
segment in 1-D, a square or circle in 2-D etc. This allows us
to define the dressed flux density:

εd,λ = lim
3→∞

53(Bλ)

volBλ

(47)

which is aλ resolution average over a completed cascade.
Since measurements are typically made at scales much larger
than the true inner scale of the process,εd,λ corresponds to
a typical empirical quantity, whereas the bareελ is purely
theoretical. Figure 21c shows that even thoughεd,λ takes into
account smaller scale cascade steps whereasελ only takes
into account the larger scale ones, that most of the time for a
fixedλ the bare and the dressed fluxes are roughly the same.
Nevertheless, there are a few spikes in theεd,λ fields which
are much stronger than in the correspondingελ. In order to
understand this, we can use the factorization property of the
cascade, to derive the following relation betweenεd,λ andελ.

εd,λ = ελ5∞(B1) (48)
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Fig. 23. 

Fig. 23. Isotropic (i.e. self-similar) multifractal simulations showing the effect of varying the parametersα andH (C1=0.1 in all cases).
From left to right,H=0.2, 0.5 and 0.8. From top to bottom,α=1.1, 1.5 and 1.8. AsH increases, the fields become smoother and asα

decreases, one notices more and more prominent “holes” (i.e. low smooth regions). The realistic values for topography (α=1.79,C1=0.12,
H=0.7) correspond to the two lower right hand simulations. All the simulations have the same random seed. Reproduced from Gagnon et
al. (2006).

where the factor5∞(B1) represents the complete spatial in-
tegral of a completed cascade. In a generalization of an ar-
gument first given by Mandelbrot (1974), it was shown with
the help of “trace moments” (Schertzer and Lovejoy, 1987)
that:

〈5∞(B1)
q〉 → ∞; q ≥ qD (49)

whereqD is a critical order of divergence given by:

C(qD) = D; C(q) =
K(q)

q − 1
(50)

whereC(q) is a new codimension function (not to be con-
fused withc(γ )). Using this result, we find:

〈ε
q
d,λ〉 ≈ λKd (q)

Kd(q) = K(q); q < qD

Kd(q) = ∞; q ≥ qD

(51)

whereKd is the dressed moment scaling function.
In order to understand the implications for the probabil-

ities, we can use the link between the statistical moments
and the probabilities. Using the method of steepest descents,
Parisi and Frisch (1985) showed that for large enoughλ, this

relation reduces to a Legendre transform between the expo-
nentsK(q), c(γ ):

K(q) = maxγ (qγ − c(γ ))

c(γ ) = maxq(qγ − K(q))
(52)

Equation (52) (valid for large enoughλ) proves that there is
a one to one relation between the singularities and moments:

q = c′(γ ); γ = K ′(q) (53)

using the Legendre transform on the dressedKd(q), we find
that the relation between bare and dressed codimensions (and
hence probabilities) is:

cd(γ ) = c(γ ); γ < γD

cd(γ ) = qDγ − K(qD); γ ≥ γD
(54)

whereγD=K′(qD) is the critical singularity contributing to
the divergence of moments. In terms ofε = λγ , we find that
the extreme behaviour of theε distribution is:

Pr(ελ > s) ≈ s−qD ; s ≫ 1 (55)

i.e. we have the algebraic distributions proposed by Van Ton-
geren! In other words, a rather minor modification in de
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Fig. 24a 

Fig. 24a.The Turcotte cascade for (de Wijs parametersd=0.2 hence
µε+=1.2 henceγ+=0.27).

Fig. 24b. The singularity in the Turcotte model with singularity
shifted to the origin,x is the distance from the peak, logs in basee

(the of mean of 16 simulations with 213 each were used withd=0.5
henceµε+=1.5 henceγ+=0.58, c=1 fit slope=0.62 compared to
0.58 theory.

Wijs’s model (the use of canonical conservation combined
with the consideration of spatial integrals of the process)
gives algebraic tails, not the near log-normals that de Wisj
promoted.

We can now understand why microcanonical cascades do
not display divergence of moments. From Eq. (22) we notice
that the largest singularity that a microcanonical cascade can
produce in aD dimensional space occurs when all theλD

“daughter” multipliers haveµεi=0 except for a single one of
them which hasµεi=λD, i.e. it hasγi=logλµεi=D so that
in general we see thatγ≤D. However, Eq. (54) shows that
the singularities which are responsible for the divergence of
moments areγ≥γD=K′(qD)=(qD−1) C′(qD)+C(qD). But
C(qD)=D (Eq. 50) and sinceC(q) is an increasing function,
C′(q)>0, henceγD>D i.e. it is beyond the range of micro-
canonical cascades.

4.8 Turcotte’s cascade and divergence of moments

Turcotte (1986, 1989) argued in favour of power law dis-
tributions which he termed “fractal” using the symbol

Fig. 24c. Turcotte model (black), binomial/p model (pink), α

model (blue) (offset by 2 units for clarity). All models have the
same parameters: the de Wijs values:d=0.2 henceµε+=1.2 (hence
γ+=0.27 for alpha model).

Fig. 24d. Comparisons of ensemble spectra for 16 realiza-
tions of the Turcotte (black) model and 16 realizations of the
binomial/p model (pink) with µε+=1.5 along with theoretical
slopes (0.83=2(1–log2 µε), 0.678=1–K(2)=1–log2 <µε2>, re-
spectively).

“D” rather thanqD for the probability exponent. Rather
than relaxing the microcanonical constraint and obtain-
ing “Pareto”/hyperbolic distributions via the above dressing
mechanism on canonical cascades, he kept the microcanon-
ical constraint and profoundly modified the cascade mech-
anism. In these modified cascades, at each step it is only
the single most concentrated region (“daughter cell”) which
participates in the next cascade step. In this way most of
the region participates in only a few steps, it is little affected
by the cascade. This model is essentially an adaptation of a
rock fragmentation model presented in Turcotte (1989) and
can produce anyqD<D. Figure 24a shows the result of such
a cascade. Figure 24c compares it with the binomial/p model
andα model with the same parameters. From the construc-
tion, around each side of the unique maximum, the ore con-
centration is a nondecreasing function, in fact, it is very close
to the nonrandom singularityx−γ+ whereγ+=logµε/logλ

(see Fig. 24b); in this modelqD=γ+. In fact, the density pro-
file is so close to this nonrandom singularity that the spectral
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Fig. 25a. Structure function analysis of the first three moments of
the neutron porosity estimated from the KTB main borehole. Re-
produced from Marsan and Bean (2003).

exponentβ is well reproduced by the theoretical value of a
randomly positioned singularityx−γ+:

β = 2(1 − γ+) (56)

(see Fig. 24d).
In spite of the term “fractal” it is clear that – contrary to

all the cascades and their variants proposed elsewhere in the
literature – this is the only cascade whose exceedance sets
are all strictlynonfractal (a consequence of the fact that on
each side of the unique maximum, it is nondecreasing). Even
ignoring the unrealistic nonfractal spatial variability of the
model, even as a model for power law probabilities it is not
so attractive since it is limited toqD<D and many examples
exist with qD>D which are therefore outside of its range.
The dressed mechanism presented above has the advantage
of being quite general and is also more flexible; it can easily
haveqD>D. As a final note on the debate on log-normal ver-
sus algebraic distributions, we could mention that Mandel-
brot (1995) suggests that ore concentrations and distributions
of other geological quantities, are in fact Levy distributions
(i.e. with exponent restricted to valuesqD<2, not log-Levy);
hence presumably it is the result of additive rather than mul-
tiplicative cascade processes.

4.9 Observables and Nonconservative multifractals

The results of behavior described by Eq. (19) is called “mul-
tiscaling” because each statistical moment is scaling with a
different exponent; it is the generic result of a scale by scale
conservative multiplicative cascade. However, there is no
reason to assume a priori that ore concentrations should be
the direct result of a multiplicative cascade. The classic ex-
ample is turbulence where it is the energy flux which is con-
served by the nonlinear terms of the dynamical equations; it

Fig. 25b. ξ (q) from the slopes of Fig. 24a (and for other q val-
ues). From the valueξ (1)=H≈0.13, we see that this is close
to the value for the de Wijs Zn ore series Sect. 4.10, and from
ξ ′(1)=H−C1≈0.10 we see thatC1≈0.03 (see Eq. 58). Also shown
is the envelope of the errors (continuous curves, and well as theξ(q)

estimated by the method of Extended Self-Similarity (this plots one
of the moments, usually the third against the others, see Benzi et al.,
1993). Reproduced from Marsan and Bean (2003).

is thus the cascaded quantity. This leads to the famous Kol-
mogorov (1941b) law for isotropic turbulence which relates
the energy flux to velocity gradients (1v) as follows:

1νλ = εa
λλ−H ; H = 1/3; a = 1/3 (57)

The usual interpretation of this equation is that the equality
is in the sense of scaling laws so that, taking theq-th powers
of both sides and ensemble averaging, we obtain:

〈1ν
q
λ 〉 = 〈ε

q/3
λ 〉λ−qH = λξ(q); ξ(q) = Hq − K(q);

K(q) = Kε(aq) (58)

We can see that the typical observables have an extra lin-
ear scaling termHq and where the (generalized) structure
function exponentξ(q) from Sect. 2, Eq. (11) has been used.
H thus characterizes the distance from the (conserved) pure
multiplicative processε; it is the degree of non (scale by
scale) conservation of the process. Note that since the power
spectrum is the Fourier transform of the autocorrelation func-
tion, we have the following relation with the spectral expo-
nent:

β = 1 + 2H − K(2) (59)

In Fig. 25a, we show an example of the multiple scaling of
various moments of the KTB porosity estimates taken from
Marsan and Bean (2003), other examples of more classical
semi variograms (q=2) are more common, see e.g. Cheng
(2000a) for an application to Cu concentrations.
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Fig. 26a. Log-log plot of the first order structure function: for the
de Wijs data for q=0.25, 0.5, . . . 3.

Fig. 26b.The slopes of the structure functions,ξ(q). The slope and
value nearq=1 yieldH=0.090,C1=0.018.

4.10 Multifractal analysis: the example of the de Wisj data

In order to demonstrate the various ideas discussed above,
we analyzed the original de Wijs data set: 118 horizontally
spaced values of Zinc concentration in the Pulacayo Mine,
Bolivia, spaced at 2 m intervals (data shown in Fig. 3a, the
spectrum Fig. 3b). Although this spatial series is very small
for our purposes, it is freely available (in the de Wijs pa-
per) and has the interest that it has been re-analyzed by many
authors since including Matheron (1962), Agterberg (1974),
Cheng and Agterberg (1996), Cheng (1997, 2000b).

To begin, we note that the spectrum (Fig. 3b) hasβ≈1.12
which is consistent with a small value ofK(2) andH . The
first step is to calculate the structure functions (Fig. 26a); we
note that the scaling is quite good considering the smallness
of the sample size. On the right (Fig. 26b), we see the struc-
ture function exponentξ(q); it is surprisingly linear. From
the slopes atq=1, we can estimate the value ofH=0.090,
andC1=0.018 (H=ξ (1); H−C1 = ξ ′(1); Eq. 58). The rel-
atively small value ofC1 with respect toH indicates that
the multifractality is weak enough that the deviation from
conservation (H) will be dominant except for quite high mo-
ments. This means that pure multiplicative models will not
be too accurate for the lower order moments (they assume
H=0).

Fig. 27. Double Trace Moment analysis of the de Wijs Zn data
q=2, 0.5 (left, right), slopes,α=1.76, 1.78,C1=0.023, 0.022, re-
spectively.

It is worth noting that we have used the usual structure
function, based on the statistics of fluctuations defined as the
differences in the concentration. Defining the fluctuations
as differences in this way is sometimes called the “Haar” or
“poor man’s wavelet”; other choices of definition are possi-
ble; wavelets provide a systematic framework for this (see
e.g. Holschneider, 1995). However even in 1-D there are an
infinite number of possible wavelets and there is usually no
compelling reason to use one rather than another. In prac-
tice, the use of differences is usually adequate, the main re-
striction being that it is only appropriate when 0≤H≤1, a
condition which is usually (although not always) satisfied
in geophysical applications (here we foundH≈0.090). For
example, whenH>1, one must measure fluctuations with
respect to a local linear trend; this can be done either by
fractionally differentiating the process (power law filtering,
Schertzer and Lovejoy, 1987), using appropriate wavelets
(Bacry et al., 1989) or using the “Multifractal Detrended
Fluctuation Analysis” technique (Kantelhart et al., 2002; see
Telesca and Lapenna, 2005) for application to self-potential
fields associated with seismic areas. Note that using the
Wiener-Khintchin theorem, we obtain a simple relation be-
tween the second order structure function exponent and the
spectral exponent:β=1+ξ (2); this is indeed approximately
verified. Finally, we could mention another scaling analysis
technique which has been used on occasion in geophysics;
the rescaled range method (“R/S analysis”), Mandelbrot and
Wallis (1969) (applied for example to borehole thermal con-
ductivities in Dimri and Vedanti, 2005). The difficulty with
this method is not so much that it determines only a single
exponent, but more that the unique value is only easily inter-
pretable for quasi-gaussian processes. While the R/S expo-
nent is also denoted “H ” in honour of Hurst (1951), it is not
generally the same as theH discussed here; indeed as far as
we know, its relation to the basic parameters of a multifractal
process are not at present known (Schmitt et al., 1995).
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Fig. 28 

Fig. 28. c(γ ) for fluxes estimated from the de Wijs Zn data at reso-
lutions of 2, 4, 8, 16, 32 m reference slope is 3.2.

We can see that (as expected)ξ(q) is concave downwards.
We have already quantified the behaviour ofξ(q) near the
mean (q=1; we usedξ ′(1)=H−K ’(1) whereC1=K ′(1) is the
“codimension of the mean”); it remains to characterize the
remaining nonlinear partK(q). Although this value appears
small, typical values in turbulence are only a bit larger e.g.
C1≈0.07 for the horizontal wind in the horizontal (Schmitt et
al., 1992, 1994), andC1≈0.04 for passive scalars in the hor-
izontal (Lilley et al., 2004). The corresponding values in the
vertical are about 1/Hz=9/5 times larger; this is as predicted
by the 23/9D model of scaling stratification (Schertzer and
Lovejoy, 1985a). Finally, topography hasC1≈0.12 (pretty
much the same for both continents and oceans). For an early
review of these and other results, see Lovejoy and Schertzer
(1995).

To more fully characterize theξ(q) function, we can test
whether it belongs to a universality class and attempt to es-
timate the Levy indexα of the generator (see above). One
convenient way is to use the Double Trace Moment tech-
nique (DTM, Lavalĺee et al., 1993). We have seen that the
generic statistical properties of processes which are repeated
scale after scale are characterized by a nonlinear exponent
K(q), and that the observables will generally have an extra
linear scaling termqH. Since at least for lowq; the linear
termqH is often larger than the nonlinearK(q), in analyses,
it can mask the latter. It is therefore advantageous to first
estimate the conserved fluxε from the observedv, and the
estimateK(q) directly. From Eq. (57), we see that in prin-
ciple, this can be done by removing theλ−H scaling. To do
this, note that if we start with a fieldεa and fractionally inte-
grate it byH ; (a power law filterk−H , see Sect. 5), that the
resulting field will have the fluctuation statistics indicated by
Eq. (58) (see Marsan et al., 1996). This suggests that in or-
der to obtain a flux fromv (i.e. a conserved field withH=0),
that it suffices to invert the power law filter, i.e. to fraction-
ally differentiate it by an orderH . It turns out that a finite
difference approximation to an integer orderH ′>H differ-
entiation followed by taking the absolute value of the result

is typically sufficient (the absolute value is necessary since
the multiplicative cascade flux respectsε>0; see however for
complex and vector cascades Schertzer and Lovejoy, 1995).
Since usually 0≤H≤1, a first order finite difference is typi-
cally sufficient. One simply takes the absolute differences at
the finest available resolutionε3 and degrades them:

ελ = (ε3)λ; ε3 ≈ |1ρ3| (60)

where again the notation(ε3)λ indicates the average of the
finest resolution dataε3 over the intermediate resolutionλ.
Onceε has been estimated by the absolute value of the dif-
ferences at the finest resolution, the DTM uses the following:

〈(ε
η
3)

q
λ〉 = λK(q,η) (61)

i.e. one degrades theη power of the flux at the highest reso-
lution 3 down to an intermediate resolutionλ and then de-
termines the scaling of theqth power result. The advantage
of this method is that the new exponentK(q,η) is related to
K(q)=K(q,1) as:

K(q, η) = K(qη) − qK(η) (62)

so that for universal multifractals, (c.f. Eq. 45) we have:

K(q, η) = ηαK(q, 1) (63)

which is a convenient power law ofη. Figure 26 shows the
result for two values ofq with varyingη. We findq=2, 0.5
(left, right), the slopesα=1.76, 1.78, respectively, and from
the intercepts,C1=0.023, 0.022, respectively (close to the es-
timate aboveC1=0.018 from the structure function). Our
structure function and DTM analyses have thus shown that
contrary to the previous analyses, that the ore concentration
process is neither purely multiplicative, nor is its generator a
Gaussian.

Finally, we can estimate thec(γ ) function and check the
behaviour of the extremes (are these hyperbolic as expected
for extreme enough events?). A simple way to estimatec(γ )

is simply:

c(γ ) ≈ −Logλελ (64)

(see Eq. 34). In this approximation, we ignore the (slowly
varying) prefactors. Lavallée et al. (1991) discuss this Proba-
bility Distribution Multiple Scaling PDMS technique as well
as ways of improving the approximation Eq. (64). In Fig. 28
we do this for the fluxes estimated at resolutions of 1, 2, 4, 8,
16 units. Due to the very small sample, the results are vari-
able for largerγ . However, we see a hint of linear behaviour
at largeγ (black line, absolute slope =qD=3.2). Certainly if
the origin of the divergence of moments is the “dressing” of
the ore over a set of dimension 1 discussed above, then forα

near 2, we haveC(q)≈C1q (see Eq. 50), so that the solution
to C(qD)=D is simply qD≈D/C1. In this case, sinceC1 is
small, we expectqD to be too large to be observed except
perhaps on huge data sets. However caution should be used
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in applying Eq. (50) to determineqD: experience in turbulent
systems has shown thatqD can be sufficiently small so that
– if dressing is the correct explanation – it would imply that
D is less than one; in turbulence aD of the order 0.3 would
be necessary (see Lazarev et al., 1994). At this stage in our
undertanding of scaling processes, it is perhaps best to sim-
ply regardqD as an empirical parameter characterizing the
system.

4.11 Other multifractal formalisms: singular densities (γ ,
c(γ )) versus singular measures (α, f(α))

At the same time as multifractal cascades were being devel-
oped in turbulence, they were also being developed for ap-
plications in strange attractors and chaos. In strange attrac-
tors, one has a large number of pointsN which are gener-
ated either by mappings or flows with a finite (usually small)
number of degrees of freedom (equal to the dimension of
the phase space, denotedD). The density of points in the
limit of the number of points tending to infinity is interpreted
as being a realization of a multifractal probability measure.
The probability densitypλ at resolutionλ is estimated by the
“partition function method” covering the space with aλ−D

sized grid (boxes) and usingpλ=nλ/N for each box (nλ is
the number of points in the box). The probability measure is
a geometric multifractal since although it represents the prob-
ability of finding the system at a point in the phase space, it
is not itself random at all!

Halsey et al. (1986) wrote an influential paper proposing
a notation for dealing with these “geometric attractor” mul-
tifractals. Rather than considering the density of the multi-
fractal measurepλ (the non-random analogue of the cascade
ελ), they considered the measure itself integrated over a ball
(box) sizeλ−1 i.e.Bλ.

We use the symbol5∞(Bλ) since it is the analogue of the
energy flux5∞ and the volume ofBλ is λ−D. Thepλ de-
fined this way is really a dressed quantity, but for these mul-
tifractals the bare/dressed distinction is irrelevant. Halsey et
al. (1986) then defined the order of singularityαD of the flux
rather than the density of the flux:

5∞(Bλ) =

∫

Bλ

p d
D

x=pλ λ
−D ∼ λ

− αD (65)

(the subscript “D” was not used in the original; we have
added it to underscore the dependence on the dimension of
the system). In cascade/turbulence notation, we may write
pλ ∼ λγ ; we thus obtain:

αD = D − γ (66)

Each box can thus be indexed according toαD. The number
of boxes at each resolution corresponding toαD can then be
used to define the (box counting) dimensionfD(αD):

Number
[

5∞(Bλ) = λ
− αD

]

∼ λ
fD(αD) (67)

since “Number”=λD probability, we obtain:

fD(αD) = D − c(γ ); αD =D−γ (68)

Finally, the partition functions can be used to define scaling
exponents for the moments:
∑

A

5∞
q(Bλ,i) ∼ λ

− τD(q) (69)

where the sum is over all thei ballsBλ,i sizeλ−1 needed to
cover theD-dimensional phase space regionA. Sincep is
non random, we have:
〈

∑

A

(pλ λ
−D)

q

〉

= λDλ−qD
〈

p
q
λ

〉

= λ−(q−1)D+K(q) = λ−τD(q) (70)

therefore we obtain:

τD(q) = (q−1)D−K(q)=(q−1)D(q);

D(q) = D−C(q) (71)

As long as we deal with strange attractors and study the full
D-dimensional phase space, theαD, fD(αD), τD(q) (and
D(q)) notation is adequate. However, if we are interested in
random multifractals (involving probability spaces;D→∞),
or if we are interested in looking at subspaces with dimen-
sion smaller thanD, theD dependence is respectively a fun-
damental limitation or an unnecessary complication. The tur-
bulentγ, c(γ ), K(q) andC(q) notation always has the ad-
vantage of being intrinsic to the process (it isD independent).

5 Models

5.1 Singularities and morphology

In Sect. 2 we discussed the fact that the horizontal and verti-
cal scaling in the lithosphere has different exponents and that
this is associated with scale dependent vertical stratification.
In Sect. 4, we discussed the fact that in general scaling is
characterized by an infinite hierarchy of exponents (theK(q)

or c(γ ) function) and that this can be modeled with multi-
plicative cascades. However, we presented only unrealistic
(discrete scale ratio) cascades and indicated that typical ob-
servables are not scale by scale conserved, that they have an
extraqH in their moment scaling exponent (Eq. 58). In this
section, we briefly discuss how to make continuous in scale
and nonconservative (H>0) multifractal processes, and we
compare these with other scaling models.

It is natural to model scaling processes using combinations
of scale invariant basis functions i.e. mathematical singular-
ities. For the topography, an early model is the Turcotte and
Oxburgh (1967) model for the variation of altitude as a func-
tion of distance from mid-ocean ridges, mathematically the
form is indicated in Table 2. Mandelbrot (1975) proposed
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Table 2. An intercomparison between various models of the topography showing the essential similarities and differences in their mathe-
matical structure, statistical properties. HereD=2 for horizontal planes and the dimensionDF is the fractal dimension of lines of constant
altitude in the horizontal. The deterministic mid-ocean ridge model is represented here by a fault in unit direction vectorr through the point
x0. Here the variables are nondimensionalized and the height of the fault is normalized to one. Note thatδ is a Dirac delta function. The
model of Turcotte and Oxburgh usesH=1/2. The monofractal fractional Brownian motion (fBm) model involves a fractional integration of
orderH ′ with a flux φ2(x) which is simply a (“δ correlated”) gaussian white noise with varianceσ2. Note that the symbola=db indicates
equality in probability distributions, i.e.a=db⇔Pr(b>s)=Pr(a>s) for all s, “Pr” indicates “probability”. It results in altitude fluctuations
with gaussian statistics, linear structure function exponentξ(q) and altitude independent surface codimensionc (or dimensionDF ). The
valueH=1/2 is compatible with the commonly cited valueDF =1.5 for the level sets orD=1+1.5=2.5 for the dimension of points on the
surface. The fLm is the generalization obtained by replacing Gaussian variables by stable Levy variables with indexα (fBm is obtained in
the caseα=2). These have diverging momentsq for q≥α. Finally, the multifractal Fractionally Integrated Flux (FIF) model has the same
structure, except that the white noises are replaced by multifractal noisesφλ whereλ is the resolution. The multifractal noiseφλ is the result
of a continuous in scale multiplicative cascade, mathematically it is given by

Ŵλ(x =

∫ λ

|

γα(x′)dx
′

|x − x′|D − H
; φλ(x = eŴλ(x); H ′ = D(1 − 1/α)

γα(x) = independent Levy noise, indexα, amplitude depends onC1, Ŵλ is an fLm process called the “generator”. It is multiplicative because
of the exponentiation of the additive processŴ: φ=eŴ . We again findH≈1/2, although now there are an infinite number of codimensionsc(γ )

(or dimensionsDF (γ )) that depends on the threshold given byλγ . (γ is an order of singularity; not to be confused with the subgenerator
γα). In all cases,H can in principle be determined by dimensional analysis so that the Turcotte- Oxburgh exponentH=1/2 may be valid
for all the models, c.f. Lovejoy (1995). To generalize fBm, fLm and FIF to anisotropic topographies, we must replace the distances in the
fractional integration denominators by anisotropic scale functions as discussed in the text. Reproduced from Gagnon et al. (2006).

)

a model based on the idea of making singular faults the ba-
sic shapes by summing large numbers of faults with random
centers and orientations with Gaussian amplitudes; he pro-
duced a Gaussian process with long range (power law) cor-
relations. Due to the central limit theorem (the gaussian spe-
cial case), a process with the same statistical properties can

be produced by using singularities of a quite different shape;
Table 2 (second row) indicates a model with point rather than
line singularities; in this form the mathematics is more con-
venient for comparison with the other singular topography
models summarized in Table 2. In this case, in the limit of
many faults, because all of the singularities have nearly the
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Fig. 29 

Fig. 29. Comparison of isotropic versus anisotropic (with symmetric scale functions) simulations for three different scaling models. Top
row shows scale functions. From left to right, we change the anisotropy: the left column is self-similar (isotropic) while the middle and

right columns are anisotropic and symmetric with respect toG=

(

0.8 −0.05
0.05 1.2

)

. The middle column has unit ball circular at 1 pixel, while

for the right one it has the form2(θ ′)=1+0.65cosθ ′ (in polar coordinates in the nonlinearly transformed space, see Eq. 74). Second, third
and fourth rows show the corresponding fBm (withH=0.7), fLm (α=1.8,H=0.7) and multifractal (α=1.8,C1=0.12,H=0.7) simulations.
We note that in the case of fBm, one mainly perceives textures, there are no very extreme mountains or other morphologies evident. One
can see that the fLm is too extreme, the shape of the singularity (particularly visible in the far right) is quite visible in the highest mountain
shapes. The multifractal simulations are more realistic in that there is a more subtle hierarchy of mountains. When the contour lines of the
scale functions are close, we change the scale‖r‖ =λ rapidly over short (Euclidean) distances. For a given order of singularityγ , λγ will
therefore be larger. This explains the strong variability depending on direction (middle bottom row) and on shape of unit ball (right bottom
row). Indeed, spectral exponents will be different along the different eigenvectors ofG.

same amplitude (Gaussian variables are rarely more than a
few standard deviations from the mean), the basic singularity
shape is not important, we end up a rough texture but without
any more interesting morphologies.

In Table 2 we see that all the stochastic models are ob-
tained by convolutions with singularities, such convolutions
are “fractional integrations” of orderH ′ (if H ′<0, there are
differentiations; the difference betweenH , H ′ for fractional
Brownian motion (fBm), fractional Levy motion (fLm) are
necessary to take into account the scaling of the basic noises

φ2, φα). The lesson from fBm is that if we are to explain real
topography by such a singular model, then the statistics of the
singularities must be more extreme than gaussian so that the
basic singularity shape may remain important in the limit of a
large number of large singularities (i.e. after integration over
the noise). One way to make some of the singularities always
stand out is to use the fractional Levy motion model obtain
by replacing the Gaussian noise by a Levy noise indexα. The
Levy random variables can be regarded as a generalization of
the Gaussian variables to the case where the variance (second
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Fig. 30. This self-affine simulation illustrates the “phenomenologi-
cal fallacy” since both the top and bottom look quite different while
having the same generators (G is diagonal with elements 0.8, 1.2),
same (anisotropic) statistics at scales differing by a factor of 64 (top
and bottom blow-up). The figure shows the proverbial geologists’
lens cap at two resolutions differing by a factor of 64. Seen from
afar (top), the structures seem to be composed of left to right ridges,
however closer inspection (bottom) shows that in fact this is not
the case at the smaller scales (adapted from Lovejoy and Schertzer,
2007).

moment) is infinite; they have long probability tails such the
statistical momentsq orderq≥α and higher diverge. Due to
the (generalized) central limit theorem, sums of independent
(possibly weighted) Levy variables are still Levy variables.
Figure 29 shows a comparison with the corresponding fBm;
several strong mountain peaks stand out; in fact, the strong
peaks are too strong – although far from Gaussian – real to-
pography empirically seems to have finite variance so this
cannot be a good model. Finally, we note that the continu-
ous in scale conservative multifractal process is obtained by
using an additive Levy process for the log, and the extraqH
needed to obtain the nonconservative multifractal process is
modeled by an extra fractional integration orderH ; Fig. 23 in
Sect. 4.7 showed the effect of varying theH , α parameters.

5.2 Modelling, Anisotropic fractals, multifractals, the scale
function

Let’s consider the singularity shape in more detail. The shape
of line (fault-like) and point singularities depends on powers
of distances from either a line or a point; in order to gener-
alize this it turns out to be sufficient to replace the standard

Euclidean distances by scale functions. We therefore digress
a moment to discuss scale functions. In order to change the
shape of the singularities while conserving the basic statisti-
cal properties of the process, it turns out to be sufficient to
make the replacement everywhere in Table 2:

|1r| → ‖1r‖ ; D → Del (72)

i.e. to replace the usual distance (“||”) by a “scale function”
(“‖‖”) and usual dimension of space by an “elliptical dimen-
sion” Del which satisfies the following basic equation scal-
ing:

‖Tλr‖ = λ−1 ‖r‖ ; Tλ = λ−G; Del = T raceG (73)

whereTλ is a scale changing operator which reduces the scale
of a vector by a factorλ. In order for the scale function to
be scaling (i.e. have no characteristic scale), it must satisfy
group properties, hence it must admit a generatorG as in-
dicated. Once all the unit vectorsr1 are specified the scale
Eq. (73) uniquely specifies the scale of all vectors; all the
nonunit vectors (‖rλ‖ =λ; λ6=1) are then generated by the
action ofTλ: rλ=Tλr1 (see Schertzer and Lovejoy, 1985b,
for technical details on this Generalized Scale Invariance,
GSI). The set of all vectors‖r‖ ≤λ is called a “ball”, de-
notedBλ; for physical scale functions,Bλ must be strictly
decreasing (i.e.Bλ′⊆Bλ; λ′<λ). We can see that if the re-
placements

∣

∣r−r
′
∣

∣→
∥

∥r−r
′
∥

∥ ; D→Del are made in the de-
nominators of the models in Table 2, with scale functions sat-
isfying the scale Eq. (72) (in fact they then define the notion
scale) then the convolutions will have power law dependen-
cies under “zooming”, i.e. the models will be scaling as long
as the noises are also scaling (hence the special choices of
Gaussian or Levy noise, or in the multifractal case, multi-
fractal noise).

When scale functions are used as the basic singularities,
the shapes can be extremely varied, hence demonstrating
the possibility of modeling geomorphologies in this way.
First considerG = the identity: the resulting models will
be “self-similar” in the sense that their statistics will vary
in power law ways under isotropic “zooming” (blow-ups).
When the unit ball is a circle (or more generally aD dimen-
sional sphere), then we obtain‖r‖ = |r|. However when the
unit ball is not circular (spherical), then there will still be
preferred directions. These preferred directions will be the
same at all scales, the anisotropy is “trivial” (see Fig. 23
for examples). Things become more interesting as soon
as G is no longer the identity. IfG is a diagonal ma-
trix, then the singularities orderγ : ‖r‖−γ are quite differ-
ent in different directions, the resulting fractals/multifractals
are “self-affine”. The case whereG is nondiagonal and the
eigenvalues are real is a generalization in which the main
stretching/shrinking occurs along nonorthogonal eigendirec-
tions; Fig. 29, 30 shows the resulting differential stratifica-
tion. When the eigenvalues are complex, then the eigen-
vectors rotate continuously as functions of scale. Finally,
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we can consider noncircular/nonspherical unit balls, Fig. 29
shows how the basic singularity shapes are clearly visible in
the fLm. In the multifractal case, the effect of the singu-
larity morphology is still important for the result; but things
are more subtle. Figure 29 shows the effect of changing the
scale function while maintaining theG. Finally – outside our
present scope but presumably important for realistic topog-
raphy modelling – we can considerG as a nonlinear operator
(rather than a matrix). In this case, the anisotropy depends
not only on scale but also on the location. This allows for
spatially varying morphologies. In this case, the linear GSI
discussed above in simply a local approximation.

To understand the relation between usual distances and
generalized scales, consider a (real) 2-DG matrix which

in a diagonal frame is:G=

(

Hx 0
0 Hy

)

; the nonlinear co-

ordinate transformationx′=sgnx |x|1/Hx ; y′=sgny |y|1/Hy

transforms the problem into a problem withG′=1= identity;
this shows that the basic scale function is:

||(x, y)|| = r(θ ′)(x2/Hx + y2/Hy )1/2 (74)

where r(θ ′) is an arbitrary function of the polar angleθ ′

(in the nonlinearly transformed space i.e tanθ ′=y′/x′). Fig-
ure 29 shows the effect of varying the unit balls andG ma-
trices for various topography models.

5.3 The phenomological fallacy

Geophysicists commonly derive their models from phe-
nomenological classifications based largely on classical
(scale bound) notions of scale and shape. Once a phe-
nomenon has been defined - often involving somewhat sub-
jective criterion – models are constructed to explain them.
However we have seen that scaling processes – if based
on sufficiently strong anisotropic singularities, can lead to
quite different looking structures at different scales even
though the basic underlying mechanism is scale invariant;
see Fig. 30 for an example. This possibility demonstrates
what we call the “phenomological fallacy” i.e. the danger of
inferring process from appearance.

6 Conclusions

Central problems in the geosciences are those of resolution
and scale. It is quite typical for fields and structures to have
variability ranging over factors of over 1010 in scale. Start-
ing in the early 20th century, there were isolated insights
into the nature of such wide range variability. However, it
wasn’t until the 1970s that new ideas of deterministic chaos
and fractals began to spark wide interest in the problem. De-
terministic chaos is essentially a low number of degrees of
freedom paradigm whereas (stochastic) fractals provide an
attractive large number of degrees of freedom alternative. In
the original form of fractal geometry of self-similar (and oc-
casionally self-affine) sets (Mandelbrot, 1977, 1983), fractals

were arguably more inspirational than practical. However in
the 1980s two developments were made which were essen-
tial for geoscience applications: the generalization from scal-
ing geometric sets to scaling fields (multifractals), and the
generalization from isotropic (self-similar) to quite general
anisotropic scaling (“Generalized Scale Invariance”).

Partly in order to limit our scope, and partly because of
their fundamental importance, in this review we concentrated
on scaling geofields in the solid earth and topography. Us-
ing the (somewhat) familiar method of power spectra, we
reviewed evidence that many geofields including the topog-
raphy, ore concentrations, rock density, magnetic suscepti-
bility and others were scaling over considerable ranges of
horizontal and vertical scale. From the relatively small num-
ber of studies where proximate vertical and horizontal data
were available, we argued that generally the scaling was
anisotropic with the exponent ratioHz in the range≈1.5–
3. This – combined with estimates of the “sphero-scale”
near planetary scales – implies that structures in lithospheric
vertical cross-sections typically start off very stratified but
that at larger and larger scales they become less and less so
(exactly the opposite of the behaviour observed in the atmo-
sphere). However, power spectra are only second order mo-
ments; using “functional box-counting” to systematically de-
termine the fractal dimensions of sets exceeding higher and
higher thresholds – we argued that geofields are in fact mul-
tifractal. Since this implies that areas above thresholds are
power law functions of resolution (box size), this contradicts
assumptions of classical geostatistics which assume that the
relevant Lebesgue measures are well defined lengths, areas,
and volumes (i.e. that they have no significant resolution de-
pendencies).

Having argued that the lithosphere is largely the prod-
uct of scaling processes involving dynamical mechanisms
repeating scale after scale, we concentrated on the result-
ing cascade processes. The history of the development of
explicit cascade models has many lessons for geoscientists.
They were first developed by de Wijs (1951) in an attempt
to refute the idea that mineral ore concentrations had alge-
braic (“Pareto”) distributions and to support the notion that
they were at least roughly lognormal. However, later de-
velopments of cascades (in the 1960s, 1970s for applica-
tions in turbulence) showed that they could only at best give
approximately log-normal distributions; Mandelbrot (1974)
showed that the “dressed” cascades generally displayed the
phenomenon of “divergence” of moments – i.e. precisely the
algebraic behaviour that de Wijs had fought against.

But the issue of algebraic versus lognormality continued
to be deepened. On the one hand, Bak et al. (1987) made
another connection between fractals and algebraic probabili-
ties: Self-Organized Criticality, the prototypical model being
the sandpile in which grains are added one at a time pro-
voking avalanches with algebraic distributions. In this con-
text, the multifractal phase transition route to algebraic prob-
abilities is sometimes called “nonclassical SOC”. Finally, in
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the 1980s it was demonstrated that cascade processes have
stable, attractive behaviours so that most of the details of
the dynamical mechanism are irrelevant, only three param-
eters will generally be enough to determine the behaviour
(Schertzer and Lovejoy, 1987). This was a kind of “multi-
plicative central limit theorem”; it shows that even approx-
imate log-normality compatible with the divergence of mo-
ments (which only affects the extreme tail of the probabil-
ity distributions) is a special case; real world systems in fact
had approximately log-Levy distributions and with the Levy
parameterα typically <2; the log-normal valueα=2 being
special. Indeed we saw thatα estimates for topography and
ore concentration (using de Wijs’s original data) have values
of α≈1.8, close to values for the susceptibility and magnetic
field anomalies. The existence of universality classes turns
out to be essential for the application of cascades and mul-
tifractals to the real world: without it, every scaling process
would require an infinite number of parameters either to em-
pirically characterize or to model.

In order to clarify these ideas, we included a long discus-
sion of cascade models. This was partly pedagogical, but was
also aimed at highlighting areas where clarification was nec-
essary. Key additional points were a) the important distinc-
tion between microcanonical and canonical conservation, b)
the distinction between “bare” and “dressed” cascade prop-
erties c) the nonlocal nature of cascade singularities (they
are generallynot Holder exponents), d) the codimension (γ ,
c(γ )) versus dimension (α, f (α)) formalism for multifrac-
tals and e) the fact that typical observables are generallynot
quantities which are conserved scale by scale, they are gener-
ally not the direct result of cascade processes but involve an
extra linear termqH in their moment scaling exponentK(q)

(requiring fractional integrations of cascades to model). In
Sect. 5 we intercompared various scaling models and dis-
cussed how to make (realistic) continuous in scale cascades.
We also show how – by introducing an (anisotropic) scale
function in the place of the usual (isotropic) distance func-
tion, we can model anisotropic multifractals, and we gave
several examples of topography simulations. The recogni-
tion that real world scaling systems have both scale and loca-
tion dependent anisotropy is fundamental in geophysics since
without it we could not explain the coexistence of diverse
geomorphologies and scaling. Indeed, GSI demonstrates the
“phenomenological fallacy” i.e. the fact that mechanism can-
not be phenomenologically inferred from form: the same
process at small and large scales can have drastically dif-
ferent phenomenologies yet be produced by the same scale
invariant mechanism.

The problem of structures within structures occurring over
enormous ranges of scale is a unifying geoscience problem-
atic and advances over the last 30 years have shown that such
systems have many – sometimes surprising – commonalities
over vastly disparate scales. This is possible because it is
now known that scale invariance is a symmetry principle of
great generality encompassing systems with both scale by

scale (differential) anisotropy and also those with anisotropy
varying from place to place.

In many ways we are living in a “golden age” of geo-
physical data; to fully take advantage of this manna re-
quires scaling techniques. Unfortunately, many of the neces-
sary techniques and notions are still little known sometimes
even among practioners. An unfortunate consequence is that
mainstream geoscientists have found many of the applica-
tions of scaling too restrictive or simplistic leading them to
discard scaling ideas altogether. An example of this is the
debate in the 1990s about the value of the supposedly unique
fractal dimension of the topography. Lack of agreement be-
tween disparate analysis techniques on diverse data sets lead
many to conclude that scaling only held over narrow ranges
of scale. In actual fact, as modern multifractal analyses am-
ply show – the topography displays excellent (multi) scaling
over more than 105 in scale. If the geofields really do re-
spect some (generalized) scaling principle, then this fact will
transform the geosciences.
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