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1Département de Physique, Université des Antilles et de la Guyane, Guadeloupe, France
2Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Nizhny Novgorod, Russia
3Department of Applied Mathematics, Nizhny Novgorod Technical State University, Nizhny Novgorod, Russia

Received: 23 February 2007 – Revised: 10 May 2007 – Accepted: 16 May 2007 – Published: 8 June 2007

Abstract. The transformation of nonlinear long internal
waves in a two-layer fluid is studied in the Boussinesq and
rigid-lid approximation. Explicit analytic formulation of the
evolution equation in terms of the Riemann invariants allows
us to obtain analytical results characterizing strongly nonlin-
ear wave steepening, including the spectral evolution. Ef-
fects manifesting the action of high nonlinear corrections of
the model are highlighted. It is shown, in particular, that the
breaking points on the wave profile may shift from the zero-
crossing level. The wave steepening happens in a different
way if the density jump is placed near the middle of the wa-
ter bulk: then the wave deformation is almost symmetrical
and two phases appear where the wave breaks.

1 Introduction

Internal waves in a stratified fluid are an important object
for study in geophysical flows, for example in lakes, rivers,
oceans and the atmosphere (Baines, 1995; Grimshaw, 2002;
Miropolsky, 2002; Heilfrich and Melville, 2006). Breaking
internal waves contribute to the mixing of salt, heat and trac-
ers in water (Henyey and Hoering, 1997; Munk and Wunsh,
1998; Chant and Wilson, 2000; Horn et al., 2001; Fringer
and Street, 2003). There are many observations and theo-
retical models of bore-like shapes of long internal waves on
ocean shelves, and in fjords and lakes (Klemp et al., 1997;
Afanasyev and Pelter, 2000; Armi and Farmer, 2001; Hol-
land et al., 2002). In many cases these strongly nonlinear
internal waves are described in the framework of two-layer
flows; see, for instance, the books by Baines (1995) and
Lyapidevsky and Teshukov (2000).

Indeed, two classical scenarios for the eventual mixing
by interfacial waves in this model are possible: they are
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shear-instability and overturning of internal waves. Shear-
instability occurs in the linear and nonlinear limits (Craik,
1985; Baines, 1995). However, Milewski et al. (2004)
showed that long nonlinear interfacial waves are stable as
long as the flow remains smooth. Therefore, wave break-
ing turns out to be the main source of mixing, so its under-
standing becomes necessary. These processes have not been
studied for large-amplitude waves. Here we consider the de-
formation of strongly nonlinear periodic (sinusoidal) interfa-
cial waves in a two-fluid system bounded by rigid walls in
the case of a small density jump (the Boussinesq approxima-
tion).

The paper is organized as follows. The Riemann invari-
ants describing the interfacial wave dynamics are discussed
in Sect. 2. The unidirectional description for a rightward
propagating wave is developed in Sect. 3; the fully nonlin-
ear expression for the wave speed is given, and the ranges
of variability of the fluid and waves velocities are obtained
with the help of a trigonometric representation. Section 4
describes the strongly nonlinear wave evolution resulting in
steepening and the formation of breaking points on the wave
profile. The corresponding spectral evolution is analyzed in
Sect. 5, both numerically and with help of weakly nonlin-
ear approximate solutions. The conclusion collects the main
results of this study.

2 Riemann invariants for a two-layer fluid

In this section the problem is formulated and the derivation
of the governing equations is given. Here we follow mainly
Baines (1995) and Lyapidevsky and Teshukov (2000), com-
bining the physical evidence and mathematical elegance of
these references.

Let us consider a two-layer system bounded by rigid walls
(see Fig. 1). The fluid in the layers is supposed to be ho-
mogeneous, inviscid and incompressible. In the long-wave
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Fig. 1. Configuration of the problem.

approximation the hydraulic approach may be applied, and
then the governing system of equations is

ρj

(

∂Uj

∂T
+ Uj

∂Uj

∂X

)

+
∂pj

∂X
= 0, (1)

∂Hj

∂T
+

∂

∂X

(

HjUj
)

= 0. (2)

Subscriptj=1, 2 numerates the layers;Uj are the horizon-
tal fluid velocities in the layers each of constant densityρj ,
pj are the hydrostatic pressures,Hj (X, T) are the variable
layer thicknesses, while the total water depth remains con-
stant:H1+H2=H.

Adding the two mass conservation Eq. (2) gives the con-
servation of the total volume flux. Supposing that the undis-
turbed water does not move then

U1H1 + U2H2 = 0. (3)

Thus the flows in this problem may be described by a sin-
gle variable,W(X, T)=(U2–U1)/2, and the interface displace-
ment is characterized by the difference variable1H=H1–H2
so that

U1 = −2W
H2

H
, U2 = 2W

H1

H
and

H1 =
H +1H

2
, H2 =

H −1H

2
. (4)

Subtraction of the conservation Eq. (2) then gives

∂

∂T
1H +

∂

∂X

(

W
1H 2 −H 2

H

)

= 0. (5)

The other equation results from subtracting Eq. (1)

∂

∂T

(

U1 −
ρ2

ρ1
U2

)

+
1

2

∂

∂X
((

U2
1 −

ρ2

ρ1
U2

2

)

−
ρ1 − ρ2

ρ1
g (H2 −H1)

)

= 0, (6)

whereg is the gravity acceleration that comes from the hy-
drostatic pressure solution. In the Boussinesq approximation
ρ1≈ρ2≈ρ, Eq. (6) tends to the second equation for the vari-
ablesW and1H that with Eq. (5) completes the system:

∂

∂T
W +

∂

∂X

[

(

W2 − C2
) 1H

H

]

= 0,

C =
1

2

√

g
1ρ

ρ
H, 1ρ = ρ1 − ρ2. (7)

The constantC in (7) is equal to the maximum speed of a
linear interfacial wave in the two-layer system

Clin =

√

g
1ρ

ρ

H1H2

H
(8)

when the layers have equal depthsH1=H2. The valuesC and
H naturally define the typical scales for the problem (5) and
(7). After normalizing

W → Cw, 1H → Hδ, T →
H

C
t, X → Hx, (9)

the system (5) and (7) becomes (Lyapidevsky and Teshukov,
2000)

∂δ

∂t
+
∂

∂x

(

w
(

δ2 − 1
))

= 0,

∂w

∂t
+
∂

∂x

(

δ
(

w2 − 1
))

= 0. (10)

It is remarkable that this system mayalwaysbe reduced to
the surface wave equations. Indeed, after the substitution

γ = 2wδ, λ =
(

1 − w2
) (

1 − δ2
)

, (11)

the system (10) may be straightforwardly transformed to

∂γ

∂t
+ γ

∂γ

∂x
+
∂λ

∂x
= 0,

∂λ

∂t
+
∂

∂x
(γ λ) = 0, (12)

whereγ andλ correspond to the shallow surface waves fluid
velocity and the water elevation respectively.

The system (12) is known to be hyperbolic and it may be
represented in terms of the Riemann invariants

V± = γ ±
√
λ, S± = γ ± 2

√
λ, (13)

that allows us to write the governing system of equations as

∂S±
∂t

+ V±
∂S±
∂x

= 0. (14)

Using (11), the expressions (13) define the Riemann invari-
ants for the case of an interfacial wave, as

S± = 2wδ ± 2
√

(1 − δ2)(1 − w2), (15)

V± = 2wδ ±
√

(1 − δ2)(1 − w2). (16)
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The formulae (15) and (16) in different forms were presented
in Baines (1995), Lyapidevsky and Teshukov (2000) and
Slunyaev et al. (2003), and form the basis of our research.

The characteristics of this hyperbolic system (the veloci-
ties V±) may be expressed as smooth functions of the Rie-
mann invariants. This fact was used by Milewski et al. (2004)
to prove the nonlinear stability of smooth disturbances: the
system remains hyperbolic while the waves are smooth.
They report that unforced flows cannot reach the threshold
of shear-instability, at least without breaking first. The fully
nonlinear steepening of a wave will be considered in Sect. 4.
To do this the expression for the nonlinear wave velocity is
obtained in the next section.

3 Unidirectional fully nonlinear interfacial waves

With the help of the Riemann invariants representation (14)–
(16) the fully nonlinear model for unidirectional internal
waves in a two-layer system may be easily found. The form
of expressions (15) and (16) suggests using the trigonometric
substitution; let us introduce new variables as

δ = sin(ϕ) , |ϕ| ≤
π

2
, w = sin(ψ) , |ψ | ≤

π

2
. (17)

Then the representation of the Riemann invariants may be
formulated as

S± = ±2 cos(ϕ ∓ ψ) (15*)

V± = S± − cos(ϕ) cos(ψ) . (16*)

The Riemann invariantsS± are preserved along correspond-
ing characteristics moving with velocitiesV± and thereby
build the wave field. Let us consider a single perturbation
propagating to the right, thus, suppose the leftward propa-
gating invariantS− to be constant. If the case when there is
no shear flow (w=0) is considered, then the condition of the
invariant conservation gives

ϕ + ψ = ϕ0, δ0 = sin(ϕ0) . (18)

Here δ0 is the unperturbed dimensionless difference of the
layers depths. After using relation (18) the advection may be
straightforwardly obtained as

w = sin(ϕ0 − ϕ) = 2(h10 − h20)
√

h1h2 − 2(h1 − h2)
√

h10h20.

(19)

The valuesh10 andh20 in (19) are the unperturbed dimen-
sionless depths of the layers:

h10,20 =
1 ± sinϕ0

2
, (20)

h1 and h2 are the dimensionless current depths, such as
h1=h10+η andh2=h20–η, whereη(x, t) is the dimensionless
interface displacement.

The reality of the solution naturally provides the condition
|w|≤1 (|W |≤C). It follows from (19), that functionw(η) is
not monotonic. It is clearly seen from (17) and (19) that it
defines an arc of a circle in the plane (δ, w); the valueϕ0
plays the role of a phase shift between the oscillations of the
interfaceη and the advectionw. The functionw reaches its
extremes when

ϕ = ϕ0 ± π/2 or otherwise

η = ±
√

h10h20 −
h10 − h20

2
. (21)

The signs + or – in (21) should be defined according to the
sign of the differenceh10–h20.

The velocities of the flowsU1 andU2 may be straightfor-
wardly obtained from (4) and (19) as (in the dimensionless
form)

u2,1 = sin(ϕ0 − ϕ) (sinϕ ± 1) . (22)

It is certainly seen from (22), that the physical fluid velocity
may exceed the valueC. The extremes of (22) may be found
and then the following restriction takes place:|u2,1|≤2.
These velocities are plotted in Fig. 2 by the blue dashed (u2)

and the red dash-dotted (u1) lines. The vertical axis in Fig. 2
corresponds to the position of the interfaceh1, whereas the
horizontal solid line shows the undisturbed levelh10. The
flow velocities have different signs due to the conservation
law (3). The flow in the layer is opposite to the linear wave
propagation if the displacement makes this layer shallower.

Since the advection and interface displacement are con-
strained according to (19), then the Riemann invariants (15)
may be expressed as functions of one variable, and therefore
(14) gives the evolution equation for the rightward propagat-
ing wave

∂η

∂t
+ V+

∂η

∂x
= 0, (23)

where the explicit dimensionless form of the full nonlinear
velocity follows from (16*) and may be written in the form:

V+ =
3

2
cos(2ϕ − ϕ0)−

1

2
cos(ϕ0) = 2

√

h10h20×
[

1 − 3(h1 − h2)
2
]

+ 6(h10 − h20) (h1 − h2)
√

h1h2. (24)

This formula apparently was first presented in (Slunyaev et
al., 2003). A similar approach was used by Ostrovsky and
Grue (2003) resulting in an implicit model. The curves (24)
are plotted in Fig. 2 by thick black solid lines. The value
V+ remains bounded:|V+|≤2; it reaches the minimum value
(V+=−2) if

h10 =
1

2
and η= ±

1

2
. (25)

It corresponds to the situation when in an equal-depth layered
fluid the interface touches the bottom or the top (Fig. 2c). The
positive maximum value is limited by

V+ ≤
3

2
−
√

h10h20; (26)
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Figure 2. Velocities in the two-layer fluid. The vertical axis measures the position ofFig. 2. Velocities in the two-layer fluid. The vertical axis measures
the position of the interfaceh1; the horizontal line shows the rest
level h10: 0.1 (a), 0.3(b) and 0.5(c). The horizontal axis measures
the dimensionless velocitiesu1 (red dash-dot),u2 (blue dash), linear
wave speedVlin (h1) (thin pink solid line) and the full nonlinear
velocityV+ (thick black solid line).

thus it is always less than 3/2, and reaches this value when
one of the layers vanishes. It is seen from Fig. 2 that the wave
velocity may then reach the fluid speeds in the layers.

The linear velocity (limitη→0) is very well known:

Vlin = 2
√

h10h20, (27)

which is the dimensionless form of (8). This velocity is
shown by thin pink solid lines in Fig. 2 as function of the

local interface displacement (i.e.,Vlin=2 (h1 h2)
1
2 in the fig-

ures). It follows from (24), thatV+(η)=Vlin(η=0) in two
cases: whenη=0 and whenη=(h20–h10)/2 (in other words, in
the middle of the fluid bulk).

The nonlinear velocity (24) passes zero when the interface
displacements are

η1 = −
1

√
3
h10 and η2= 1√

3
−

1
√

3
h10, (28)

thus, the nonlinear velocity of a large enough interfacial
displacement becomes negative in contrast to the speeds of
weak perturbations, which should lead to a significant change
of the shape of an intense wave.

Expression (24) may be easily decomposed into the Taylor
series

V+ = Vlin

(

1 + αη + α1η
2 + α2η

3 + α3η
4 + ...

)

. (29)

with coefficients

α = −
3

2

h10 − h20

h10h20
, α1 = −

3

8
·

1 + 4h10h20

(h10h20)
2
,

α2 = −
3

16

h10 − h20

(h10h20)
3
, α3 = −

15

128

(h10 − h20)
2

(h10h20)
4
. (30)

The expansions of the nonlinear wave velocity (29) build
asymptotic nonlinear evolution equations for internal waves.
The two first coefficientsα1 andα2 are well-known: they de-
fine the nonlinear term in the classical Korteweg – de Vries
equation and its generalization (so-called Gardner equation)
(Kakutani and Yamasaki, 1978). The next two coefficients
in (29) were found for the generalization of the Gardner
equation via asymptotic expansions (Polukhina and Slun-
yaev, 2006) and coincide with the ones given by (30). Dif-
ferent approximations of the full nonlinear models were also
studied recently by Sakai and Redekopp (2007).

It is interesting to note that all terms of the Taylor series
(29) tend to zero whenh10=h20 except the cubic nonlinearity,
and the nonlinear velocity then becomes purely polynomial
(parabolic):

V+ = 1 − 12η2. (31)

When the thickness of the bottom layer is less than the thick-
ness of the upper layer (h10<h20), the nonlinear coefficients
of both even orders in (29) are positive and change their signs
when the interface lies in the middle of water bulk. Both co-
efficients of odd orders are negative for the two-layer stratifi-
cation. The caseh10<h20 will be analyzed in the next section
when studying the wave deformation. The other case may be
easily obtained due to the symmetry of the problem.

Nonlin. Processes Geophys., 14, 247–256, 2007 www.nonlin-processes-geophys.net/14/247/2007/
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ηFig. 3. Profiles of the normalized wave displacementη0/a (dotted red line), nonlinear wave velocityV0/Vlin (thin blue curves) and its
derivativedV0/dx/Vlin (thick black curves) for different depths of the layers:h10: 0.1 (a, b), 0.3 (c, d) and 0.5(e, f) and intensity of the
waves:a=h10/2 (a, c, e) anda=h10 (b, d, f).

4 Nonlinear deformation of an internal wave

The process of nonlinear deformation of a simple wave lead-
ing to its breaking is classical (see for instance Whitham
(1974)), but is typically considered in the case of weak
(quadratic) nonlinearity. Consideration of the fully nonlinear
case does not differ significantly from the weakly nonlinear
theory after the exact expression for the nonlinear velocity is
written down (24), and is studied hereafter.

Let us consider the initial-value problem, i.e., that
the wave is defined at the initial moment of timet=0:
η(x,t=0)=η0(x). Then the initial distribution of the nonlin-
ear velocity is given byV0(x)=V+(η0(x)). The solution is
governed by Eq. (23) and so

η(x, t) = η0(x − V+t). (32)

The solution (32) represents the well-known simple or Rie-
mann wave (Whitham, 1974). It describes the process of

www.nonlin-processes-geophys.net/14/247/2007/ Nonlin. Processes Geophys., 14, 247–256, 2007
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nonlinear wave deformation with the steepening of the wave
front. The steepness may be found by differentiation of (32)

∂η

∂x
=

η′
0

1 + tV ′
0

, (33)

where primes mean the total derivative byx. It is clear
that the steepness singularity∂η

∂x
→∞ arises for the first time

when the denominator in (33) becomes zero, which needs
dV0/dx<0. The denominator in (33) decreases with time and
reaches zero for the first time at the momentt=tbr ,

tbr =
1

max(−V ′
0)
. (34)

The wave starts breaking at the point of the maximum deriva-
tive of the nonlinear velocity, which is not necessarily the
point of maximum initial steepness.

Let us consider the breaking of a sinusoidal internal wave
η0(x)=a sin(x) as an example with the initial maximum
steepnesss0=a at the coordinate originx=0. The derivative
of the nonlinear wave velocity is

∂V+
∂x

= D
∂η

∂x
, D =

∂V+
∂η

= −
6 sin(2ϕ − ϕ0)

cos(ϕ)
. (35)

The functionD in (35) depends onx andt via h1 andh2:

D (h1, h2) = 12(h10 − h20)
√

h1h2 − 24(h1 − h2)

√

h10h20 − 3
(h10 − h20) (h1 − h2)

2

√
h1h2

. (36)

Considering the sinusoidal Riemann wave, (35) becomes

dV0

dx
= a cos(x) ·D (h1 = h10 + η0, h2 = h20 − η0) . (37)

The weakly-nonlinear case straightforwardly follows from
the latter formulae when we putD=D(h10, h20). Then the
expression for the nonlinear velocity is given by (29) when
only the quadratic nonlinear term is taken into account. The
quantityD does not depend on the coordinate and the first
breaking point corresponds to the minimum of the cosine
function (D>0 if h1<h2, see (30)). That is, in the weakly
nonlinear case the breaking occurs at phasex=π , where the
wave shape crosses the undisturbed (zero) level.

The shapes of the steep waves, the nonlinear wave veloc-
ity and its derivative are given in Fig. 3 for three different
thickness of the bottom layer:h10=0.1 (a, b), 0.3 (c, d), and
0.5 (e, f). The amplitude of the sinusoidal wave is also dif-
ferent: moderatea=h10/2 (a, c, e) and maximuma=h10 (b,
d, f). It is seen that the wave velocity deviates from the lin-
ear value when the wave amplitude grows. It becomes sharp
when the amplitude is maximal so that the derivative of the
velocity jumps in the wave trough. It may be also observed
in Fig. 3 how the position of the minimum of the derivative
shifts rightwardx=π . The reverse movement of the trough
is very important for intense waves and may be even faster

than the forward movement of the wave (see Fig. 2). Ac-
celeration of the wave is achieved mainly in the case when
one layer is much thinner than the other (see the blue thin
curves in Fig. 3). In the caseh10=0.5 the wave becomes
symmetric (Figs. 3e, f) and both the crest and the trough
move backward. Two minima of the derivative of the non-
linear wave velocity appear that should lead to the formation
of two breaking points on the wave profile per wave period.

The position of the first breaking point is defined as the
minimum of the derivative of the nonlinear velocityV0 (see
(33)). Letting the second derivative ofV0 equal to zero, one
may obtain the relation between wave amplitudea and the
interface displacement at the point of the first breakingηbr ,
which in the trigonometrical form reads

a =

√

η2
br +

ηbr cos(ϕbr)

2 tan(ϕbr)+ 4 cot(2ϕbr − ϕ0)
,

ηbr =
1

2
(sin(ϕbr)− sin(ϕ0)) . (38)

It is evident from Fig. 3 thatηbr should be negative. The
phase of the breaking,xbr , may be simply found as

xbr = π − arcsin
(ηbr

a

)

+ 2πn, n = 1,2,3, . . . (39)

In the case of equal depths of the layers solutions (38) and
(39) are greatly simplified and give

ηbr = −
a

√
2
, xbr =

5π

4
(when h10 → 1/2). (40)

Actually, in this case a second breaking point appears, as has

been noted:ηbr=2− 1
2a andxbr=π /4; the wave properties in

this point are just symmetric reflection and will not be dis-
cussed individually.

The dependences defined by (38) and (39) are illustrated
in Figs. 4 and 5. Qualitatively the curves from Fig. 4 are very
similar to the ones plotted in Fig. 5, which naturally follows
from the form of formula (39). The relation (40) gives the
horizontal dashed lines in Figs. 4, 5; the other limith10→0
is given by the dotted black lines in the figures. A small-
amplitude wave breaks near the rest level, whenx=π , while
very intense waves break close to the troughs; this is more
significant when the layers have very different depths. In the
limiting case whenh10→0

ηbr = −a, xbr = 3π/2 (when h10 → 0), (41)

thus, the wave touches the bottom and breaks at this point.

The maximum waves always break at levelsηbr≤−2− 1
2a on

the front slope below the rest level (5π /4≤xbr≤3π /2).
The breaking timetbr may be found from (34) with the

use of (35) computed at the breaking point defined by (39).
The dependences of the “breaking distance”tbrVlin versus
normalized wave amplitudea/h10 are shown in logarithmic
coordinates in Fig. 6. It is interesting to note that even for the

Nonlin. Processes Geophys., 14, 247–256, 2007 www.nonlin-processes-geophys.net/14/247/2007/
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Fig. 4. Relations between the relative wave amplitudea/h10 and
the position of the breaking point on the sinusoidal wave profile for
the casesh10→0 (black dots),h10=0.1 (solid blue line),h10=0.3
(dash-dotted green line) andh10=0.5 (dashed red line).

maximum wave amplitudes (when the wave touches the bot-
tom or the water surface) the breaking distance is not zero,
because the quantity min(V′

0) remains finite (see Fig. 2).
Whenh10 becomes small, the breaking timetbr even grows,
because the linear wave speed decays.

The evolution of a wave during its steepening is described
by solution (32), thus it may be trivially calculated. The wave
profiles at different time moments are shown in Fig. 7 for the
casesh1=0.1 (a, b), 0.3 (c, d) and 0.5 (e, f). The amplitudes
of the initial sinusoidal waves are chosen equal to the half
of the lower layera=h10/2 (panels (a), (c) and (e)) and to its
total thicknessa=h10 (panels (b), (d) and (f)). The shapes are
given for the initial moment of timet=0, t=tbr /2 andt=tbr . It
is worth mentioning that the breaking point lies close to the
point of zero nonlinear velocity for large wave amplitudes,
but does not coincide with it. Two breaking points are read-
ily observed for the caseh1=0.5 in the positive and negative
parts of the interfacial displacement.

The process of the wave deformation is directly related
to the energy exchange between harmonics due to the non-
linearity. For the better understanding of this process the
Fourier analysis of the evolving waves is performed in the
next section.

5 Spectral analysis

The spectral analysis of a nonlinear wave evolution reveals
energy exchange between harmonics which leads to the
change of scales of the waves. Defining the spectral func-
tion as

S (k, t) =
1

2π

∞
∫

−∞

η (x, t) e−ikxdx, (42)
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Fig. 5. Relations between the relative wave amplitudea/h10 and the
phase of the breaking point for casesh10→0 (black dots),h10=0.1
(solid blue line), h10=0.3 (dash-dotted green line) andh10=0.5
(dashed red line).

0 0.2 0.4 0.6 0.8 1

10
0

10
1

10
2

a / h
10

t b
r ⋅ 

V lin

 

→

Fig. 6. The breaking distancetbrVlin versus the relative wave am-
plitude a/h10 for casesh10→0 (black dots),h10=0.1 (blue solid
line), h10=0.3 (dash-dotted green line) andh10=0.5 (dashed red
line).

in the case of the Riemann wave (32) the formula (42) trans-
forms to

S (k, t) =
−i

2πk

∞
∫

−∞

dz
dη0 (z)

dz
exp

(

−ik
[

z+ tV+ (η0 (z))
])

.

(43)

The other forms of formula (43) convenient for different pur-
poses are given by Pelinovsky (1976). Considering a real pe-
riodic sinusoidal waveη0(x)=a sin(x), the spectrum becomes
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Fig. 7. The evolution of a sinusoidal wave for different depths of the layers:h10: 0.1 (a, b), 0.3 (c, d) and 0.5(e, f) and intensity of the
waves:a=h10/2 (a, c, e) anda=h10 (b, d, f). Wave shapes are plotted in co-moving reference frames (with speedVlin) for the initial moment
t=0 (dots),t=tbr /2 (dash) and when breakingt=tbr (solid).

complex conjugated:S(–k)=S(k) and discreteS(k)=Sk. Thus,
only positive wavenumbers will be analyzed, ask=1, 2, 3,. . .
Then the formula for the spectrum is

Sk (t) = −i
a

πk

2π
∫

0

dξ cos(ξ)exp
(

−ik
[

ξ + tV+ (a sin(ξ))
])

.

(44)

The expression for the nonlinear velocity (24) has a rather
complicated form. For qualitative comprehension it may be
useful to represent the nonlinear velocity in powers of the
displacement (form (29)). The integral (44) was evaluated
by Pelinovsky (1976) in terms of special functions for the
power-law nonlinearityV∼ηn. (It is convenient to study the
waves in a reference frame co-moving with the linear veloc-
ity Vlin , hence we omit the unit in (29).) In particular, in the
caseV+=αVlinη the spectrum is purely imaginary, and thus
the wave field is represented by the series of sinusoids:

η (x, t) =
∞
∑

k=1

Pk(t) sin(kx),

Pk = (−1)k+1 2a

kV0t
Jk (kV0t) ,

V0 = αVlina, (45)

whereJk is the Bessel function of the first kind, and the spec-

tral amplitude is defined by
∣

∣

∣
S

quadr
k

∣

∣

∣
= |Pk|. The formula

(45) is the classical Bessel-Fubini solution known in nonlin-
ear acoustics (Rudenko and Soluyan, 1977). For the case of
the cubic nonlinearity,V+=α1Vlinη

2 the spectrum is complex
and the solution has the form (see Pelinovsky, 1976):

η (x, t) =
∞
∑

k=0

[

Qk (t) sin
(

(2k + 1)
(

x − V0t
/

2
))

+Rk (t) cos((2k + 1) (x − V0t/2))] ,

Qk =
a

2k + 1
Jk

((

k +
1

2

)

V0t

)

,

Rk =
a

2k + 1
Jk+1

((

k +
1

2

)

V0t

)

,

V0 = α1Vlina
2. (46)

The spectral amplitude is then defined by
∣

∣Scub
k

∣

∣=
√

P 2
k +Q2

k. One should pay attention to the
fact that only odd harmonics are generated in this case.
Cosine terms appear in solution (46), although the initial
profile was sinusoidal. This fact is responsible for the shift
of the first breaking point from the zero-crossing point that
has been discussed above.

The evolution of the wave shape due to nonlinear steep-
ening is illustrated in Fig. 7 for different rest levels of the
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Fig. 8. The evolution of the amplitudes of the first five Fourier modes due to the nonlinear wave evolution (as shown in Fig. 7) for different
ratios of the layer depths:h10=0.1 (a), h10=0.3 (b), h10=0.45 (c) andh10=0.5 (d). The initial sinusoidal wave has maximum amplitude
a=h10. Solid lines show the numerical solution|Sk(t)| (ordinal numbers of harmonics are given nearby). The markers show analytical
solutions: crosses correspond to the case of purely quadratic nonlinearity|Skquadr(t)|; circles, when only cubic nonlinearity is taken into
account|Skcub(t)|.

interface and different intensities of the waves. The spec-
tral evolutions of the maximum (a=h10) waves for that cases
(plus one extra caseh10=0.45) are shown in Fig. 8, where the
first five spectral coefficients|Sk(t)| are plotted by solid lines
(numerical integration of (44)). For the considered cases
when the interfacial boundary is placed in the lower half of
the water column (h10≤h20) the coefficient of quadratic non-
linearity α is positive and the cubic nonlinear coefficientα1
is negative (see (30)).

The quadratic nonlinearity plays the major role when the
layers have different depths (one may compare terms in (29)
takingη=h10). Therefore Fig. 7 (a–d) demonstrate asymmet-
ric deformation of the wave according to the nonlinear cor-
rections to the velocity (Figs. 2a, b) with the formation of one
breaking point (on the front face between the rest level and
the wave trough).

In the case of almost equal thicknesses of the layers
(h10→1/2), the quadratic nonlinear term degenerates, and the
cubic nonlinear term becomes the leading term in the asymp-
totic series (29). It symmetrically decreases the wave ve-

locity for both positive and negative disturbances (Fig. 2c).
The limiting caseh10=0.5 corresponds to a simpler (squared)
dependence of the nonlinear velocity (31). There are two
minima of functiondV0/dx (Figs. 3e, f) due to the symmetry
with respect to the horizontal line, and thus there are two first
breaking points: above and below the rest level (Figs. 7e, f).

The solutions of (45) and (46) are plotted in Fig. 8 with red
crosses and blue circles respectively. Purely cubic nonlinear-
ity excites only odd harmonics (Fig. 8d), while other cases
generate all Fourier modes. It is understood from these plots
that when quadratic nonlinearity is dominant (the interface
is not close to the middle of the water depth), the harmonics
are ordered by the energy transfer (Figs. 8a, b). When the
cubic nonlinear term becomes more important, this order is
destroyed: in Fig. 8c the most energetic (after the fundamen-
tal) mode is number 3, then number 5 follows, and number
2 goes after this. Odd harmonics become more energetic,
while the total energy transferred from the first harmonic is
smaller; even modes are depressed and vanish totally in the
case when the layers have equal depths (Fig. 8d). It follows
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from Fig. 8 that the estimates (45) and (46) give reasonable
results, at least for several low harmonics, when one of the
nonlinear terms (quadratic or cubic) prevails.

6 Conclusions

In this paper the nonlinear interfacial gravity wave transfor-
mation is studied in the Boussinesq assumption, and when
the dispersive effects are neglected. Explicit formulation of
the evolution equation in terms of the Riemann invariants al-
lows us to obtain analytical results characterizing strongly
nonlinear wave steepening, including the spectral evolution.
This dynamics is considered to be the first stage resulting in
wave breaking. Effects showing the action of highly nonlin-
ear corrections of the model are highlighted. It is shown, in
particular, that the breaking points on the wave profile may
shift from the zero-crossing level; wave steepening occurs
differently in the case when the density jump is placed near
the middle of the water column: then the wave deformation
is almost symmetrical and two breaking wave phases exist.
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