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Abstract. The concept of targeted observations was imple-stretches up to 250 hPa. However, the maximum values can
mented during field experiments such as FASTEX, NORPEXbe found at approximately 700 hPa in both sensitivity fields.
or WSRP in order to cope with some predictability problems. The studied case shows that the efficiency of observations
The techniques of targeting used at that moment (adjointdepends not only on the sensitivity but also on the deviations
based or ensemble transform methods) lead to quite disagetween the observations and the background field. An ex-
pointing results: the efficiency of the additional observa- ample of the use of this diagnosis for comparing the relative
tions deployed over sensitive areas did not turn out to remairefficiency of different kinds of observations is also presented.
consistent from one case to another. The influence of tarThis work points out that it is very complicated to optimize
geted observations on the forecasts could sometimes consittie efficiency of adaptive observations, and that the assimi-
of strong improvements, or sometimes strong degradationdation of an entire set of observations (both conventional and
It turns out that the latter failure explains why the concept of adaptive network) needs to be considered.
optimal sampling arose. The efficiency of adaptive sampling
appears to depend on the assimilation scheme that deals with
the observations. It is then very useful to integrate the na-;
ture of the assimilation algorithm, as well as the deployment
of the conventional network of observations (redundancy iS'Despite numerous advances in the domain of numeri-
sues between targeted and conventional network) in the defca| weather forecasting (improvement in data assimilation
inition of the sensitive pattern to be sampled. Therefore, weschemes and improvement in numerical models) during the
chose the tool of the SenSitiVity to observations to allow USpast few years, the forecast of some meteoro|ogica| events
to test such an approach. The sensitivity to targeted observatike rapid cyclogenesis) remains a difficult problem. Since
tions (that utilizes the adjoint of the linearized NWP model these meteorological situations have often tragic socioeco-
and the adjoint of the assimilation operator) seems to be &omic consequences, itis crucial to produce an accurate fore-
suitable tool to obtain an insight into the tricky issue of the cast of such events. These forecast errors partly result from
optimization of the sampling strategies. inaccuracies in the initial conditions. These inaccuracies are
To understand better the intrinsic patterns and the influ-a consequence either of the errors in the observations and
ence of the 3D-Var assimilation scheme on the sensitivein the background field, or of the inhomogeneous observa-
structures to be sampled, we present here some detailed réien network, or of approximations made in the assimilation
sults on a FASTEX targeting case. We focus on the drop-scheme used for interpolating observations and for producing
sondes deployed by the Gulfstream IV (jet-aircraft) along itsinitial conditions.
first flight during Intense Observing Period 17 that started on In order to try to improve the forecasting of such events,
the 17 February 1997. The sensitivity to observation is usech new observational strategy has been proposed. The pur-
as a diagnostic tool for studing targeting from a critical point pose was to add so-called adaptive or targeted observations
of view. It is shown that assimilation processes can have ano the conventional observing network in order to control
important effect on the classical sensitivity fields, and par-the growth of forecast errors (Emanuel et al., 1995; Snyder,
ticularly on their vertical extension. For example, in the 1996). This observational network is adaptive in the sense
studied case, the classical sensitivity fields remain at a lowethat the location of these measurements varies from day-to-
level than 400 hPa, whereas the sensitivity to observationsiay (in opposition to the quasi-permanent conventional net-
work of observations). This strategy was tested during recent
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(Langland et al., 1999), and WSRP (Szunyogh et al., 2000)and letM be the linear approximation (or “tangent linear
The results from these field experiments show that the in-model”) of the weather forecast modéH#. Following the
clusion of targeted data can significantly improve the fore-first order expansion of, and following the definition of the
cast in some cases. However, a large case to case variabiligdjoint modelM7, the sensitivity with respect to initial con-
exists, and it seems that the efficiency of targeted observaditions, VS, is given by (see Rabier et al. (1996) or Errico
tions depends on numerous parameters (Bergot, 1999). On@997) for more details)
of the most important parameters is the assimilation scheme T
used for producing initial conditions. In fact, targeted ob- VxS =M 95/0x(t). @)
servations have to go through the assimilation scheme, t0rrom the assimilation point of view, the initial conditions,
gether with conventional data, to produce initial conditions,ma(t0)1 are related to the background field, (¢,), and to
and their efficiency is strongly related to the accuracy of suchihe opservationsy(to), by (see Ghil and Malanotte-Rizzoli
data assimilation processes (Bergot, 2001; Bishop etal., 20085 991) or Lorenc et al. (1986) for more details)
Morss, 1999).

Sampling strategies, as tested during FASTEX, NORPEXz, (t9) = x}(to) + K [y(to) = H(wb(to))} (2)
or WSRP, do not appear to be optimal in the sense that there
is no explicit care about redundancy (between targeted andvhere’ is the so-called observation operator which inter-
conventional observations) and that the number, the nature@olates from model variables to observation poildsstands
and the deployment of those adaptive observations do nofor the assimilation gain operator which combines the back-
guaranty a maximum improvement on the subsequent foreground error covariance matrR, the observation error co-
casts at the lowest cost. Further progress in targeting shouldgariance matrixi, and the linearized observation operator
consider such issues. Moreover, the effectiveness of the sanH:
pling of the sensitive area appears to depend on the assimilg; 1 T —lers —le1T o —1
tion scheme (Bergot, 2001). Therefore, it seems essential %< =BT +H RTH)"H R (3)
include the effects of the assimilation processes in the wayFrom a practical point of view, it should be noted that inverse
adaptive observations are defined (number, observed parammatrix (B~ + H'R~'H)~! = A represents the so-called
eter, deployment). In this way, Baker and Daley (2000) haveanalysis error covariance matrix that depends on time
explored, in an idealized context, a new approach caé#d  the context of adaptive observations, one generally considers
sitivity with respect to observationisereafter called sensitiv-  the observational network to be composed of conventional
ities to observations. These sensitivities to observations argpservations (noted with a subscrifin the following equa-
defined in observation space, and point out the observationgons), and of a targeted component (noted with a subscript
in which a given forecast aspect is sensitive. This tool makesn the following equations). If errors in targeted observations
it possible to highlight the effect of the assimilation scheme are uncorrelated with errors in the conventional observations,
on adjoint-based sensitivity patterns. One of the advantageghe observation error covariance matii, corresponding to

of sensitivity to observations is that it takes into account thethe whole network (noted with subscrigtin the following
existing conventional observations, as well as the way thesquations) can be written as

targeted and conventional observations are assimilated.

The goal of this article is to illustrate the added value of R , — [Rc 0 } ] (4)
sensitivity to observations with respect to classical sensitivity 0 Ry
fields for real FASTEX targeted flights, and to explore the | jkewise, the observation operator should be detailed ac-
potential use of sensitivity to observations in the context of cording to the conventional and targeted observation systems,
adaptive observations. andH,; can be writter{H_.H;]; it corresponds to a specific
ordering of observed data according to type. Following this
idea, one may write the sensitivity to conventional obser-
vations, V.S, and the sensitivity to targeted observations,
Vi8S, as

2 Sensitivity to observations: principle

The general theoretical principles of the sensitivity to obser-
vations are recalled here, and a more detailed formalism caT vycg] _KTU.§— [(AdeRcl)T
be found in Baker and Daley (2000) or Doerenbecher and| v,,,5 | — "¢t " *" — (AHIRHT
Bergot (2001, currently in progress). The sensitivity to ob- R-'H.A V.S
. . . s . e L . ctict Vx

servations will be applied within a variational assimilation = |:RC_1H ALY S}
context, and the notations are following Ide et al. (1997). e VX

Let z,(¢) be the state vector, defined at timyend called whereA ., is the analysis covariance error defined for both
analysis. It is the output from the assimilation process whichthe conventional and the targeted networks; it is worth re-
summarizes the information from all observatiogpé;), and  calling here thatA, as well asB, andR, are self-adjoint
from the background fieldg,(t). Lett, be the initializa- (AT = A andR~7 = R™!), so the superscript does
tion time, and; be the final (or “verification”) time at which  not necessarily appear, such as in the right-hand side terms
a forecast aspect|z(t1)] = S[Muz,(to)] is computed, of Eq.(5). In those equations, the step that corresponds to

| v.s

®)
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the calculation of the classical sensitivity to initial conditions 3.2 Application to FASTEX IOP17
clearly appears. The effect of the assimilation scheme and of
the conventional observations simultaneous to the adaptiv8.2.1 Meteorological context and data set
ones is mainly contained iA ;. It is the keystone of this
sensitivity approach. The FASTEX IOP17 (Intensive Observing Period) case was
Most of the current assimilation schemes are based on thgn_example of explos_lve cyclogenesis, W'th a strong deep-
ening rate of 40 hPa in 24 hours, and with the lowest cen-

variational method in which the analysis state is defined as

the minimum of a cost function. This means that the analysistral pressure (943 hPa at 00:00 UTC on the 20 February 1997)

error covariance matriA is not computed during the mini- ever observed during FASTEX. A synoptic description of

mization. Nevertheless, such information is required for thethIS IOP is given in Cammas et al. (1999). ) )
calculation of the sensitivity to observations. In fact, we do A NOAA Gulfstream IV (hereafter GIV) flight mainly had

not need to know the actual matrix of the variance-covariance?® targeting goal in the earlier stage of th_e development of the
of the analysis errors. What is needed is a projection of thiCY¢lone (take off at 15:00 UTC and landing at 20:00 UTC on
matrix along the sensitivity to initial conditiors,.S. The  the 17 February 1997). Twenty dropsondes were deployed
3D-Var assimilation scheme does not give any information(S€€ Fig. 1) inside the target area defined from the sensitivity
about A, however, several methods exist for obtaining an fi€lds which were operationally computed by botfésb-
estimate of it (Fisher and Courtier, 1995). Following this France and the Naval Research Laboratory. In the first part

work, Doerenbecher and Bergot (2001, currently in progressf)f the flight (northern and eastern legs of the flight), the son-

showed how to obtain an accurate estimate of this matrix ind€S Were released below 350 hPa, while along the southern

the unstable direction of the sensitivity in an operational 3D- 9Nt track, the dropsondes were launched from above the

Var context. This method is applied here in the French op-f0Popause, near 150 hPa.

erational weather forecast ARPEGE model (Courtier et al., o
1991). 3.2.2 Sensitivity fields

In a first step, the classical sensitivity to initial conditions is
computed as during FASTEX: the forecast aspgds the
enstrophy of the forecast(¢;), vertically integrated be-

3 Application to FASTEX cases tween 950 and 790 hPa, and horizontally averaged over a ver-
ification area centered on the studied low(6B-45" S and
31 FASTEX framework 15° W=0° W). Using the French NWP ARPEGE model, the

sensitivity is then computed with respect to the control vari-

ables, namely temperature, humidity, divergence, and vortic-
A systematic survey of FASTEX targeted flights with 3D- ity The assimilation scheme used is 3D-Var. The targeting
Var and 4D-Var assimilation systems (Bergot, 1999, 2001)time ¢, (17 February 1997 at 18Z) corresponds to the anal-
demonstrated that the improvement of the forecasts igsisz, (%), to the first guess:(to) and to the observations
strongly case to case dependent. Moreover, these two studigg,, . The forecasted trajectory is performed over 42 hours, so
and other studies based on simulated observations (Bel’got ﬁﬁat the Verifying t|m&1 Corresponds to the 19 February at
al., 1999; Bishop et al., 2001; Morss, 1999) described some 2:00 UTC. This range defines the optimization time for the
difficulties in sampling and analyzing sensitive areas. In thisc|assical gradient to initial conditiorg,.S.
sense, the sampling strategies of sensitive areas, as testedrhe computation of the sensitivity field is similar to what
during FASTEX, do not appear to be optimal. Here, “0p- yas done during FASTEX. However, it should be noted that
timal” means that the deployment of adaptive observationsne sensitivity calculations are based on the trajectory issued
has to ensure a maximum improvement of the forecast with grom the analyzed initial conditions at targeting titge This
minimum number of suitable dropsondes. Such observationgs 5 major difference between the diagnostic context used
consist of temperature, and wind and humidity measureere and the operational one, in which the trajectory was nec-
ments. FASTEX provides the first opportunity for examining essarily computed from some forecast initiated well before
the impact of targeted observations in an operational conteéxhe targeting time. However, for the studied case, the use
and numerous targeted observations are available (see FASf either a diagnostic or an operational based trajectory does
TEX home page: http://www.cnrm.meteo fr/fastex/). The pot lead to many differences inside the location of sensitive
data collected during this campaign can be useful for bet-4,eas.
ter understanding a posteriori why targeting implemented at g gjassical sensitivity to initial conditions,, S, is com-

that time did not produce the expected strong impact. puted as detailed above, and is compared to the sensitivity to
The sensitivity to observations is used here in a purely di-targeted observation§],;S. This comparison allows us to
agnostic mode (i.e. once the observations have been madd)etter understand the influence of the assimilation processes
As shown hereafter, this approach can provide a powerfubn the sensitivity fields. Figures 2a, 3a, and 4a show the sen-
tool to obtain an insight on how targeted observations will sitivity to initial conditions projected onto the targeted obser-
influence forecast quality. vation spaceH; VS, for theT, U andV observed param-
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Fig. 1. Gulfstream IV flight for
the IOP17, 15:00 UTC-20:00UTC on
17 February 1997. Black dots indicate
the dropsonde positions. The solid ar-
row indicates the direction of the flight
and the star indicates the location of the
takeoff and landing at St-Johns, New-
foundland. The classical sensitivity
field to initial conditions of temperature
at 700 hPa, as defined during FASTEX,
60°W 50w 40°W is plotted as a background.

30°W

eters. These sensitivity fields are plotted as cross-sectionscal structure functions (vertical correlations) used in the as-
along the flight: the vertical axis represents the pressure levedimilation (see Appendix A). The same remark can be made
of the measurement, and the dropsonde locations are plotwhen the classical sensitivity to initial condition (Fig. 4a) is
ted in the horizontal axis, according to their distance. It iscompared to the sensitivity with respect to thevind obser-
worth recalling thatH, VS and V.S are defined in the vations (Fig. 4b). In the first case, the maximum sensitivity
observation space and that sensitivity values are computetemains at a level lower than 650 hPa. Although strongest
at observation points. This implies some difficulties for a sensitivities are found at lower levels, when b&th.S and
suitable graphical representation. In the following figures, VS are examined, significant values o%,;.S can appear
values on observation space were interpolated in order taip to 350 hPa, due to the vertical spreadingy/gfS.

be able to draw a set of isolines. This graphical choice al- - Ag shown in Tiépaut et al. (1996), structure functions can
lows one to clearly depict the patterns of sensitivity. One canggjly pe jllustrated by single observation assimilation exper-
notice strong sensitivity to initial conditions in the northern ;o nis. Therefore, such an experiment has been performed
and eastern part of the flight, for both temperature and windyq, jjystrate the former point using a single wind observation
The maximum of sensitivity is located at a low level, around 4t g0 hpa. In this specific case, the increment represents the
700hPa, for the dropsonde #5 in the case of temperature, angrctyre function associated with the simulated observed pa-
for the dropsonde #6 in the case of #iewind andV-wind. rameter. The structure function can be associated with a col-

Figures 2b, 3b, and 4b show the sensitivity with respect toumn of the matrixA. It describes the covariances between

observations¥,, S, for temperaturel/-wind and V-wind. a given mo_del parameter (or the closest to Fhe observed pa-
As previously explained, these sensitivity fields are p|ottedrameter) with all other parameters. Such a single observation

as cross-sections along the flight. BafS andVy, S ex- experiment allows one to obtain an insight intsli@e of A.

hibit high values in the northern part of the flight. The max- The corresponding final increment, plotted in Fig.5, ex-
imum sensitivity to observations for temperature is alwayshibits a classical barotropic structure, keeping in mind that
located at the dropsonde #5 near 700 hPa. The assimilatiothe 3D-Var assimilation scheme is used here. Moreover, one
processes have a weak effect on the location of these strongan notice the strong vertical correlation between the wind
sensitivities. A comparison of Fig. 2a and Fig. 2b shows thatat the observed level and the surrounding wind field: for one
the major difference between the patterns of sensitivity toobservation located at 600 hPa, the depth over which the in-
initial conditions and sensitivity to observations is their ver- crement is higher than half of the increment at 600 hPa is at
tical extension. Whilév,.S remains mostly confined in the about 650 hPa. For the FASTEX case detailed in this sec-
lowest levels of the atmosphere (below 500 hR&);S ex- tion, the inclusion of the assimilation processes in the sensi-
tends throughout the whole atmosphere. This is also cleativity approach leads to some significant changes in the sen-
for U-wind (Fig. 3a and Fig. 3b). This increase in the vertical sitivity patterns. If the classical sensitivity is confined below
extension of the sensitivity field is a consequence of the ver500 hPa (the highest significant sensitivity maximum is lo-
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cated at 600 hPa in the northern part of the flight), the sensi{a)
tivity to targeted observations exhibits a strong extremum at Sensitivity to Initial Conditions — Temperature
600 hPa, but also local extrema at levels as high as 300 hPa.
The latter clearly appears for the dropsonde #15 for all pa- 2097
rameters, especially temperature. This vertical stretching of 4oL
sensitivity is interpreted as the effect of the structure func-
tions described in operata.; (see the Appendix A for more
details).

These results suggest that the assimilation scheme cal
have a strong influence on the structure of the sensitivity
fields, and particularly on the vertical extension of the sen-
sitive area. 800F
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3.2.3 Impact of targeted observations Soor

1000
The actual impact of targeted observations depends not only 1100l ‘ ‘ ‘ ‘ ‘ ‘ ‘
on the sensitivity fieldsVy. S, but also on the amplitude of 0 %00 1000 A e 2%00 3000 3500
the innovation vectory; — H:[xy(to)]. For example, if the
observed value is similar to the background value, then thdP)
impact will be small, even if the observation is located in- 1007
side an area of strong sensitivity. To study this point, we
focus here on the so-called impact function which is directly
derived from the definition of sensitivity, as in Rabier et al. 300
(1996). In our particular case, the perturbation is defined as  4q0!
the innovation vectory, — H;[x;(to)], and the linear esti-
mate of the variation of the forecast aspgds given by

Sensitivity to Observations — Temperature

2001

500

6001

pressure (hPa)

55, = (VyoS)T [y ~H, (mb(to))} 6) 700¢

8001

where subscripté” denotes a given type of observation.
With such a computation based on the linear hypothesis, we o0}
directly obtain an estimate of the influence of a given kind
of observation on the forecast aspéctThis impact depicts
the actual influence of each observation, or group of obser- 1100—; 500 1000 1500 2000 2500 3000 3500
vations, on the analysis and the subsequent forecast, as soon distance (km)
as they become part of the whole observational network.

Using the same graphical conventions as in Fig. 2, Fig. 6Fig. 2. GIV flight for IOP17. Sensitivity with respect to initial con-
shows the contribution from each temperature observatiorflitions, projected onto the temperature observation sgacand
(Fig. 6a), and from each wind (combinédand V' compo- sensitivity with respect to the observations of temperaoyeThe

nents) observation (Fig.6b). The respective contributionsvertical axis represents the pressure level of the measurement and

from each wind component to the impact function are givethe dropsonde locations are plotted in the horizontal axis accord-

A . N . ing to their distance from flight departure point (St-Johns, New-
in Figs. 7a and 7b, respectively. This impact combines the‘Toundland). The crosses represent the location of the temperature

signs of the innovation and of the sensitivities to targetedyeasyrements, and the vertical dotted lines represent the changes
observations. It points out small structures that contributejn girection during the flight.

sometime in an opposite manner, even for nearby measure-

ments, to the variatiodS. In spite of some organized

tilted structures that could be detected in the innovation (not

shown), their combination with the sensitivity to the observa- Due to of the practical implementation of targeting which
tions produces small-scale patterns, especially in the southis achieved by means of dropsondes, it seems quite natural
ern part of the flight. In the northern part, we detect a tiltedto gather this impact information from each dropsonde by
structure. This is particularly noticeable for the temperatureintegrating the contributions of each temperature and wind
in Fig. 6a with a quite uniform field below it and strong con- measurement. It then appears that some contributions will
tributions above it, but within a thin layer. Such opposite compensate each other. Therefore, a given dropsonde will
local contributions which can be found on the vertical of a not necessarily have an overall strong contribution if one of
given dropsounding may cancel out when the total contribu-its single measurements has a strong impact.

tion of that dropsounding to the impact function is consid- It is then possible to separate the contributions from tar-
ered. geted dropsonde data and from conventional RAOBS data or

1000+
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Fig. 3. Same as in Fig. 2, but for the observationg/afvind. Fig. 4. Same as in Fig. 2, but for the observationd/eivind.

satellite data (SATOB in this study), and to compare their "
relative efficiency and influence on the forecast asptct
Unfortunately, the innovation vectoy(t) — H[xs(t0)], and

therefore the impact function,s, can only be known once )
the observations are made. However, the comparison be®
tween the sensitivity and the impact can tell us whether the-

influence from observations is a consequence of either strong

ure

1000

errors in the initial conditions, i.e. large differences between 1000+
y(t) and the background(to) combined with weak sensi- LON

tivities, or strong sensitivities desplte a weak innovation. 40.0 N

Figure 8a and Fig. 8b show the extremum of the impactFig. 5. Vertical correlation for assimilation of a single wind obser-
function for each dropsounding, in terms of temperature andsation at 600 hPa. The bold line corresponds to half of the maxi-
wind, respectively. Strong impacts are always present in thenum value of the wind increments.
northern part of the flight, for both temperature and wind.

These strong impacts correspond to a strong sensitivity to

initial conditions and to observations, as previously shownthe impacts for temperature, for a given dropsounding. The
(see Figs.2 to 4). For the studied case, one can also nextremum generally have opposite signs: a decrease of the
tice that the impacts for wind are generally stronger thanforecast aspecf for wind is associated with an increase
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Fig. 6. Same graphical principle as in Fig. 2, but for the contribu- Fig. 7. Same graphical principle as in Fig. 2, but for the contribu-
tions §.5; of each targeted temperature observaf@myand of each  tions 6.5; of eachU component of wind targeted observatiq@a3
targeted couple of wind observatiofis. and of each targetetf component of wind targeted observations

(b).

in S for temperature. Figure 8b also shows that the impact

function exhibits strong extrema in the southeastern part ofions of dropsonde numbers 2, 4 and 10 come from the conju-

the flight. Dropsonde #10 does not correspond to any maxgate effect of boti/-wind andV-wind based contributions.

imum of sensitivity to initial conditions, but sensitivity val- In the case of the dropsonde #17, it is essentially-&ind

ues remain high, especially at low levels (800-750 hPa) (se®ased contribution; the sensitivity i6-wind is quite low in

Figs.2 to 4). The examination of the sensitivity to obser- this area. As far as temperature is concerned, this parameter

vations clearly suggests that théwind component plays plays arole only in the northeastern part of the flight.

a major role. For dropsonde #10 (Fig.4b), a maximum of The strong impact of dropsonde #4 for wind, and drop-

sensitivity is found at 750 hPa. This maximum 6.5 is sonde #8 for temperature are a consequence of strong dis-

embedded in an area with significant negative values of increpancies between the observations and the background

novation,y; — H.[xs(to)] (not shown), which produces the field. With the sensitivity to observations being moderately

strongest/-wind contribution ta).S (Fig. 7b). high (relative to its maximum which is located at another ob-
When focusing on the whole flight and considering all ob- servation point), the innovation is responsible for those fairly

served parameters, it appears that most of the strong corfieavy contributions té5.

tributions originate from wind measurements, i.e. the case Since we have a good confidence in the targeted obser-

for dropsonde numbers 2, 4, 10 and 17. The strong contribuvations, those discrepancies can be interpreted as errors in
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the background field. Moreover, it is helpful to recall here of the forecast) is valid only due to the presence in the analy-
that the sensitivity never indicates where initial errors are lo-sis of all the other observations: the actual contribution of the
cated, and that the size of the errors should also be taken intsubset to the impact will not be equal to the impact obtained
account. However, it seems that for the studied cases, stroni§only this subset were used in the assimilation.
sensitivity is associated with a strong impact (but strong im-
pact is not always associated with strong sensitivity).

The modification of the forecast aspe6t,due to the in- 4 Conclusions
clusion of targeted observations is the vertical summation of
elementary impacts from each measurement at each level.he recent concept of adaptive observations has been tested
To study the efficiency of targeted observations, these sumduring the FASTEX field experiment carried out in January-
mations are plotted in Fig.8c and Fig.8d for temperatureFebruary 1997. The goal of this concept is to add targeted ob-
and wind (both/ and V-wind), respectively. For the stud- Servations inside sensitive areas in order to locally improve
ied case, the efficiency of targeted observations is clearlyfhe initial conditions, and therefore the subsequent forecast.
stronger for wind than for temperature. The wind and tem-Different works have shown that the efficiency of targeted
perature impacts have often opposite effects. Figure 9 showgbservations depends on numerous parameters, and particu-
the efficiency of each dropsounding for all measurements andgrly on the assimilation scheme used. In this way, it seems
all levels. There is a strong correlation between Fig. 9 andessential to include the assimilation processes in the defini-
Fig. 8d. This shows, for the selected case, the predominanciéon of adaptive observations.
of wind over temperature measurements in the efficiency of Following the preliminary work of Baker and Daley
targeted observations. One can also notice that dropsound2000), the concept of sensitivity to observations has
ings can have opposite effects: for example, the northerrbeen implemented in the French operational NWP model
part of the flight leads to a decreaseSnwhile the south- ARPEGE. The sensitivity to observations is defined in the
western part of the flight leads to an increase in it. Evenobservation space, and points out the observations to which
nearby observations can have strong opposite effects. Thig given forecast aspect is sensitive. In this study, this new
example illustrates that it is very complicated to study andtool is used in a diagnostic way (i.e. once the observations
to optimize the efficiency of targeted observations. More-are made) for assessing the efficiency of FASTEX targeted
over, it has been shown by Bergot (2001) that the influenceobservations for IOP17.
of targeted flights on the forecasts is characterized by a large The results demonstrate that the assimilation scheme has
spread among cases: strong impacts as well as quite undé-strong influence on the vertical structure of the sensitiv-
tectable impacts were identified. In the latter case (weakity fields, with a significant increase in their vertical exten-
impact), this characteristic of the flight does not mean thatsion. This tool is also utilized for comparing the efficiency
an observation by observation examination would depict anyof different observations, with the calculation of the so-called
weak contribution for each observation. We can notice somd@mpact function. This impact function represents the modi-
strong opposite contributions to the variation of the impact.fication of the forecast asped, due to given observations,
In such cases, the effect of the flight itself will be small, as under the linear hypothesis. For the studied case, strong sen-
all the contributions of measurements are summed up. sitivity is generally associated with strong impact. Never-

Another advantage of the sensitivity to observations assotheless, the contrary is wrong, and strong impact does not
ciated with the calculation of the impact is that it can be usedalways correspond to strong sensitivity.
for comparing the relative efficiency of different kinds of ob-  For this targeted flight, the efficiency of adaptive obser-
servations. Figure 10 shows an example for the FASTEXvations is clearly a consequence of the GPS wind measure-
IOP17 case. The targeted observations, plotted as TEMmPnents from dropsondes, and the temperature measurements
messages, have the strongest impact, despite their low nunftave a weaker effect (about a fifth of the first for the consid-
ber (20 dropsondes). This impact is similar to the one fromereds.S). Even nearby observations can have opposite effects
the entire set of conventional observations. This kind of diag-on the final variation of the forcast aspettIf the gathered
noses allows one to say that the targeted flight for FASTEXcontributions of all the observations of a targeted flight re-
IOP17 is relatively efficient (weak number of dropsondes, yetsult in a weak contribution to the variation &, it does not
strong impact). Similar results have been obtained by Bergotmply that each observation or group of observations have
(2001) and Langland et al. (1999). Figure 10 also demon-also a weak contribution on itself. This studied case clearly
strates that different kinds of observations can have oppositshows that it will be very complicated to optimize a priori
effects on the forecast aspett For example, the PILOT ob- (i.e. before the observations are done) the efficiency of tar-
servations (measurement of wind) have an effect, in absolutgeted observations.
value, similar to the SYNOP observations (surface measure- This work advocates the use of sensitivity to observations
ments), but with an opposite sign. Therefore, the PILOT +in order to study the efficiency of observations in an a
SYNOP observations have no impact on the forecast aspecposteriori context (i.e. once the observations are made).
despite relatively large individual contributions. It must be An important question now is to investigate the potential
emphasized that the contribution to the impact of a given subof this tool in a prognostic mode in order to try to opti-
set of observations (used for computing the initial conditionsmize the efficiency of targeted observations. What will
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be the most efficient sampling of a sensitive area, givenvalues of the innovation. This clearly implies that not only
the assimilation scheme used, and given the conventionahe sensitivity field should be taken into account, but also
observation network? There are two major problems forthe estimated innovation at the observation location. This
answering such a question. The first problem is related to thgoint will be studied in a future work. The second problem
unknown size of the innovation vector (difference betweenis related to the definition of an optimal sampling of the
the background field and the observations). This worksensitive area. The optimization of a flight plan will be a
has shown that observations located in a strong sensitivitcomplicated problem: one wants to find the maix that
area have a strong impact. However, observations camaximizesVy.S. A suboptimal solution is to find the opti-
have a significant impact, even if they are not located at armal location of targeted observations in a sequential manner.
extremum of the sensitivity, but embedded in significant In this case, one identifies the best location for one targeted
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Appendix A  Effect of the covariances

Al Formalism

I % The goal of this appendix is to show the relationship between
o the vertical extension of the sensitivity to observations and
-

o)
o

the vertical extent of the error covariances of the background

field. We chose to illustrate this point with a few low dimen-

sional examples. But first, it is necessary to clarify a few
, O o notations (see also Baker and Daley, 2000).

latitude

o Al.1 Mathematical notations

N
©

Prior to any result, we remain the readers of the principle of
KT that is used in the computation of the sensitivity to the
observations, and which performs a change from model to

—55 —50 —45 —40 observation space.

|Ong|tUde Observation Initial Conditions
Space Model Space
Fig. 9. GIV flight for IOP17. Same as in Fig. 8 for the total impact
per dropsonde. K
Yy Tq
AHTR-!
1)(107{7 : Y/uZ1/18 : .
VyS K VxS
R-'HA

0.5F -

Moreover, it is worth recalling thaA can be calculated fol-
lowing two equivalent formulae:

ol — i
- A= (B_l - HTR_lH)_l (A1)
=B - BH”(R + HBH”)'HB.
Let us consider the state vecteof the model we choose to

impact

work with. Letm be its dimensionz can be written as:

:v:[xl xg...xi...xm}T. (A2)

‘ ‘ ‘ ‘ ‘ ‘ From a similar point of view, let us consider the observation
SYNOP AIREP SATOB DRIBU TEMP PILOT . . . . .
observation type vectory with dimensiom. Practically, with the NWP model,

: : I n is smaller thann:
Fig. 10. GIV flight for IOP17. Modification of the forecast aspect

S for different kinds of ot_)ser\_/ations: SYNOP (surface measure-q — [y1 Yo oo Ui e yn]T. (A3)
ments), AIREP (commercial aircrafts data), SATOB (satellite data),
DRIBU (buoy data), TEMP (targeted dropsondes) and PILOT (alti- A andB are bothm x m symmetric matricesR isan x n
tude wind data). The studied data are in a window of 110W/0 andmatrix which we assure to be diagonal. This hypothesis is
20N/70N. quite a strong one: the measurement errors are supposed to
be uncorrelated between each other, even if the same drop-
observation at a time (the problem becomes in this way asonde is used to perform them. This hypothesis is no longer
scalar optimization problem). Once this location has beenvalid for satellite observations because errors in observations
found, one identifies the best location for the next targetedperformed by a given satellite are well-known to be corre-
observation, given that all previous targeted observationdated. Moreover, this assumption of independence between
have been taken into account. This method is very efficientpbservation errors is particularly true between distinct obser-
but is only a suboptimal method. This new tool should bevation types or platforms. However, we allow the variances
tested under real conditions, for example, during the prelim-of observation errors to vary according to the location and
inary phase of the future THORPEX field experiment (The the type of observation. This agrees with the reality: the
Hemispheric Observing system Research and Predictabilsame dropsonde is considered to provide less accurate mea-
ity EXperiment; http://box.mmm.ucar.edu/uswrp/field- surements (higher variances of the errors) at the top and bot-
projects/fieldprojects.html). tom of the atmosphere than at mid-levels. In other words,
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and as it is done in the operational assimilation scheme, thassume that the interpolation scheme is very simple:
observations errors are uncorrelated & kept diagonal.

Leta,;; andb;; be the components corresponding todfte H=1[0...010...0].
column and thg*” line of A andB, respectively.o{ is the T (A6)
k" element of the diagonal @&. t

This means that the information contained in the observa-
tion is only transfered to the grid-point Using the second
rmulation of A (Eg. Al), this configuration of observations
ads to the following expression for the componenfof

Al1.2 The simplified context

To give a more meteorological meaning to the cases studie{jg
here, we will perform some numerical calculations within a
simplified context. The different components or parameters, bji - bix

x; of the model state vectar, correspond to the different [@jk] = {bj - o°+b} : (A7)
levels (n levels) of the atmosphere. Practically, we take ' "

to be50. In our experiments, we test different formulations
of the operators that are used in Eg. (A1.1) to show the ef'A3.1 Forward case: analysis of this single observation
fect of the structure functions depicted By in the sensi-

tivity computations from different points of view. Two dif- | ot 4 be the innovation vector, i.ed = (y — Ha,). The
ferent kinds of variance and covariance descriptions for theanalyzed field is given by, = =, + AHTR~'d. Given the
errors of background and observations are used. The firsgy . 1ation ofH, d simplifies to its single componentt —
one depicts a simplified situation in which the covariancesdi — yi—[)., and the assimilation of this single observation

of the bat_:kgroun_d errors are parameterized by a decreasing s to the following analysis increments, — x, — x3):
exponential function of the distance between the model lev-
els. The range of the decrease of the covariances as well bii - b \ d
as the variance of the background errors remains constan$Z. = (bm - ) 5
. g, + b” g,
and equal to one at all levels. The variances of the obser- ’ A k=1,m
vation errors are equal tb. This configuration is named d
“flat” hereafter. In the second one, called a “curved” con- e b--bik (A8)
figuration, we consider a slightly more complicated matrix i " k=1,m

B. The covariances follow an exponential function as before, Considering thatl/o® + b;; is a normalization factori(is
but the variances of the background errors vary according todefined as t%e obser:/atior? osition), 6z, appears to be
the level, following a quadratic formulation (the variance is thei* column of B (i.e. [b; ]p ) wéi h?edplfyd/(ao n
greater near the ground and aloft than at mid-levels). bis) = Viklk=1,m/» 9 i

The single observation is simulated at the thirtieth level
with a measurement that makes the innovation be equal to

This case does not need to be illustrated with numerical reNalf of the standard deviation of the observation erebr=

sults. We will only use a mathematical formalism. Let us @ /2- Figure Al shows the analysis increment (bold line) for

consider that each model grid point is an observation pointP0th @ “flat” formulation (a) and a “curved” formulation (b).
For the values of the statistics used in this experiment, we

In this particular case, let us consider that the interpolationf, h ) , . .
scheme is the identitye — 7). Using the fact thatA andR ind the maximum increment to kg4, as it can be estimated

are self-adjoint, we have the following property: from the Eq. (AB) withk = 30, 0° = by = 1 andd =
1/2. As explained in the main part of the paper in this single

K=A-H R 1=A.R! (A4) observation context, the analysis increment (bold curve in
K- RT.A—AR!—K. (A5) F|g..A.1 rgpresents the structure function associated with the
assimilation scheme used.

A2 Identical model and observation space

It can be noted that the fact thRt is a diagonal matrix im-
plies that it can permuted witA..

T .
h K andK cforregpond to th'e sgme ﬁpera}torhthe.gﬁegt OIfNow let us focus on the adjoint problem of the assimilation
the structure functions contained in them is then identical, ¢ single observation. First of all, we recall hereafter the

and the effect oK on the innovation (in the forward analysis formula that gives the sensitivity of a forecast aspt the
process) is the same as the effeckof on the computation observations:
of the sensitivity to observations. '

A3.2 Sensitivity to a single observation

VyS =R THAV,S (A9)
A3 Single observation case without interpolation

whereV, S is the sensitivity of5 to the initial conditions of
Now let us consider a single observation measurement whictthe forecast (namely,,). Let [gx] be thek!” component of
is performed at the location of a model grid-painFirst, we V.S = [Qk]k:Lm- For a single observation experiment, the
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() Eventually, we can isolate the scaling factgfo? + b;;) to

Analysis increment and structure function P,
: write:

1 m
= — bri.gr. Al2
vyzS Uf+bii ; ki-Gk ( )

This last Eq. (A12) shows that the sensitivity to a single ob-
o H servation is not only influenced by what happens at pgint

but also by all the neighbouring grid-points, according to the
structure functior{b;|,_, ,,,- Now, let us imagine a sensi-
tivity to initial conditions, V.S, with a significant extremum
with respect to a single grid-point. This means that the stud-
ied forecast aspect is highly sensitive to what is present in
the analysis state vectat,,, at a single levek, the sensitiv-
ity to the other level being quite negligible. The sensitivity
to initial conditions can then be written:

. . 1 . . )
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Amplitude of the analysis increment VxS _ [O 0 9 0... 0} T ) (A13)
(b) Analysis increment and structure function In this case, the sensitivity df to the Slngle observation is
given by:
v, § = kg (A14)
Yi O',? + b“

If we test different locations for this single observation, i.e.
o * if we performm separate experiments corresponding to the
observation located on one of thelevels of the model (the
level of measuremeritwill vary from 1 tom), we can visual-
ize the structure functiofb;],_, ,,,. This is especially true if
the scaling factot /(o + b;;) is uniform, i.e. if the variance
of both observation and background errors are uniform.
To illustrate the statements given above, we perforfited
experiments, thus testing 50 different locations for the mea-
‘ ‘ ‘ ‘ ‘ surement. We chose to place a unit peak of sensitivity to the
0 02 04 08 08 ! 2 14 16 initial conditions at the thirtieth level, i.e. is settiggy = 1

Amplitude of the analysis increment i .
andg; = 0if i # 30 in Eq. (A13).
Fig. AL. Increment of assimilation for the “flat” formulatiofa) Figure A2a depicts the “flat” situation where the variance

and the “curved” formulatior{b). The circle shows the value of of background statistics are constant in the vertical. From
the innovation vectod and location of the single observation inthe this choice arises the fact that the curve depicted by the suc-
column of atmosphere. The bold curve shows the analysis increcessives0 experiments corresponds to half of the structure
ment corresponding to the assimilation of this single observationfynction [bix], (k = 30 here). This effect becomes obvi-
The dotted line on the left shows the covariances of the backgroungq, ;5 \vhen Colr?tigring the stepped curve to the left-hand dotted
observe_d parameter with all the othe_r model paramew_;rsThg one in Fig. A2a, which describes the successive sensitivities
dotted line on the right shows the varianéeson the vertical. Fi- to the varving sinale observation. In Eia. A2b. the variances
nally, the star shows the value &f. . y 9 g . S 9. '

are in the “curved” configuration. In this more general con-

text, we again verify the theoretical result which emphasizes

o o . ) the spreading effect of the structure functions containdgl.in
sensitivity to the observation is a scalarMf,, S depicts this

scalar,

LIPS A4 Single observation case with interpolation
V,5 =tk (A10)

Peri In this subsection, we chose to compare the spreading ef-
which can be rewritten using the Eq. (A7) to replagg and  fects due tdB on the one hand, and due to the interpolation
the fact thaB is symmetric (i.eb;), = by;): scheme contained iH on the other hand. In this case, the

m more complicated operatdl leads to a heavier mathemat-
Z bri-gk ical formalism of little interest. It seems more useful to di-
Pl i rectly show numerical results.
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Fig. A2. Sensitivity to a single observation for the “flat” formula-
tion (a) and the “curved” formulatiorfb). The stepped line shows :
the value of the sensitivity for each location of the observation at : -

the corresponding level. The bold solid curve shows the peak of o ) ]
sensitivity to the initial conditions which is the same for all the ex- Fi9- A4. Model space gridpoints and corresponding observations
periments. The dotted line on the left shows the covariances of thdor the first simple experiment configuration.

background observed parameter with all the other model parame-

tersb;;. The dotted line on the right shows the variantgn the )

vertical. Finally, the stars show the different values8falong the ~ AS  Several types of observation

50 experiments.

In this subsection, we shall give consideration to the ability
of the covariances of the background errors to spread sen-
sitivity to initial conditions from one atmospheric region to
the neighbouring ones. For this purpose, we will consider
We implemented a linear interpolation scheme that useghat the model domain is divided intb regions. Taking
p = 2 surrounding levels. Five contiguous levels are in- into account the non-spreading property of the interpolation
volved in the interpolation2 levels above? below and the =~ schemeH can be written as:
level of observation. These results are plotted in Fig. A3.
Comparing Figs. A2b and A3, it appears that the interpola-
tion scheme has quite a negligible influence. The reason for
this is that the range of the interpolation scheme is by fargy _ (A15)
much less than the range inherent in the background covari- oo e
ances. 0 0 ... Hy
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To simplify the writing, we consider in the following that

. . S itivities to 5 ob ti
there are two regions in the atmospheke=£ 2), and that 50- enstiiviies fo > observations

each one is observed with a networkmgf observations (we ) ~
haven = n; + n,), see Fig. A4. The interpolation scheme in ~ «*°f scaling factor =1.6357
H is assumed not to be able to transfer any information from % 40+
one region to another. With this strong assumption, we want 5357 *
to show that the covariances, Kr, are able to do so on their é’ *
own. 2307
According to the previous hypothesis, let us calculste 5| |
The covariance errors matrices can be written as 5
R, 0 Bi1 By g2 *
R |: 0 R2:| and |:B12 B22 ( 6) 515r
Then, using Eq. (A1)A can be rewritten as élo— | *;
A = BBH” Tl
(R; + H;B;;HT)"!  (H;ByHI) ! 0 02 04 06 08 1 12 14 16

Sensitivity to the observations

(H2B12H¥1)71 (RQ + H2B22H5)71
Fig. A5.  Sensitivity to 5 observations spread in the two layers
(separated by the chain line) of the atmosphere column. The hori-
zontal bars show the scaled sensitivity to the observation located at
-HB. (A17) the corresponding level (bold circles correspond to null sensitivity).

At that point two hypothesis can be checked. They are basegold I!ne, da_shed Ilnes and the stars (all non-scaled) have the same
Mmeaning as in the Fig. Al.

on two cases where the background errors present in the both
regions are either correlated or not. The hypothesis of no-
correlation implies that both blod,; andB;; are equal to
zero, and in that case, the Eq. (A17) yields:

A — |:B11 - BllH?(Rl + HlBllH?)ilHlBll 0 (A18)

0 Bos — BooHY (Ro + HyBooHI ) "'HBoy

inside a given region, whereas there are no correlations be-

Eventually, the adjoint of the gain operator is also block di- tween the two regions. One can note that there is no transfer

agonal: of information from the region where the gradient to initial
T KT o conditionsV, S is significant to the other region (bold cir-
K" = 0 K7 (A19) cle with null sensitivity). In the case where the background

) o N errors present in both regions are correlated, the theoretical
If one considers a forecast aspect which is sensitive to thgyrmulation of (A17) becomes heavy to handléBy; and
initial conditions in a single region, only observations located B, are not zero. Thereford is a full m x m matrix, and

in that region will lead to significant sensitivities to observa- K7 is not block diagonal:

tions. To illustrate this statement, Iet,.S be as follows:

T T T
K12 K2
Then, the sensitivity to observations writes: Using the same gradient as stated previously (see Eq. A20),
VyS = [Kngl 0] T (A21) the sensitivity to observations then writes:
It appears that the forecast aspect is rather sensitive to oh- T
ot o %5 = [KTg KL ]". (A23)

servations belonging to the “lower” region. This result is

illustrated by Fig. A5 which was produced with the same nu-

merical package as before, with= 2 regions,n = 5 obser- As written in the previous paragraph, let us illustrate this
vations (1 = 2 andn, = 3). The level of shift between the  case with a numerical example given in Fig. A6. For this case
two regions ish = 25. We use the “curved” configuration \ve again use the “curved” configurationBf One can note

of B that has been modified to keep zero covariances in bothhat the sensitivity present in the upper region can easily be
extra diagonal blocks, i.e. that some correlations still eXiStspread to the lower region due to the correlation preseit in
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