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Abstract. A description of a deterministic chaotic systemin  These three points are actually under intensive study, in-
terms of unstable periodic orbits (UPO) is used to developcluding model experiments and observational data treatment.
a method of ara priori estimate of the sensitivity of sta- Significant progress has been made over the past few decades
tistical averages of the solution to small external influencesin providing a wide range of climate predictions and in un-
This method allows us to determine the forcing perturbationderstanding the key factors of the climate changes, including
which maximizes the norm of the perturbation of a statisti- the human-induced factors.
cal moment of the solution on the attractor. The method was However, the technique which is actually used in the cli-
applied to the barotropic ocean model in order to determinemate change prediction is essentially amposterioritech-
the perturbation of the wind field which provides the greatestnique. One has to first prescribe a factor that may influence
perturbation of the model’s climate. The estimates of per-the climate (increasing of CQn the atmosphere, for exam-
turbations of the model’'s time mean solution and its meanple), perform a model integration and obtain the climate re-
variance were compared with directly calculated values. Thesponse. This approach can neither define the perturbation of
comparison shows that some 20 UPOs is sufficient to realizehe model parameters, which results in the prescribed change
this approach and to obtain a good accuracy. of the model climate, nor answer the question “what pertur-
bation of the model parameters would induce the most drastic
change in the climatic values of the model?”.

To be able to determine the “most dangerous” external
influence to the climatic model, one has to solve an in-

The problem of global climate change became very impor-v.erse prqblem and use anpriori technique in t_he pre@c-
tion of climate changes. One way of developingaapri-

tant at the end of 20th century. One of the major CaUSeY i technique is based on fluctuation-dissipation relation, ob-
of this importance consists of increasing human activity. . d by Kraichan (1959) for Hamiltoni ¢ d7 q
Human-induced changes observed on decadal time scales atraeme y Kraichan ( ) for Hami onian Systems and use
comparable to natural climate swings. Predicting climate” Bransta_tor and Haupt (1998)’ Gritsoun ar_1d Dymnikov

1999), Gritsoun (2001) for climate models with attractors.

changes has attracted much attention. To be able to bettef ) . . .
his approach is rather simple and can easily been realized,

foresee the environmental variations is to be able to adap ut its precision provides only a qualitative understanding of
our activity to the future. P P yaq 9
the problem.

Understanding and predicting climate changes requires the _ .
. . : : . Another way to develop aa priori technique and to ob-
study of this phenomenon from different points of view. First _ . SR L .
tain a better precision is based on the periodic orbit theory.

of aI_I, the study concerns the dgvelop_ment of the' gIObaIThe notion that unstable periodic orbits (UPOs) may consti-
monitoring of the climate system, including observations of e : )
tute the fundamental building blocks of a chaotic system is

changes in the climate itself and in factors that force climatic .
rgued in many papers (see, for example, Auerbach et al.,

change. The second point consists of the development o . y .
1ang P X oP 987; Cvitanovic, 1988; Christiansen et al., 1997). Theoret-
climatic models that can test and predict future climatic and; S . X
: X . ically, the infinite number of UPOs embedded in a chaotic
environmental responses. The third aspect of this problem

) . . . . attractor may provide its skeleton. Many dynamical invari-
is the incorporation of the observational data into the model L :

) : S ants as well as statistical averages of physical measurements
and its subsiquent validation.

can be computed from the infinite set of UPOs.
Correspondence td. Kazantsev In practice, we cannot take into account all periodic or-
(Eugene.Kazantsev@iecn.u-nancy.fr) bits. However, only a limited number of low-period orbits

1 Introduction
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may be sufficient for some purposes. This point of view is We suppose that the system (1) possesses a unique solution
argued in Hunt and Ott (1996b), Hunt and Ott (1996a). Nu-for anyw@ e RY. We write this solution as follows:
merous recent studies confirm this hypothesis. It is shown )
i i w(t) =S, 1, f). (2)
that one can approximate attractors of dynamical models us-

ing only a set of low-period orbits. The accuracy obtained |n addition, we presume that the system (1) possesses a chao-
in the approximation is rather good even when the numbetic attractorA and a set of unstable periodic orbits which is

of UPOs used is not large. Thus, the attractor of the Lorenzjense on the attractor.

model (Lorenz (1963)), its dimension, Lyapunov exponents |et us consider statistical averages of the model solution
and Lyapunov vectors were characterized by the UPO set iyn the attractor:

Franceschini et al. (1993), Eckhard and Ott (1994) and Tre-

visan and Pancotti (1998). Attractor dimension and statisticabo = | wdpu, w2 = / wldu, . ... (©)
averages of the barotropic ocean model have been approxi- A A
mated by UPOs in Kazantsev (1998). The first expression simply represents the average of the mod-

All of these studies require one to find several UPOs of€l solution over the attractor; the second expression is the av-
the model numerically. Sparrow (1982) proposed to use theerage of the square of each solution’s component, etc. The
Newton method to locate unstable periodic orbits on the at-mean variance of each component of the veetean be ex-
tractor of the Lorenz model. pressed as

However, realization of this method requiresX¥) oper- _ 2 @)2 (4)
ations per iteration due to the requirement to calculate the ’
matrix of the Newton process and to solve the system ofThe square used in formulas (3) and (4) is not a result of a
equations with this matrix. Therefore, the method is limited scalar product. This is a vector with elements equal to the
for use only with low-dimensional systems. To find UPOs squares of the components.
of high-dimensional systems, one can use the method pro- ,

2
posed in Kazantsev (1998). This method requires as man )i = (i) ®)

operations per iteration as the model does (usuaily ¥?) If the system is ergodic, these averages can be approxi-
or even QN In N)). mated by corresponding averages of an infinitely long trajec-

The possibility of finding UPOs numerically and using tory:
them to approximate the attractor parameters provides a pre-

diction of the attractor variations induced by perturbations of 1 ; — 1 ¢ )
external factors. o~ lim = / C()(t)df, C()Z ~ lim —= / w (f)dt. (6)
i ) ) ) T—oo T T—oo T
In this paper, we describe an algorithm of evaluation of the 0 0

variations in statistical averages of the model solution caused |t e suppose that the UPO set is dense on the attractor, we

by perturbations in the right-hand side of the model. Thesezan approximate the attractor average by the corresponding
perturbations are suppose to be small and the linear respongferages of UPOs

of the model is considered.

To verify this algorithm and to analyze its properties, we =~ lim Z;le Wi Nk 22~ lim Z;le Wi Sk )
use a very simple ocean model with a strange attractor, name- L—oo Z/f:l wi L—0o0 Z/f:l wi
ly the barotropic ocean model. This model has been carefully
investigated for a last three decades; we know much about itd'nere
behaviour and attractor. 1 T 1 T

m= —fwk(t)dt, G = —/w,?(t)dt ®)
Ty Tk
0 0

2 Estimates of sensitivity of the attractor are the average of thieh periodic orbit over its period},

and the average of its square, respectively. Weightsre

Suppose we have a nonlinear dynamical model Wr.itten in th&ritten as in Kazantsev (1998). They are proportional to the
form of a system of ordinary differential equations: period of the orbit and inversely proportional to its sum of
positive Lyapunov exponents:

dw
T =F@+7 o |r=0= 0. 1) T

d L S
Y
Herew = w(¢) is an independent variable., which is suppose _ _ _ _ o
to be a vector of lengttV (w € RV), and f € RV is a time The choice of weights will be d!scussed Iater_ln th|§ paper.
independent forcing.F(w) represents the model dynamics L€t us add a small perturbatiaif to the forcingf in the
which includes linear and nonlinear terms. This system maysyStem (1). We get a perturbed system
be considered the result of the spatial discretisation of somey,,y
system of partial differential equations. 5 =F (@) + f + 8. (10)

9)
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Evidently, the system (10) has new averages of the solutiorbetween the variations in the final point of the orbit and its

and of its square on the attractor: initial point. This is the matrix of the tangent linear model
L linearized around UPO and integrated on the period. To sim-

o = / o'du, w?2= [ (o)%du. (11)  plify notations, we shall denote this operator Ry

, A

The question addressed in this paper is how to find the forcR = % (18)

ing perturbatiorsf of a given small norm, which maximizes @O f

the norm of perturbation of the attractor mean The second term in the expression (17) represents the deri-

_ vative of the solution with respect to time. Using Egs. (1) and

boll = llo" —ll, (12)  (2), we can write

or the norrz)f |ts_r:eanf\rlance g . _ f;_‘: = F(o(T) + f = F(0®) + £(19)

Il = ll(@? = &) = (@ =@ (13) emnr Tt

To answer this question, we use the approximation (7) and In‘l?r?etrr]rfa?rriglt():‘stﬁ:rrli%?wlf-,hlz.;od(zi) d: g;(()l.?) is the most com-
tsot;“;)\// ;?:g\éagra]\g(?tr;s Jgrfggcipizgjéggtsft\éaell:grsc %f;r;izﬁiﬁgp'ex- This matrix describes the _variations in.the final po_int
tion. of the L_JPO due to forcing variations. Numencal evaluation

of matricesR andaS/df depends on the time scheme. One
2.1 Sensitivity of UPO example of their calculation for the barotropic ocean model

is shown in the Appendix.

Let us first consider the variation of each particular UPO  The expression (17) is not an invertible relationship be-
caused by the change of forcing. Lef® andT be the ini-  tween forcing and UPO parameters (initial point and period).
tial point and the period of an unstable periodic orbit of the The reason for this is the noninvertibility of the matrix

system (1). This means the trajectory of (1), issued from(R — 1), calculated for a periodic orbit. This can easily be
w(o) returns back t&)(o) after timeT’ ie. w(o), T Satisfy the seen from the Spectrum of the tangent linear model integrated

equation for one period. The moduli of eigenvalues of the maRiare
o o wellknown Floquet multipliers of the UPO and one of them
0@ =S, 1, . (14)  must be equal to one. This eigenvalue corresponds to the

perturbation of the initial point along the orbit. This pertur-
bation is conserved by the model and its amplification factor

is equal to one. When an identity matrix is subtracted from

the period of corresponding UPO of the perturbed systemmy, o o nyent linear model, the difference possesses a zero in
(10) must satisfy the spectrum.

W@ = SO, 7, ). (15) The same fact can be explained from another point of view.
So far, any point from the UPO can be chosen as its ini-
Thus, if '@, 7’ are the initial point and the period of the tial point; no forcing perturbation is necessary to ma/®
periodic orbit of the perturbed system, variationsef® = along the orbit. Thus, there exists a non-zero perturbation
o' — »©® andsT = T’ — T must satisfy the equation of the initial point which corresponds to zero perturbation of
forcing, i.e. the matrix is degenerated.
The simplest way to avoid this problem is to fix one com-

If we suppose that the forcing perturbation does not pro-
duce a bifurcation of the UPO (14), then the initial point and

80 @ = SO, T, f) = SO, T, f)

_ 05 s0@ + 95 ST ponent of the vecton@. This technique is well-known in
3e© 0O, T, f T [,0. 7, f the search of UPOs by the Newton method, where the same
ERY matrix must be inverted. In Sparrow (1982), for example, the
+ af O T f5f +o(lI8f1D (16) z variable of the Lorenz system is fixed to be- r — 1.

In general, one can fix any componentgf whose time
If the norm of the forcing perturbation is supposed to be derivative, determined by the model, is not zero. Let us sup-
small, we may consider only the linear part of (16). We ob- pose that the first component is fixed. Then, the length of

tain the vectoBw@ becomesV — 1. However, the value &7 is
3 95 also important in this study. If we replace the first component
(m —1>8w(°) + — 8T (60©@)1 by 8T , then we obtain a vector of lengft which
@ O, f wO.T.f contains all the necessary variables.
_ 9§ 5f 17) We define vectot, whose first component &r', and all
of o 7, ¢ ' other components are equal to the corresponding components

) ) ) ) of 8@,
wherel is the identity matrix.

i . . 0
Operators presented in (17) have the following meaning£1 = 87 fo=00  k=2...,N
The first one,dS/00 @, 7. ;, describes the relationship and (50©®)1 =0 (20)
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In order to conserve the equality (17), the first column of the We recall that the first component of the vecsar©@ is

matrix (R — I) must also be replaced by the vector
38/0T |0 7, 7 (19). We shall call this matrixDe

3T1 (R=Dy2 ... (R=Din

Ds = 3T2 (R=D22 ... (R—D2nN 21)
8T1v (R — 1)N,2 . (R=DnnN

Using these notations we obtain

De& = —Dy3f, (22)

whereDy = 9S/0f 1,0 7 f-

If the matrix D¢ is not degenerated, Eq. (22) will be used
below to find perturbations of initial conditions and of the
period of the orbit from the forcing perturbation. The case
det(Dg) = 0 points out the possible bifurcation of the UPO
when infinitesimal forcing perturbation is sufficient for dras-
tic change in the orbit and even for its disappearance.

2.2 Sensitivity of statistical moments of UPO

An average of an UPO (8) is written by dropping the index

k:

1

T T
—/w(t)dt = %/S(w“’),;, frde. (23)
0

O 7 —
@™, T, f) T
0

Variation in the UPO average induced by forcing perturba-

tion §f (10) can be expressed as

/ 1 T
o= = MMWuﬁm——/sw@uﬂm
T T Jo
_ n n_o o,
=7 T+ ™ T+ f5f+0(||5f||)
T 1 (T as
— 2 (0 _ - 0
(a) n + T/o (8 |, Sw )dt
—/ ( 8f>dt (24)
because
1 /T
on 3(7 Jo S@9,1, f)dt)
oT T
TS@O, T, f) — [ S@©,1, f)dt
w® _p
= ) 25
. (25)
In a discrete time, integrals are replaced by sums
m 1 Mi”( 25 )
0@ M —= 00O |, _e)’
M=T/t
ad 1 as
= > (G| ) (29)
af M =1 mt

fixed to be zero and all other components of this vector are
combined with the value ofT in the vectorg (20). In this
case, the first column in the mattix /3w © can be replaced
by the vectonn/dT = (0@ — )/ T , similarly to (21). We
shall call this matrixG

(@ — )1 ( an ) ( on ) i
0@ 12 0@ LN
(@9 =) ( an ) ( 9 )
Gs = T 0@ )5, 3@ ),y | @7)
(@9 =)y ( on ) < on )
L T 30® N,2 90¥ N,N -
Using these notations and (22) we obtain
n=Get +Grof = (Gr — G DDy ) b, (28)

whereG s = 9n/df|,0 1, ¢ is defined by (26) and is the
vector (20). Thus, we obtain a linear relationship between the
forcing perturbation and variations of the average of UPO.

Variations of the second moment of UPO can be obtained
in a similar way. For each particular UPO

T

(@O, T, f) = fw%ﬂr
0

Nl

T
= % / S, 1, £))%dt, (29)
0
therefore,
1 [T
5 = — / S@, 1, f)2dt
T" Jo
1 T
- = / S@©9, 1, £)%dt
T Jo
_ W oo,
- aT(ST + aw(o)aw + aerf+o(||5f||) (30)
=—%w©F—o
= / S, 1, f) ‘(Sa)(o)dt—i-
< ©} i
+TASw,nﬁWfﬁh
because
3 T(S9,T, n)Z- Jy (S@©,1, )2
aT T2
0)2 _
_ ()¢ 31)
T

Expression (30) is similar to (24). All matrices in this for-
mula have already been calculated. We can only note that the
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product used in this formula is defined by (5). This means

mén)i = nidn; and
<S(w<°> t, f)

RN <0))
i

Si(@®,1 f)i 2 60
=9ojlw 7,1, w j
l j=1 00 | ; !

(32)

Using this notation and Egs. (28) and (30), we obtain

8¢ =GPe+GPsf = (G(z) G(Z)D_lD,«>8f (33)

where

@
Gf =

2 (T aS
S 9, ¢, F)—| dt
T/O @O0 )5

t

[ (@3- 01 (a;) (8;
T 0@ 1’2"' 9w©®

@5—0)2 ( ac Cls
£ T 9@ 2’2"' PG

and

G¥Y —

@ —On [ ac ¢
T 9@ va2 0@

2.3 Sensitivity of the stability of UPO

In order to use the approximation of the attractor average (7),
we need to calculate the variations of weights (9) used in this
formula. These variations can be easily obtained:

5T (Z,- ,\j) -7 (Z,- axj)
(z47)°

Sw =

Each Lyapunov exponent of the UPQ is the ratio of the
logarithm of the Floquet multiplier and the period of orbit. ((sg — suiDe;, (p;‘) =0,

)N,N_

(34)

(35)

(36)
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5 3|N«|+
28T J Iul+

T©) ()

The+ sign inu ™ is used to mark Floquet multipliers which
are larger than one and which correspond to positive Lya-
punov exponentsJr

Using a linear approach we express variations in the ab-
solute value ofx in the case whep is complex:

Re(uj )Re@ ;) + Im(u)Im@Su ;)
[l '

(39)

ljl= (40)
Let us consider variations iy ; produced by the forcing
perturbation.

Ry; = ujpj, whereR = (41)

e © 0O T, f

Let us suppose that the forcing variatiéfi perturbes the
matrix R by §R. Let us first find the variations in ;:

(R+0R)(¢pj +38¢;) = (uj +dumj)(@; + d¢;) (42)
hence, in the linear framework,
(R—pjDép; =—@BR—8ujhy; (43)

Yetpcj is an eigenvalue aR; therefore, the matrikR — ;1)
is degenerated. If we require thit; exists, the right-hand
side must be orthogonal to the kernel of adjoint magfx—

w;D*, i.e. tothe vectoap such thalR — M/I)*fﬂ* =0.1In
other WOrng) is the elgenvector OoR* assouated with the
complex conjugate eigenvalys :

Floquet multipliers are obtained as moduli of eigenvalues of

the matrixR (18)

Infpe;l

Aj= T

’

hence,

Shj = %(Ls lj| —8T In |M,-|>.
T\ |pjl

Therefore,

Sw =

m(24)

37

(38)

1
—Tz,-p(| 0 Iul} 8T 1n |u|+>

()

Slulf
+
T8T<ijj>—TZj m

J

—ﬁj—i-(STZjln it

(S

R¢% = iije;. (44)
The orthogonality condition writes

(45)
or
(6Roj. ¢7) — 81 jlpj, ¢7) = 0. (46)

Let us suppose that all eigenvalues of the matrix are simple.
In this case, the scalar produgt;, <p;f) is not equal to 0 and

we can write
(ORyj, ¢7)
(0. 97)
where(., .) is a scalar product i®" or in CV when eigen-

vectors are complex.
In order to evaluate the matri&R for any small forcing
perturbation, we write the linear part of the variation
JR

R os0® 1 Rt 4 a—8f
90 © oT af

SR = (48)

DerivativesdR /3@ anddR/df are three-dimensional ten-
sors. Their calculation requirég* operations per time step.
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However, if we do not need to calculate them explicitly, we where
can reduce the number of operations. We can note that to

calculates (47) we only need to calculate products

oR

mgﬂl and

49
Tl (49)
These products, which are matrices, reqiireoperations.
The algorithm of calculation depends on the time discreti-
sation scheme. One example of this algorithm can be see
in the Appendix. The algorithm allows us to calculate two
vectorsdg anddy, as products

1 aRi;

de)y = ——— , Vk=2,3,.
e = 1 o Z 90 ad
AR
(de)1 = M and (50)
(0. 9%)
1 OR;
di = ——Y —gipr. 51
Taking into account (47), (48) and (50), we obtain
S = (dg, &) + (dy, 8f)
—(d, D' Ds8f) + (dy. 8f)
= (dj — D% (Dgl)*dg, 8f) (52)

thanks to (22). Using this formula, we can calculate the vari-

ations of weights (39)
25T
" < )
(dp); — D% (DY) @e);, of)
+ 3y — f|<f|) J (53)
(Z A+> J Kj

Taking into account thatT can be obtained as the first com-

ponent of the vectaf, we obtain from (22)
8T = —(D; 'Déf)1. (54)

We can express it as a scalar product with the vegterhich
is defined as

p1=1, pr=0 k=2...N (55)
ST = (~D;'Dysf, p) = (=D (Dgl) . 51). (56)
In this case,

1
Sw = —X

(2%7)
() oo o
7
(@ — 0% (D5t) @), 8f)}

> ]

= (h, 8f), (57)

o[22 )er () s
D3 (Dt

+
|,uj|

(Zf n)
. Z dp)j—

B.4 Approximation of perturbation of the attractor average

)* (ds)j}

(58)

Using formulas (7), (28) and (57) we obtain
S i1 (Gwemk + widni)
Z/f:l Wk
_ > Swk Yo wink
(2115:1 wk)2
i Gwim + widm) — @ Y g_g Swi
- Zlf:l Wk

[(hk, §f) (e — o)

dw ~ lim

L—o0

L

>

B Zile Wk k=1
+ui (G- GeD;'Dy), (Sf}
= HYsf,
where matrixH is defined by
1 L
Zk 1 Wk Z

k=1
+wi (G - GnglDf)J.

Perturbation of the mean variance of the solution on the
attractorc = w? — @2 from (3) can be approximated also
with the help of the matrixd @. To develop this matrix, we
use expressions (7), (30), and (57)

S p 1 (Swilk + widEk)

(59)

1 k —.
H) = [h§ 'O — @)

(60)

do ~ lim T
L—00 Zk:l Wk
L L
1)
_ > k—18wk Zk:lzwké“k  wsE
(Zlf:l wk)
L S L
_4(8 88) — w2 48
k=1 (wpli +w1£ ) — @0} g dwe oo
Zk:l Wk
1 XL:[ —
= (hi, 8f) (& — @?)
Zif:l Wk =1
2 2 -1 D
g (Gf - 6?p; Df) (Sf:| 2wHYsf
= HPsf, (61)

whereH @ is the matrix defined by

[hj.")(ck —o?);

L

2.

k=1

@ —
ij

L
Zkzl Wk
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+ui (6P - 62D

¢ 1Df)k] _ ZEiHij»)- (62) 500 m. The dissipation in Eqg. (63) is composed by the har-

: monic lateral frictionu Aw and the bottom drag parametrized

. fo by ow. Values of friction coefficients used in this paper are
Equations (59) and (61) can help us to determine if there
q (59) and (61) P — 1250 n?/s ando = 5 x 10851,

exists a forcing perturbation which provides the prescribed" ! ) , ) o
perturbation of the average solution or its mean variance. Of 1€ equation (63) is subjected to impermeability and free-
course, if the matrixt ¥ is not degenerated, any small per- SliP boundary conditions

turbation of the average solution can be obtained by an ap-
propriate forcing perturbation. Otherwise, one has to analyzew lsa= 0, @ lyg=0. (65)
the kernel of(#)" . If the prescribed perturbation of the | order to look for a weak solution to the problem (63),
average solution is orthogonal to the kernel of the adjoint(g5) we perform its variational formulation:

matrix, we can solve the system (59) and obtain the neces-
sary forcing perturbation. If the perturbation of the average , 0w

¢ Q) (T, 0+ BYy), @)

solution is not orthogonal to the kernel, the system (59) pos- 9’
sesses nho solution and we can state that there is no forcing = —w(Vw, Vo) — o{w, ¢) + ([, ¢), (66)
perturbation which results in the prescribed perturbation of,, o) = —(vVy, Vo).

the average solution.

A similar procedure with thed® matrix must be per- for any functionp(w, y) € H}(Q). Here,H}(Q2) denotes the
formed if we look for a forcing perturbation resulting in a linear space of functions such that the square is integrable, as
prescribed perturbation of the mean variance. well as the square of their first derivatives. Functions in this

space must vanish on the boundary of the domain. Brackets

(., .) denote thd., scalar product:
3 Barotropic ocean model in a square

3.1 Model and its parameters ¥ ‘/’>=//Q Ydxdy (67)

We consider barotropic ocean dynamics, i.e. all the thermo3.2 Discretisation

dynamic effects are neglected and the vertical structure of the

ocean is supposed to be uniform. The equation of dynamicd he variational formulation (66), (67) of the problem (63)
of the wind-driven ocean is written for the barotropic vortic- allows one to look for a solution by the finite element method

ity @ (FEM). So far, the solution produced by the barotropic model
of the North Atlantic typically includes a western boundary
dw layer with intense velocity gradients; the advantage of refin-

— +JW, 0o+ =puAw—-—cow+f, ow=Ay (63)

ot ing the triangulation along the western boundary of the do-

o o main is rather clear. This helps one to keep the quality of
We assume thf-plane approximation for the Coriolis pa- o jicit eddy resolution of the model, while working with a
rametert, which represents the effect of the Earth’s rotation lower number of grid nodes

in this equation, i.e. we suppose that this parameter is lin-

. . i In spite of the fact that the number of operations per time
ear iny coordinate:¢ = £9 + By, where{g is the value of

the Corioli ter at th d-latitude of the basin. W step and grid node is much higher for the FE model, the pos-
€ Lorolis parameter at the mid-iatitude of the basin. esibiIity of considerably reducing the number of grid points
use very simple basin geometry represented by a square bocﬁminishs the computational cost of a model run. The possi-
.Of IS|de Izn_gthﬁ - ‘;%?O kme Wﬁ ;ulppo_se that th|skbask:n bility of having a better working precision with a lower num-
'S located in t € middle o ort. tant!c, SO We t"’! € the perof grid points is very valuable in this work due to a high
value of the Coriolis parameter in the middle of basin to benumber of operations per point
_ 5 ~—1 . .- . .
quazl tog%__llQ.ri X_llo_ s, and its meridional gradient The package MODULEF Bernadou (1988) has been used
p ;h x (f 97 i thi tion i ted by th to perform a triangulation of a domain. This package pro-
€ source of energy In this équation 1S presented by uces quasi-regular triangulation of the domain based on the

atmospheric wind stress applied to the surface. In this pape'brescribed grid nodes on its boundary. We require the refin-

we take a steady ZO”‘T’" yvmd with a CIaSS'CaI.tWO gyre antl'ing of the triangulation near the western boundary and espe-
symmetric pattern. This is seen as a schematic pattern for _th(?ially in the middle of the domain, where velocity gradients

mean curl of the wind stress over the North Atlantic ocean iN4re extremely sharp.

middle latitudes. Its magnitude is equal to The domain® is covered by a set of non-intersecting tri-
2rto . 2my angles. The set of integration points is defined as the union
f=- SHL sih—— (64)  of vertices and mi-edges of triangles. Finite elements of type
P> are used here, i.e. the polynomials of the second degree
wheretp = 1.1 dyn/cn? is the wind tension on the sur- p;(x, y) = aix? + bixy + ciy? + dix + eiy + f;. Theith
face, p = 1000 kgm? is the density of water. The depth finite element is taken to be equal to 1 at the i-th integration
of the active wind driven currenti has been chosen to be point and zero at all other points.
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Fig. 1. Triangulation of a unit square. The integration points set is
the union of vertices and mi-edges of triangles.

The grid used in this paper is presented in Fig. 1. This

triangulation is composed of 92 triangles. The integration

points set, which is a union of vertices and mi-edges of trian-

gles, equals 211 nodes. The resolution of the grid varies b
tween 140 of the side length (about 100 km) near the west-
ern boundary, and/¥ of the side length (about 550 km) near
the eastern one.

According to the Dirichlet boundary conditions (65), we
only consider internal points of the domaiwy;, y;) € Q\0Q2
fori = 1,..., N., so the functiong/, w are presented as
linear combinations

N
Y,y 0 =Y Yi)pi(x,y),

i=1
N
o,y 1) =Y oit)pi(x.y).
i=1
To simplify notations, we define matrices of mass and rigid-
ity as

i=1,...,N
j=1...,N

M ;= (pi,pj),

68
Ci= (Vpi.Vp) (68)
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This system has been forwarded in time by the following
scheme,

> +JW", " + By)
C()n+1 _I_wn—l wn+1+wn—l
2 2

The first step is performed by the second order scheme for
the nonlinear advection term:

W2 _ 0
/2
w2 1+ o0
2
+ TWY2, 0¥? + By)

a)1+wo

oM

= —uC + MF. (70)

M + TW°, o® + By)

w2 4 o0
2

a)l—a)o

M

T
a)1+a)0
2

—uC -0 + Mf (72)

4 Sensitivity of the barotropic ocean model

We do not intend to reproduce actual oceanographic data,
which would be hopeless in the framework of a barotropic
model. This model is used in this paper just as a simple,
well studied geophysical model to test the approximation of
the attractor by periodic orbits and to test the possibility of
explaining the sensitivity of a multi-dimensional chaotic sys-

Cfem by means of its unstable periodic orbits.

The purpose of this chapter is threefold:

— to find the external influenc&f which maximizes the
norm of the perturbation of the average of the solution
of the barotropic ocean model on its attradté®| and
the mean variance of the soluti¢fo ||,

— to estimate the quantity of UPO necessary to construct
matricesH andH @,

— to compare the perturbation predicted by a linear ap-
proach with the reference perturbation produced by this
forcing and to verify to what extent the linear approach
remains valid. The reference perturbation is calculated
from a long trajectory using the formula (6).

In order to study the sensitivity of the model attractor, we
formulate first the tangent linear model. This model can be
obtained easily as the linearisation of the (63) around its tra-

jectory S(w©@, ¢, f) fort € [0, T1:

Using these expressions, we can write the discretised sys-

tem (66):

0
Ma—‘j +IW, @+ By) = —uCo — s Mw + Mf
Mo = —-C¥

(69)

and

TW.o+By)i = Ym@i + BY)T (Pm. pi). pj)

a—t‘”w(A—lS(w“’), t, ), 8w) + T @Y, S, 1, f)+0)
= uA(bw) — oéw,

AGY) = dw. (72)

This model describes the linear evolution of a small pertur-
bation éw that has been added to the basic trajectory
S©@, ¢, f). The tangent linear model has been discretised
in the same way as the model (63). Finite elements were
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used to perform spatial discretisation and the scheme (70) ig

applied for time stepping. 50% Wi~
40% <3 W
St — s 1 ““ _____________
w 2 w + j(A_ls(a)(O), tn, f), 8(,()") 30% “‘- w3
T b T
20% o wa
+T@Y", S@, 1", )+ By) > R s . R
15% o
St 4§01 St 4 s 1 \ .
=—uC > —oM 5 . (73) 10% \ Sl
0, 5 T
As seen before, the first step is performed by the scheme 7 % Bl e
for the nonlinear advection term, 4512;0 “‘\ Y =
(] -
Sawl/? — 8 3% \ T
QT W L 7(ALS(0®, 0, £), 8°) \
T/2 204 =
iy
+ T Y0, 5,0, f) + By) 15% A
1/2 0 1/2 0 \ B
_ —MC&O 2—}—6a) B a./\/l(sw 2—|—8w ’ 1% \ H
8(,()1 _ 50)0 1 0 12 0.7% /\/\‘,
- O
M - + TS0, 1/2, f), 80M%) 0 5 10 15 20 25 30 |
+ j(Sl//l/Z, S(w(o)’ /2, f) + By) T3 (L) — T dre
St + 80° St + 80° Fig. 2. Difference—2PPT% direct? for different weightsw.
= —/LCT - UMT (74) 19 directl

Unstable periodic orbits have been found for this model
using the method proposed in Kazantsev (1998). For eacknultiplier:
orbit, we construct matriceRB (18), D¢, Dy (21),Ge, Gy
27), G?, G'? (35), (34), as well as vectoek, d; (50) - .
andh (§8). Th{e numerical algorithm of constrﬁctioé of these [deU — R = [ l_[ 11— pu) q
matrices and vectors is presented in the Appendix. il
This allows us to calculate matrices™® (60) and H @ . [l_[ (1 e,ka”]_l (75)
(62), which describe the linear part of relationship the be- 220 '
tween forcing variation and the average solution on the at-

tractor, and its mean variance. o
However, statistical averages of UPOs based on cycle ex-

4.1 The choice of the weight pansions developed in the context of known symbolic dy-
namics of a hyperbolic system may fail in the case of dissi-

One important question addressed in this paper is the choicBative systems, especiglly When the symbglic dynamics is
of the weight,w, used in the approximation of the attrac- NOt understood. For dissipative systems, it has been pro-
tor by UPO set (7). All calculations above have been per-Posed in Zoldi and Greenside (1998), Zoldi (1998) to use
formed for the weight defined by the formula (9). However, the escape-time weighting, i.e. weights equal to the inverses

the choice of this weight is absolutely empiric and requiresSUmS of positive Lyapunov exponents. The reasoning behind
some discussion. this is rather clear: less unstable orbits must be weighted

The use of Lyapunov exponents as a measure of instabilitg"0re heavily.
of UPO is not well justified. A more classical measure used However, it is also reasonable to suppose that orbits with
for non-dissipative systems is the Floquet multipligr, =  longer periods must be weighted more heavily. So far, they
exp(AT). If the system is hyperbolic, then the UPO set is are longer and should provide greater contribution to the total
dense in the invariant set; zeta functions and cycle expansiofum.
can be used to perform accurate computations. This is much |n this paper, we compare the approximation of the baro-
less evident when we work with a dissipative system such asropic model’s average solution, approximated using four dif-
an ocean model. ferent weights. The first one is the inverse determinant,

It has been argued in Eckhard and Grossman (1994) and ifde{/ — R]|~1, proposed by Eckhard and Grossman (1994).
Cvitanovic (1995) to wuse weights proportional to The second one is simply the inverse of the product of all Flo-
|de{/ — R+]|~1 for hyperbolic systems. Here, the symbol quet multipliers greater than one. The third is the escape-time
1 means the projection orthogonal to the direction of the or-weighting from Zoldi and Greenside (1998), and the fourth
bit. One can easily see that this weight is based on a Floques the escape-time multiplied by the period of orbit.
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Fig. 3. Average streamfunction calculated by*3@ars model integratioga) and approximated by the UPO gb). Contours from-80 to
80 interval 10 Sv.

w® —

w? —

w® =

w® —

obtain good approximation accuracy. Thirty orbits are nec-
essary to obtain an approximation error less than 1% using

[ l_[ [(1— i) I}_l w®, and only 20 are sufficient for using®. This com-
21 parison has determined the choice of the weigft as the
1 weight used in this paper.
One can see in Fig. 3 the average streamfunction pattern,

eXp(ZApo )\iT) calculated by 1Hyears model integration (Fig. 3a) and ap-

1 proximated by the UPO set (Fig. 3b). Ihirty UPOs have been
S on used in approximation with weighp @ = T/_ka_ol)‘i'

>0 The difference between Fig. 3a and Fig. 3b is difficult to

r (76) see. Indeed, as seen in Fig. 2, the relative approximation
D 0N error is about 07%.

We can note here, that Fig. 2 and Fig. 3 also inform us

In order to compare these four weights, we integrate theabout the quantity of UPO, which is necessary to approxi-
model for ten thousands years and calculate directly the avmate attractor properties and to obtain a required accuracy.

erage solution by (6): Such a simple experiment shows us whether the number of
UPOs we have found is sufficient or not.
10* years
Vdirect = _r / Y (t)dt, ) 4.2 The "most dangerous” forcing perturbation
10%ears )

Now we proceed to the sensitivity of the model’s attractor.

After that, this average is approximated as a weighted meaiVe look for a forcing perturbation to which the attractor av-

of the increasing number of UPOs arranged by period. erage is the most sensible, i.e. we want to féfidwhich
7 maximizes the ratio

_ S E Wik 1 (8@, Sw)

WapPTOX(L) - W’ Nk = Fk / wk(t)dt (78) ax <8f, Sf) (79)
0 Taking into account (59), we obtain

The |fe|ative qiﬁerencﬁl_papproﬁlf) ~ Vdirectll/ 1V directll @S (5@, sw) (HOsf, HDs8)

a function ofL is shown in Fig. 2 for different weights. maxW = maxW

As one can see in Fig. 2, any two weights based on the Flo- ’ ’

quet multipliers results in a monotonous convergence. But —m (HDY*HWDsf, 8f)

this convergence is much slower than the convergence pro- (8f,8f)

vided by escape-time weighting. Even 30 orbits are not suffi- = maxv (80)

cient to approximate the average with an acceptable accura
when we use eithep® or w@. Butw® andw™® provide

c .
Wherev are singular values aff D

non-monotonous convergence, which is rather rapid, and weH®)*HOsf = vsf (81)
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Fig. 4. Singular values of matriced D (a) and #@ (b).

Thus, the “most dangerous” forcing perturbation can be foun®17, the second and the third are 151 and 122, respectively.
as the singular vector off Y corresponding to the largest Thissf is the most dangerous for the attractor of the model.
singular value. The value of the ratiéw, 6w)/ (8, 6f) is The pattern of this forcing perturbation is shown in Fig.
expressed by the singular value 5a. In spite of the fact that the major model activity takes

Similarly, the forcing perturbation to which the mean vari- place near the western boundary, the “most dangerdfis”
ance of the solution on the attractor is the most sensitive, isias a maxima near the eastern one. The perturbation which
expressed as a singular vector of the makfi%’ correspond-  is concentrated in the region of the jet stream of the model
ing to the largest singular value. corresponds to the third singular vector, which provokes a

Singular values oH® andH @ are shown in Fig. 4aand 25 times lower response of the model average. This forcing
Fig. 4b, respectively. Their spectra have been truncated gperturbation is shown in Fig. 5b.

the 150th value because of a lack of computer accuracy. The perturbation of the average solution caused by the

One can note the wide range covered by these values, i.emost dangeroussf (Fig. 5a) is concentrated in the region
there exists a forcing perturbation which provokes a drasticof the jet steam near the western boundary. The perturba-
changes in the average solution. In addition, the model avtion of the average streamfunctién is shown in Fig. 6a,
erage exhibits 10-10° times lower sensitivity to some other the perturbation of the average vortict in Fig. 7a, and
perturbations of the forcing. One can even see a larger differthe perturbation of the mean varianée is shown in Fig.
ence in the sensitivity of the mean variance of the solution. 8a. One can point out that only a part of the total basin is

Moreover, there exists a forcing perturbation which is re- shown in these figures, because perturbations are vanishing
ally “the most dangerous” for the attractor. This perturba- elsewhere.

tion corresponds to the first singular vector and it provokes  Thjs forcing perturbation causes the streamfunction to be-

the perturbation of the model average at least 23 times largegome asymmetrical. The jet stream in the middle of the basin
than any othebf of the same amplitude in the orthogonal ,ns to the north or to the south.

space. The first singular valueof the HD matrix is equal

to 4.15 x 10°, the second and the third ones are equal to ) o o . ]
1.75 x 107 and 114 x 107, respectively. 4.3 Comparison of approximation with direct simulation

For the barotropic ocean model, the “most dangeréys”
for the average solution is also the “most dangerous” for theln order to estimate the error of the approximation of the pro-
mean variance. First singular vectors@f? and H® co- posed method, we compare this approximation with values
incide. The model's mean variance is also at least 6 timegalculated directly. Direct calculation has been performed in
more sensitive to this forcing perturbation than to any otherthe following way. We perform firsT = 10* years integra-
one. The first singular value of the H® matrix is equal to  tion of the model with original forcing (63) and calculate the
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Fig. 5. (a) The “most dangerous” forcing perturbation. (First singular vecta6P matrix.) This perturbation results #j@|| = 4.15 x
1685| £]l. (b) “Less dangerous” forcing perturbation. (Third singular vectoridt matrix.) This perturbation results @] = 1.14 x
10781 £1I-

Fig. 6. Perturbation of the streamfunction average approximated by the whole UR®) set calculated by TOyears model integration
(b). Contours from-10 to 22 interval 2 Sv.

reference averages: norm of the perturbation is chosen to be 2% of the original
forcing;
1 ; — 1 ;
= —/a)(t)dt, 2= f W2(1)d. g82) [18/1'=0027l (84)
r 5 r 5 We calculate the differences between averages of the per-

turbed model’s solution and averages obtained in the refer-
Second, we perforrf = 10* years run of the perturbed ence run. These differences are calculated for the stream-
model with forcing equal tof + §f and calculate averages function v, vorticity @ and mean variance of the vorticity

of the perturbed model solution: o.
T T dwdirect = o - (85)
o = % / o dr. (@)= % f @)2wdr, 83 Vaea=V —¥ =270 -
0 0 Sodiect = (@2 — @) — (@2 — @) (86)

The forcing perturbation used in this run is proportional to These values are shown in Fig. 6b, Fig. 7b, and Fig. 8b
the first singular vector of thé/ ™ matrix in Fig. 5a. The respectively. They are to be compared with the values ap-
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Fig. 7. Perturbation of the vorticity average approximated by the UP@a3eind calculated by f0years model integratiotb). Contours
from —5 x 106 to 3x 10~ % interval 5x 10~7 s~1.

Fig. 8. Perturbation of the mean variance of vorticity approximated by the UPO set (contours—tBomlO—12 to 9 x 10712 interval
1 x 10712 572) (a) and calculated by TOyears model integration (contours fror8 x 1012 to 8 x 10~ 12 interval 1x 1012 572) ().

proximated by the UPO set, shown in partof the same The same comparison can be performed for another forc-
pictures. The approximation has been calculated as ing perturbation: the third singular vector of thEY matrix,

in Fig. 5b, for example. This forcing results in the accelera-
SwapproX L) = HY (L)sf (87)  tion of the jet stream in the middle of the basin. The jet be-

— 140 comes longer. The perturbation of the streamfunction caused
SV approf L) = A HO(L)sf by this forcing is shown in Fig. 9 and it is approximated by
Soapprod L) = HP (L)sf the UPO set in Fig. 9a and calculated directly by (86) in Fig.
9b.
whereH M (L), H® (L) are matrices computed by (60), (62),  Now, we will say a few words about the precision of the
using L periodic orbits. All available UPOs were used in the reconstruction of the attractor perturbation and about the sen-
approximations shown in Fig. 6a, Fig. 7a, and Fig. 8a. sitivity of the final result to the number of UPOs used in the
As one can see in Fig. 6, Fig. 7, and Fig. 8, there is onlyreconstruction. As we have seen in Fig. 2, about 20 UPOs
a slight difference in the approximation of the mean varianceare necessary to reconstruct the attractor averages with a pre-
of the vorticity, while patterns of the streamfunction and vor- cision less than 1%. This precision has been obtained using
ticity seem to be identical to each other. This fact shows thathe weightw® = T/ZM>0 Ai. We use the same weight in
the approximation is rather accurate, especially for averageshe approximation of the attractor perturbation.
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Fig. 9. Perturbation of the streamfunction average approximated by the UP@)satd calculated by TOyears model integratiotb).
Contours from-1to 1 interval 0.1 Sv.
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Fig. 10. (a)Values of 1— «(L) andp (L) for different number of UPOSL. (b) Three largest singular values 8V (L) for different number
of UPOs’L.

To estimate precision we compare the perturbation cal- The accuracy of the reconstruction of the amplitude is eval-
culated directlyswgirect (85), with the reconstructed one,  uated by the relative difference in the norm
Swapprox(L) (87), obtained using the increasing numbeof _ _
UP(p)ps arranged by period. o(L) = |8@direct —_Swapprm(L)ll

We estimate separately the precision of the reconstruction I5@direct
of the perturbation’s pattern and its amplitude. The recon-These two valuesy(L) andp (L), are shown in Fig. 10a for
struction of the pattern is evaluated by the correlation coeffi-an increasing number of UPOE’used in reconstruction.

cient One can see that the pattern of the perturbation is very
(S@direct, S@approk L)) well reconstructed, even using 5 orbits only with low periods.
a(l) = (88) The correlation coefficient (88) rapidly reaches the value of

sadrectl [3@approd L ional i :
18@directl |3@approX L1 99.8% and an additional increasing of the number of UPOs

where the scalar product is defined by (67). If the correlationdoes not improve it. This fact can be explained by the in-
coefficient is close to one, thus indicates a good reconstrucsufficient accuracy in evaluation 8&girect, due to the finite
tion of the pattern. integration time (10 000 years). Indeed, when we look at Fig.
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Fig. 11. Perturbation of the streamfunction average approximated by 3 UPOs (contours-@dnto 1.1 interval 0.1 Svja) and 6 UPOs
(contours from-5 to 10 interval 1 Svjb).

7b, we can see that the pattern is slightly asymmetrical. Thisnodel. To realize this approach, one has to find several or-
asymmetry results in an error which prohibits the improve- bits numerically. Each orbit must be tested from the point of
ment of the correlation between the directly calculated per-view of possible bifurcations. This implies the analysis of in-
turbation and the reconstructed one which is perfectly sym-vertibility of the matrixD¢ (22). If this matrix is degenerated
metrical. or its determinant is too close to zero, the orbit must not be

The amplitude of the perturbation is more difficult to ap- used in the sensitivity analysis. The elimination of one orbit
proximate. Even with thirty orbits the precision remains at ais not very important because we cannot take into account all
6—10% level. This fact can be explained by the slow con-UPOs of the system due to its infinite number.
vergence of the first singular value of the matf¥? (L). After that, one has to observe the spectrum of the matrix
As we can see in Fig. 10b, the first singular value varies aR = 95/00?|,0 r ; (18) and determine whether the ma-
lot when we increase the number of UPOs used in the contrix possesses multiple eigenvalues. In this case, this orbit
struction of the matrix. When we first use four orbits with must also be eliminated from consideration because we can-
low periods, we get a strong underestimate of the first singunot estimate variations of its eigenvaluigs; by the formula
lar value. This error is due to the fact that these four orbits(47). For multiple eigenvalues, the scalar prodiet, ¢*)
are antisymmetrical, while all other orbits do not possess anynay be equal to zero and perturbatidps cannot be ca(cu-
symmetry. lated from (47).

The perturbation of the average solution is reconstructed Having constructed matrices® andH @ (60), (62), one
using 3 and 6 UPQOs, as shown in Fig. 11. As one can see;an analyze their invertibility and kernels in order to deter-
the pattern of the perturbation is close to the pattern obtainednine the possibility of finding a forcing which provides the
with the whole set of 30 UPOs (Fig. 6a, but the amplitude prescribed perturbation of the average solution. If the pre-
is much lower). The maximum value of the streamfunc- scribed perturbation is orthogonal to the kernel of the adjoint
tion’s perturbation reconstructed with 3 UPOs is equal to 1matrix, we can solve the system and obtain the forcing per-
Sy, i.e. 22 times lower than the real perturbation. Howeverturbation. If we want to find “the most dangerous forcing
the correlation of patterns Fig. 11a and Fig. 6b is equal toperturbation”, we can analyze singular vectors and singular
81%. When we reconstruct the perturbation with 6 UPOsvalues of these matrices.

(Fig. 11b), the correlation becomes 99.2 %, but the maxi- For the barotropic ocean model, we can state that the pre-
mum value remains 2 times lower than the real perturbationdiction obtained using the UPO approach corresponds well
We need to use all 30 orbits in this approximation to obtainto the values 0w anddo calculated from long model inte-
the pattern shown in Fig. 6b and an error lower than 10%. gration. Linear prediction remains valid up to and including
rather high values o8f. About 20 UPOs are sufficient to
construct matrice#/ for this model.
5 Discussion and conclusions Finally, we shall note several advantages and shortcomings
of this method. The principal advantage is the fact that this is
In this paper we describe a method of estimates of variaana priori method. It allows us to determine if there exists a
tions of statistical averages of the barotropic ocean model'Sorcing perturbation which produces a given perturbation of
attractor caused by perturbations of the right-hand side of thehe average of the model solution or its mean variance. If this
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forcing perturbation exists, one can find it solving the system (dropping the index)
(59) or (61).

This method also allows us to determine the forcing per- Hi(j.) = —w)hj;
turbation, which maximizes the perturbation in the statistical
average of the model solution. Another advantage lies inthe _ iy order to look for singular values and vectors/f?
fact that any UPO belongs to the attractor. This fact ensures e first calculate the product
that we discuss the attractor perturbation rather than a partic-
ular trajectory. This method does not require a long model D)y * @ _ @y gDy
integration, which is necessary for the direct method to ob- ((H )y < H )i,j o ;(H Yo
tain a good accuracy of the statistical averages. In this paper, ke Z (1 — @)2
we obtain the reconstruction of the perturbation of the attrac- - ~ 1 m
tor, which is more precise, in some sense, than the directly
calculated value. The reconstructed perturbation is perfectly
antisymmetric with respect to the middle line (as it must be),
while even the integration for 10 000 years is not sufficient — this matrix has an eigenvectarwith eigenvaluev =

= hihjln — @)%

to obtain the exact antisymmetry in the directly calculated In — @|?||7]|? because
value.
This method cannot allow us to take into account possi- ((H(l))*H(l)) h= Zhihjllﬁ —@|%h;
ble bifurcations leading to the creation of new periodic orbits j
and stationary points. This is one of the shortcomings of = lIn — @|2||h %k

the method, because new UPOs and equilibria may strongly

modify the attractor topology and average values. Thus, if The eigenvalue is large because we assumed the norm

any inverse Hopf bifurcation takes place, a stable equilibrium of h to be large, and the eigenvector points in the direc-
may arise. In this case, the attractor dimension is suddenly  jon of 5f

reduced to zero and all the attractor's parameters undergo
considerable changes. Unfortunately, the available UPO set — if we multiply the matrixH Y by anysf, we obtain the
does not possess any information about orbits that may ap-  perturbation of the average solution according to (59)
pear and the method does not predict these changes.

However, this method can automatically take into account 8@ = HVSf = (h, 8f)(n — @)
some possible changes in the structure of the attractor. Let
us suppose one orbit may become stable under some forcing hence, the attractor average will move towards the aver-
perturbation. In this case, the attractor of the model becomes  age of the UPQj, which is going to become stable.
a one-dimensional regular attractor without chaos. Its av-
erage becomes the average of this “stabilized” UPO. UsingSi
this method, we will simply obtain this forcing perturbation
as the singular vector aff¥. The reason for this is very
simple and can be explained by the following reasoning:

The main shortcoming of this method lies in the neces-
ty of finding several UPOs numerically. For the barotropic
ocean model, the search procedure requires the number of
operations equivalent to the 4L years model integration.

Of course, such a long integration is only possible now for a

— ifany orbitin the UPO set s stable, this orbit is weighted simple model. lts applic_ation to more complicated mod_els_,
with the infinite weightw defined by (9). (A stable orbit  SUCh @s the eddy-resolving muitilayer model and the primi-
has no positive Lyapunov exponents; hence, the denomtive equations model would require more powerful comput-

inator of (9) is equal to zero);

— if any unstable orbit can be “stabilized” by some forcing Appendix A Calculation of matrices H® and H®
perturbation, the perturbation of the weight for this
orbit will be very large (theoretically infinite) realizing In order to calculate matriceg® and @, we need to cal-
the difference between a finite weight of the unstable culate the following derivatives for each UPO:

original orbit and an infinite weight of the stable per- . o
turbed one: - R=05/00|,0 7 ; defined by (18) which is used to

construct matrixDg (21) for the Eq. (22);
— to realize this large perturbation of the weight, the
vectorh in (57) must be collinear tdf and must have a
large norm;

— Dy =095/3f|,0 r s theright-hand side of the Eq. (22);

— 9n/80© defined by (26) which is used to construct ma-

trix G¢ (27) for the Eq. (28);
— if we have an orbit for which the norm df® is very ¢ (2D a. (28)

large, we can neglect all other orbits and terms in the — 95/df defined by (26) which is used to construct matrix
formula (60). In this case, the matrif ¥ becomes Gy for the Eq. (28);
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— (3R /00 )¢ defined by (49) which is used to calculate (63), we obtain

vectorsd; defined by (50);

— (OR/3f)¢ defined by (49) which is used to calculate

vectorsd ; defined by (51);

— dR/9T defined by (49) which is used to calculate the

first component of the vectek defined by (50).

We begin with the time discretisation scheme of the tan-

gent linear model, linearized around the UR&) =
S, ¢, fyforr € [0, T], o(T) = w© (73). Let us rewrite

" = EXNOIT W " + By) + EXN @ E- (Do

+ EZNOMS (A4)
Hence,
8wn+l _ E;l(T)aj(Vf”v " + ﬂ)’) "
of 0" of
nfl
+ E;NOE- (0)° T ETN (oM (A5)

(73) in the compact matricial form. Let us suppose that UPO

w(?) is defined by M pointso©@, 0@, ... o™-D M),
The final point of the orbito™) is equal to its initial point
»©. We define matrices

Ei(t)=M+10M+1uC,
E_(t1)=M—10M —1C,
I(a)(”))(p — _j(A_la)(n), Q) — j(A_lQD, w(n) + By) (Al)

Then, the schemes (73), (74) writes

12 _ To-1,T 0y 500 + E-L( L %) 50°
sel/? — —5E; (Z)I(a)( ) 80° + E (PE- (oo

D(z/4)

A(0©®)

= (A(w(o)) + D(r/4)) s = RW2 5,0

R(1/2)

St = —tEIl(%)I(a)(l/z)) sw? + Ell(g)E_(%) §°

—_—
D(t/2)

A(w®/2)

— (A(w<1/2>)R1/2 + D(r/Z)) 50° = R 50,°

RD
802 = —2t EZH ) Z(0W) s + EXHT)E_(7) 8°

A(o@®) D(7)

= (A@MR' + D(D)) 80 = RP50°

R2
80" = 2t ETH O T(0™) s0" + EXHO) E_(7) st
———
Alw™) D(v)

- (A(a)("))R" + D(r)R”_l) S0P

R(n+l)
— R#+Ds,0 n=23,....,.M (A2)
Finally we obtain

Thus, the matrixk™ obtained at thé//th time step is equal
to the matrixR = 85/ |0 7 ;.

Let us now consider the derlvatw‘)eS/aflw(m 7.5 = Dy.

From the time integration scheme (70) of the model equat|on8f M

Using notations (A1), we obtain the evolution & pro-
duced by the time-independent perturbation of fordifig=
MSf

swl2 =T
© T2

1.7 ~ 2 ~
E;HNpsf = Dy%sf

ol = rE;l(%)af—rEgl(%)I(w(l/@) Swl/?

A(w1/2)

-1,T 12\ ¢ 7 Vg7
- (1E+1(§) + A@Y2)DYP) 5] = DiPs ]

(1)
Dy

s? = 2t E;N1)8 f —2t ETN 1) T(0Y) S0’

Alo®D)

- (2TE;1(1) + A(a)(l))DSpl)) 57 =D?sf

2
D ’

S+ = ZIE;l(f)fsf_ZTE—Il(T)I(w(n)) b

A(w™)
E—l n—1
TYDE_ (1) bw
—_——
D(7)

- (2rE;1(r) +A@™)DY + D(r)Df,'?‘”) 5F

D?+D
=Dy*Ysy n=2,3....M (A6)
Finally, we obtain
s = DMsf =DM Msf (A7)

Thus, the matrixD/f”M obtained at theMth time step is
equal to the matriD s = 9S/9f|,0 7, ¢

Derivativesdn /9@ anddn/df can now easily be calcu-
lated from (26) and (A2), (A6):

am 1 %( as )_ 1 ¥
3@ Mm:]_ 3@ t=mt M =

>
m=1
M M
877 1 § _ i Z D(m)M
= i ¥
mt m=1

(A8)
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Let us now calculate the derivatigeR /9w @ . First of all,
we have to estimate the derivativel /dw. As defined in
(A2),

Ai j(@") = —2tETN (D) T(0™)

=2t Z(E )i Mr)[Z Timp (A5 (@™ + By)
- ijm]A,‘; 5,’”}
=27 Z(E_Il)i,m(f)[Z(u%,m,pA;fb - jp,m j )a)(n)
m ],p

+ Timp A (ﬂy)z]

whereA~! = M(C~1is the matrix of the inverse Laplacian
in the finite element's discretisation, andj . ;
(J (pi, pm), p;j) is the discretisation of the Jacobian. Then,
the derivatived A /dw can easily be written

A N BAi,j(a))
do dwy

=21 Y (ENim@® Y (TimpBDs = Tom i) (A9)
Lp

m

We have from (A2)

RO =1
R = (A@) + D(z/4)

RO — (A(w<1/2>)R1/2 + D(T/Z))

R®? = (A(a)(l))Rl + D(r))

ROHD — (A(a)("))R” 4 D(t)R"‘1> (A10)
then
(1/2)
ORY2 04 _ Lap
9w©® dw
dRD _ %aw(l/Z)Rl/z_’_ Al (1/2))8R( 1/2)
9w©® dow w©® 3w©@
_ ‘;_A RY2RI2 4 402y 12 — @
w
dR® B %860(1) 1 Ao (1)) R()
90©@  dw dw (0)
_ AR R4 A (1)))((1) prc)
JRHD aA do™ L R~V
dA
= —R"R" + A(@™)X™ + D(1)X" D (A11)
w
= x0 D (A12)
Finally, we obtain
dRM) dR
M) _ - _
xM = SO = 5.0 (A13)
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The derivativeX™) = §RM) /5,0 — aRf’Z)/aw;O) is

three-dimensional. If we write the equation (A11) in explicit
form, we obtain

0A;,
DI RIS SRR
J

1
+ Z D;. j(r)XJ‘”m o

8R.(n+1)
IYRON
dwp

(A14)

Hence, the procedure (A12) requird¥ operations per
time step and is impossible to compute for valuegvoéx-
ceeding 100. Fortunately, in this work, we do not need the
explicit form of a9 R™) /9w ©@; we need only its product with
the vectoryp. This fact allows us to decrease the number of
operations tav® per time step.

Let us denote

Q,(",Z Z o ,,som
From (A14) we obtain
Z%(i:rf[il’-)
—z[zz B
YA+ D1 o
J J
= 22 5 e )1,
L

_‘,—z

n
vj

-1
+ Z Aij@"™ o) +3 Do, "
J

S[r(e) ]
W

+ Z A j(@™)QY) + Z D (0"

LS S

J

+ Z D; ()oY

(A15)

Q(Vl-l—l)

i,j
dwy

R"

(A16)

This procedure requires approximately# operations per
time step. In order to obtai: (50), we calculate the product

(M)
Z le(pz
(@, 0*)

The matrixd R/dT is calculated by finite differences

(de)p = (A17)

RM+D) _
2T

IR RM-D

aT

(A18)
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To obtain the first component af, we need just to calculate

<3¥90 @)

(0, 9%)
To calculated; (51) we perform similar calculations. Let us
calculate first the derivativéR /3 f . We have from (A10) and
(A6)

(dg)1 = (A19)

gR(1/2)
af
dRD _ %860(1/2)R1/2+A( (1/2))3]3(1/ )
af dw Of af
- gA D?RY? = F®
dR®  9A 9D dR
= R'+ A(@®)——
af do Of F)
A 1.1 Dy () )
= %DfR + A )F =F
IR™D  HA 0™ ), OR™ JR"—D
= e R" 4+ A(w )——i—D(t)
f dw df af
dA
=S _DyR"+ A(@)F™ 4 D)F"=D  (A20)
— Fh+d (A21)
Finally, we obtain
ARM 3R
F _ TR (A22)

The derivativem ™ = 3R /3 f, is also three-dimensional.
The explicit form of the equation (A20) writes

ZZ

+ Z A (a)(”))}'(")
j

(n+1)
aR” A

R? m(Df);l,p

[ (A23)

1
+ 3D
J

Hence, the procedure (A21) also requiré$ operations
per time step. Similarly, if we do not need the explicit form
of R /af, we write

27

From (A14) we obtain
v - Z Fdy,
—E:D:zja”

(n)
D

+ Z D, (‘[)fj(nm ij)il
J

v = (A24)

,mp€0m

Rn (Df);l,p
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Z n(Dp A+ ZA (V"
+ Z Dij (r)v““ b (A25)
where the matri¥¥” is the same as in (A16).
In order to obtaini; (51), we calculate the product
(M) %
ds), = M (A26)
' (9, ¢%)

All of these derivatives can be calculated in two model
runs as follows. The first run is necessary to calculate the
matrix R by (A2) and to solve eigenvalue problems

Ror = prpr andR* ¢ = Ty (A27)
For the second run, we define matrices
0_ 0 _
R =1, Df =0,
on 0 an 0
—— ] =0, — ] =0 A28
(50) (5 20

and according to (Al5),
Mk s k] > 1

Q(O,k) -0

(A24), we define for each

vOh =0 (A29)

We use the following iterational procedure for any =
0,1,....,.M—-1

Rn+1 (A(w(n))Rn + D(T)Rn 1)
Dt = (21:E+ (0 + A@")DY + D)D"~ l’)

an

877 n+1 n .
<3w<°)> B (360(0)) R
9 n+1 9 n
oan = an + Dfn
of of
dA
Wn,k — (8—(Rn<ﬂk)>
w

Q(n"rl,k) — Wn,kRn + A(w(n))Q(n,k) + D(_L,)Q(n—l,k)
V(n+l,k) — Wn,k(Df)n + A(w(ﬂ))v(n,k) + D(T)V(nfl,k)

This procedure provides at thiéth step

RM — R = ﬂ DM — ﬁ
@ O T, f y Of lpo 7, ¢
(o) =l (7
3w ©® 0@ w(O),T,f’ af S af w(O)’T’f’
oR JR
QM = =0 o, VMR = Pk
00'™ |0 7 5 8f wO. T, f
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