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Abstract. A description of a deterministic chaotic system in
terms of unstable periodic orbits (UPO) is used to develop
a method of ana priori estimate of the sensitivity of sta-
tistical averages of the solution to small external influences.
This method allows us to determine the forcing perturbation
which maximizes the norm of the perturbation of a statisti-
cal moment of the solution on the attractor. The method was
applied to the barotropic ocean model in order to determine
the perturbation of the wind field which provides the greatest
perturbation of the model’s climate. The estimates of per-
turbations of the model’s time mean solution and its mean
variance were compared with directly calculated values. The
comparison shows that some 20 UPOs is sufficient to realize
this approach and to obtain a good accuracy.

1 Introduction

The problem of global climate change became very impor-
tant at the end of 20th century. One of the major causes
of this importance consists of increasing human activity.
Human-induced changes observed on decadal time scales are
comparable to natural climate swings. Predicting climate
changes has attracted much attention. To be able to better
foresee the environmental variations is to be able to adapt
our activity to the future.

Understanding and predicting climate changes requires the
study of this phenomenon from different points of view. First
of all, the study concerns the development of the global
monitoring of the climate system, including observations of
changes in the climate itself and in factors that force climatic
change. The second point consists of the development of
climatic models that can test and predict future climatic and
environmental responses. The third aspect of this problem
is the incorporation of the observational data into the model
and its subsiquent validation.
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These three points are actually under intensive study, in-
cluding model experiments and observational data treatment.
Significant progress has been made over the past few decades
in providing a wide range of climate predictions and in un-
derstanding the key factors of the climate changes, including
the human-induced factors.

However, the technique which is actually used in the cli-
mate change prediction is essentially ana posteriori tech-
nique. One has to first prescribe a factor that may influence
the climate (increasing of CO2 in the atmosphere, for exam-
ple), perform a model integration and obtain the climate re-
sponse. This approach can neither define the perturbation of
the model parameters, which results in the prescribed change
of the model climate, nor answer the question “what pertur-
bation of the model parameters would induce the most drastic
change in the climatic values of the model?”.

To be able to determine the “most dangerous” external
influence to the climatic model, one has to solve an in-
verse problem and use ana priori technique in the predic-
tion of climate changes. One way of developing ana pri-
ori technique is based on fluctuation-dissipation relation, ob-
tained by Kraichan (1959) for Hamiltonian systems and used
in Branstator and Haupt (1998), Gritsoun and Dymnikov
(1999), Gritsoun (2001) for climate models with attractors.
This approach is rather simple and can easily been realized,
but its precision provides only a qualitative understanding of
the problem.

Another way to develop ana priori technique and to ob-
tain a better precision is based on the periodic orbit theory.
The notion that unstable periodic orbits (UPOs) may consti-
tute the fundamental building blocks of a chaotic system is
argued in many papers (see, for example, Auerbach et al.,
1987; Cvitanovic, 1988; Christiansen et al., 1997). Theoret-
ically, the infinite number of UPOs embedded in a chaotic
attractor may provide its skeleton. Many dynamical invari-
ants as well as statistical averages of physical measurements
can be computed from the infinite set of UPOs.

In practice, we cannot take into account all periodic or-
bits. However, only a limited number of low-period orbits
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may be sufficient for some purposes. This point of view is
argued in Hunt and Ott (1996b), Hunt and Ott (1996a). Nu-
merous recent studies confirm this hypothesis. It is shown
that one can approximate attractors of dynamical models us-
ing only a set of low-period orbits. The accuracy obtained
in the approximation is rather good even when the number
of UPOs used is not large. Thus, the attractor of the Lorenz
model (Lorenz (1963)), its dimension, Lyapunov exponents
and Lyapunov vectors were characterized by the UPO set in
Franceschini et al. (1993), Eckhard and Ott (1994) and Tre-
visan and Pancotti (1998). Attractor dimension and statistical
averages of the barotropic ocean model have been approxi-
mated by UPOs in Kazantsev (1998).

All of these studies require one to find several UPOs of
the model numerically. Sparrow (1982) proposed to use the
Newton method to locate unstable periodic orbits on the at-
tractor of the Lorenz model.

However, realization of this method requires O(N3) oper-
ations per iteration due to the requirement to calculate the
matrix of the Newton process and to solve the system of
equations with this matrix. Therefore, the method is limited
for use only with low-dimensional systems. To find UPOs
of high-dimensional systems, one can use the method pro-
posed in Kazantsev (1998). This method requires as many
operations per iteration as the model does (usually O(N3/2)

or even O(N lnN)).
The possibility of finding UPOs numerically and using

them to approximate the attractor parameters provides a pre-
diction of the attractor variations induced by perturbations of
external factors.

In this paper, we describe an algorithm of evaluation of the
variations in statistical averages of the model solution caused
by perturbations in the right-hand side of the model. These
perturbations are suppose to be small and the linear response
of the model is considered.

To verify this algorithm and to analyze its properties, we
use a very simple ocean model with a strange attractor, name-
ly the barotropic ocean model. This model has been carefully
investigated for a last three decades; we know much about its
behaviour and attractor.

2 Estimates of sensitivity of the attractor

Suppose we have a nonlinear dynamical model written in the
form of a system of ordinary differential equations:

dω

dt
= F(ω)+ f, ω |t=0= ω(0). (1)

Hereω = ω(t) is an independent variable., which is suppose
to be a vector of lengthN (ω ∈ RN ), andf ∈ RN is a time
independent forcing.F(ω) represents the model dynamics
which includes linear and nonlinear terms. This system may
be considered the result of the spatial discretisation of some
system of partial differential equations.

We suppose that the system (1) possesses a unique solution
for anyω(0) ∈ RN . We write this solution as follows:

ω(t) = S(ω(0), t, f ). (2)

In addition, we presume that the system (1) possesses a chao-
tic attractorA and a set of unstable periodic orbits which is
dense on the attractor.

Let us consider statistical averages of the model solution
on the attractor:

ω =

∫
A

ωdµ, ω2 =

∫
A

ω2dµ, . . . . (3)

The first expression simply represents the average of the mod-
el solution over the attractor; the second expression is the av-
erage of the square of each solution’s component, etc. The
mean variance of each component of the vectorω can be ex-
pressed as

σ = ω2 − (ω)2. (4)

The square used in formulas (3) and (4) is not a result of a
scalar product. This is a vector with elements equal to the
squares of the components.

(ϕ2)i = (ϕi)
2. (5)

If the system is ergodic, these averages can be approxi-
mated by corresponding averages of an infinitely long trajec-
tory:

ω ∼ lim
T→∞

1

T

T∫
0

ω(t)dt, ω2 ∼ lim
T→∞

1

T

T∫
0

ω2(t)dt. (6)

If we suppose that the UPO set is dense on the attractor, we
can approximate the attractor average by the corresponding
averages of UPOs

ω ∼ lim
L→∞

∑L
k=1wkηk∑L
k=1wk

, ω2 ∼ lim
L→∞

∑L
k=1wkζk∑L
k=1wk

, (7)

where

ηk =
1

Tk

Tk∫
0

ωk(t)dt, ζk =
1

Tk

Tk∫
0

ω2
k(t)dt (8)

are the average of thekth periodic orbit over its periodTk
and the average of its square, respectively. Weightswk are
written as in Kazantsev (1998). They are proportional to the
period of the orbit and inversely proportional to its sum of
positive Lyapunov exponents:

wk =
Tk∑
j λ

+

k,j

. (9)

The choice of weights will be discussed later in this paper.
Let us add a small perturbationδf to the forcingf in the

system (1). We get a perturbed system

dω′

dt
= F(ω′)+ f + δf. (10)
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Evidently, the system (10) has new averages of the solution
and of its square on the attractor:

ω′ =

∫
A′

ω′dµ, ω′2 =

∫
A′

(ω′)2dµ. (11)

The question addressed in this paper is how to find the forc-
ing perturbationδf of a given small norm, which maximizes
the norm of perturbation of the attractor mean

‖δω‖ = ‖ω′ − ω‖, (12)

or the norm of its mean variance

‖δσ‖ = ‖(ω′2 − ω′
2
)− (ω2 − ω2)‖. (13)

To answer this question, we use the approximation (7) and
study the variations in the approximated values of the attrac-
tor average and its variance induced by the forcing perturba-
tion.

2.1 Sensitivity of UPO

Let us first consider the variation of each particular UPO
caused by the change of forcing. Letω(0) andT be the ini-
tial point and the period of an unstable periodic orbit of the
system (1). This means the trajectory of (1), issued from
ω(0) returns back toω(0) after timeT , i.e.ω(0), T satisfy the
equation

ω(0) = S(ω(0), T , f ). (14)

If we suppose that the forcing perturbation does not pro-
duce a bifurcation of the UPO (14), then the initial point and
the period of corresponding UPO of the perturbed system
(10) must satisfy

ω′(0)
= S(ω′(0), T ′, f ′). (15)

Thus, if ω′(0), T ′ are the initial point and the period of the
periodic orbit of the perturbed system, variations ofδω(0) =

ω′(0)
− ω(0) andδT = T ′

− T must satisfy the equation

δω(0) = S(ω′(0), T ′, f ′)− S(ω(0), T , f )

=
∂S

∂ω(0)

∣∣∣∣
ω(0),T ,f

δω(0) +
∂S

∂T

∣∣∣∣
ω(0),T ,f

δT

+
∂S

∂f

∣∣∣∣
ω(0),T ,f

δf + o(‖δf ‖) (16)

If the norm of the forcing perturbation is supposed to be
small, we may consider only the linear part of (16). We ob-
tain(
∂S

∂ω(0)

∣∣∣∣
ω(0),T ,f

−I

)
δω(0) +

∂S

∂T

∣∣∣∣
ω(0),T ,f

δT

= −
∂S

∂f

∣∣∣∣
ω(0),T ,f

δf, (17)

whereI is the identity matrix.
Operators presented in (17) have the following meaning.

The first one,∂S/∂ω(0)|ω(0),T ,f , describes the relationship

between the variations in the final point of the orbit and its
initial point. This is the matrix of the tangent linear model
linearized around UPO and integrated on the period. To sim-
plify notations, we shall denote this operator byR

R =
∂S

∂ω(0)

∣∣∣∣
ω(0),T ,f

(18)

The second term in the expression (17) represents the deri-
vative of the solution with respect to time. Using Eqs. (1) and
(2), we can write

∂S

∂T

∣∣∣∣
ω(0),T ,f

=
dω

dt

∣∣∣∣
t=T

= F (ω(T ))+ f = F(ω(0))+ f (19)

since the orbit is periodic, i.e.ω(T ) = ω(0).
The matrix of the right-hand side of (17) is the most com-

plex. This matrix describes the variations in the final point
of the UPO due to forcing variations. Numerical evaluation
of matricesR and∂S/∂f depends on the time scheme. One
example of their calculation for the barotropic ocean model
is shown in the Appendix.

The expression (17) is not an invertible relationship be-
tween forcing and UPO parameters (initial point and period).
The reason for this is the noninvertibility of the matrix
(R − I ), calculated for a periodic orbit. This can easily be
seen from the spectrum of the tangent linear model integrated
for one period. The moduli of eigenvalues of the matrixR are
wellknown Floquet multipliers of the UPO and one of them
must be equal to one. This eigenvalue corresponds to the
perturbation of the initial point along the orbit. This pertur-
bation is conserved by the model and its amplification factor
is equal to one. When an identity matrix is subtracted from
the tangent linear model, the difference possesses a zero in
the spectrum.

The same fact can be explained from another point of view.
So far, any point from the UPO can be chosen as its ini-
tial point; no forcing perturbation is necessary to moveω(0)

along the orbit. Thus, there exists a non-zero perturbation
of the initial point which corresponds to zero perturbation of
forcing, i.e. the matrix is degenerated.

The simplest way to avoid this problem is to fix one com-
ponent of the vectorω(0). This technique is well-known in
the search of UPOs by the Newton method, where the same
matrix must be inverted. In Sparrow (1982), for example, the
z variable of the Lorenz system is fixed to bez = r − 1.

In general, one can fix any component ofω(0) whose time
derivative, determined by the model, is not zero. Let us sup-
pose that the first component is fixed. Then, the length of
the vectorδω(0) becomesN−1. However, the value ofδT is
also important in this study. If we replace the first component
(δω(0))1 by δT , then we obtain a vector of lengthN which
contains all the necessary variables.

We define vectorξ , whose first component isδT , and all
other components are equal to the corresponding components
of δω(0).

ξ1 = δT , ξk = (δω(0))k, k = 2, . . . , N

and (δω(0))1 = 0 (20)
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In order to conserve the equality (17), the first column of the
matrix (R − I ) must also be replaced by the vector
∂S/∂T |ω(0),T ,f (19). We shall call this matrixDξ

Dξ =


∂S
∂T 1

(R − I )1,2 . . . (R − I )1,N
∂S
∂T 2

(R − I )2,2 . . . (R − I )2,N

. . . . . . . . . . . .
∂S
∂T N

(R − I )N,2 . . . (R − I )N,N

 (21)

Using these notations we obtain

Dξ ξ = −Df δf, (22)

whereDf = ∂S/∂f |ω(0),T ,f .
If the matrixDξ is not degenerated, Eq. (22) will be used

below to find perturbations of initial conditions and of the
period of the orbit from the forcing perturbation. The case
det(Dξ ) = 0 points out the possible bifurcation of the UPO
when infinitesimal forcing perturbation is sufficient for dras-
tic change in the orbit and even for its disappearance.

2.2 Sensitivity of statistical moments of UPO

An average of an UPO (8) is written by dropping the index
k:

η(ω(0), T , f ) =
1

T

T∫
0

ω(t)dt =
1

T

T∫
0

S(ω(0), t, f )dt. (23)

Variation in the UPO average induced by forcing perturba-
tion δf (10) can be expressed as

δη =
1

T ′

∫ T ′

0
S(ω′(0), t, f ′)dt −

1

T

∫ T

0
S(ω(0), t, f )dt

=
∂η

∂T
δT +

∂η

∂ω(0)
δω(0) +

∂η

∂f
δf + o(‖δf ‖)

=
δT

T
(ω(0) − η)+

1

T

∫ T

0

(
∂S

∂ω(0)

∣∣∣∣
t

δω(0)
)
dt

+
1

T

∫ T

0

(
∂S

∂f

∣∣∣∣
t

δf

)
dt, (24)

because

∂η

∂T
=

∂

(
1
T

∫ T
0 S(ω(0), t, f )dt

)
∂T

=
T S(ω(0), T , f )−

∫ T
0 S(ω(0), t, f )dt

T 2

=
ω(0) − η

T
. (25)

In a discrete time, integrals are replaced by sums

∂η

∂ω(0)
=

1

M

M=T/τ∑
m=1

(
∂S

∂ω(0)

∣∣∣∣
t=mτ

)
,

∂η

∂f
=

1

M

M=T/τ∑
m=1

(
∂S

∂f

∣∣∣∣
mτ

)
. (26)

We recall that the first component of the vectorδω(0) is
fixed to be zero and all other components of this vector are
combined with the value ofδT in the vectorξ (20). In this
case, the first column in the matrix∂η/∂ω(0) can be replaced
by the vector∂η/∂T = (ω(0) − η)/T , similarly to (21). We
shall call this matrixGξ

Gξ =



(ω(0) − η)1
T

(
∂η

∂ω(0)

)
1,2

. . .

(
∂η

∂ω(0)

)
1,N

(ω(0) − η)2
T

(
∂η

∂ω(0)

)
2,2

. . .

(
∂η

∂ω(0)

)
2,N

. . . . . . . . . . . .

(ω(0) − η)N
T

(
∂η

∂ω(0)

)
N,2

. . .

(
∂η

∂ω(0)

)
N,N


(27)

Using these notations and (22) we obtain

δη = Gξ ξ +Gf δf =

(
Gf −GξD

−1
ξ Df

)
δf, (28)

whereGf = ∂η/∂f |ω(0),T ,f is defined by (26) andξ is the
vector (20). Thus, we obtain a linear relationship between the
forcing perturbation and variations of the average of UPO.

Variations of the second moment of UPO can be obtained
in a similar way. For each particular UPO

ζ(ω(0), T , f ) =
1

T

T∫
0

ω2(t)dt

=
1

T

T∫
0

(S(ω(0), t, f ))2dt, (29)

therefore,

δζ =
1

T ′

∫ T ′

0
(S(ω′(0), t, f ′))2dt

−
1

T

∫ T

0
(S(ω(0), t, f ))2dt

=
∂ζ

∂T
δT +

∂ζ

∂ω(0)
δω(0) +

∂ζ

∂f
δf + o(‖δf ‖) (30)

=
δT

T
((ω(0))2 − ζ )

+
2

T

∫ T

0
S(ω(0), t, f )

∂S

∂ω(0)

∣∣∣∣
t

δω(0)dt +

+
2

T

∫ T

0
S(ω(0), t, f )

∂S

∂f

∣∣∣∣
t

δf dt,

because

∂ζ

∂T
=
T

(
S(ω(0), T , f )

)2
−

∫ T
0

(
S(ω(0), t, f )

)2
dt

T 2

=

(
ω(0)

)2
− ζ

T
(31)

Expression (30) is similar to (24). All matrices in this for-
mula have already been calculated. We can only note that the
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product used in this formula is defined by (5). This means

(ηδη)i = ηiδηi and(
S(ω(0), t, f )

∂S

∂ω(0)
δω(0)

)
i

= Si(ω
(0), t, f )

N∑
j=1

∂S

∂ω(0)

∣∣∣∣
i,j

(δω(0))j (32)

Using this notation and Eqs. (28) and (30), we obtain

δζ = G
(2)
ξ ξ +G

(2)
f δf =

(
G
(2)
f −G

(2)
ξ D

−1
ξ Df

)
δf (33)

where

G
(2)
f =

2

T

∫ T

0
S(ω(0), t, f )

∂S

∂f

∣∣∣∣
t

dt, (34)

and

G
(2)
ξ =



(ω2
0 − ζ )1
T

(
∂ζ

∂ω(0)

)
1,2

. . .

(
∂ζ

∂ω(0)

)
1,N

(ω2
0 − ζ )2
T

(
∂ζ

∂ω(0)

)
2,2

. . .

(
∂ζ

∂ω(0)

)
2,N

. . . . . . . . . . . .

(ω2
0 − ζ )N
T

(
∂ζ

∂ω(0)

)
N,2

. . .

(
∂ζ

∂ω(0)

)
N,N


(35)

2.3 Sensitivity of the stability of UPO

In order to use the approximation of the attractor average (7),
we need to calculate the variations of weights (9) used in this
formula. These variations can be easily obtained:

δw =

δT
(∑

j λ
+

j

)
− T

(∑
j δλ

+

j

)
(∑

j λ
+

j

)2
(36)

Each Lyapunov exponent of the UPOλj is the ratio of the
logarithm of the Floquet multiplier and the period of orbit.
Floquet multipliers are obtained as moduli of eigenvalues of
the matrixR (18)

λj =
ln |µj |

T
, (37)

hence,

δλj =
1

T 2

(
T

|µj |
δ |µj | −δT ln |µj |

)
. (38)

Therefore,

δw =

=

δT
(∑

j λ
+

j

)
− T

∑
j

1
T 2

(
T

|µ|
+

j

δ |µ|
+

j −δT ln |µ|
+

j

)
(∑

j λ
+

j

)2

=

T δT
(∑

j λ
+

j

)
− T

∑
j

δ |µ|
+

j

|µ|
+

j

+ δT
∑
j ln |µ|

+

j

T
(∑

j λ
+

j

)2

=
2δT(∑
j λ

+

j

) +

∑
j

δ |µ|
+

j

|µ|
+

j(∑
j λ

+

j

)2
. (39)

The+ sign inµ+

j is used to mark Floquet multipliers which
are larger than one and which correspond to positive Lya-
punov exponentsλ+

j .
Using a linear approach, we express variations in the ab-

solute value ofµ in the case whenµ is complex:

δ |µj |=
Re(µj )Re(δµj )+ Im(µj )Im(δµj )

|µj |
. (40)

Let us consider variations inδµj produced by the forcing
perturbation.

Rϕj = µjϕj , whereR =
∂S

∂ω(0)

∣∣∣∣
ω(0),T ,f

(41)

Let us suppose that the forcing variationδf perturbes the
matrixR by δR. Let us first find the variations inµj :

(R + δR)(ϕj + δϕj ) = (µj + δµj )(ϕj + δϕj ) (42)

hence, in the linear framework,

(R − µj I )δϕj = −(δR − δµj I )ϕj (43)

Yetµj is an eigenvalue ofR; therefore, the matrix(R−µj I )

is degenerated. If we require thatδϕj exists, the right-hand
side must be orthogonal to the kernel of adjoint matrix(R −

µj I )
∗, i.e. to the vectorϕ∗

j , such that(R −µj I )
∗ϕ∗

j = 0. In
other words,ϕ∗

j is the eigenvector ofR∗ associated with the
complex conjugate eigenvaluēµj :

R∗ϕ∗

j = µ̄jϕ
∗

j . (44)

The orthogonality condition writes

〈(δR − δµj I )ϕj , ϕ
∗

j 〉 = 0, (45)

or

〈δRϕj , ϕ
∗

j 〉 − δµj 〈ϕj , ϕ
∗

j 〉 = 0. (46)

Let us suppose that all eigenvalues of the matrix are simple.
In this case, the scalar product〈ϕj , ϕ

∗

j 〉 is not equal to 0 and
we can write

δµj =
〈δRϕj , ϕ

∗

j 〉

〈ϕj , ϕ
∗

j 〉
, (47)

where〈., .〉 is a scalar product inRN or in CN when eigen-
vectors are complex.

In order to evaluate the matrixδR for any small forcing
perturbation, we write the linear part of the variation

δR =
∂R

∂ω(0)
δω(0) +

∂R

∂T
δT +

∂R

∂f
δf (48)

Derivatives∂R/∂ω(0) and∂R/∂f are three-dimensional ten-
sors. Their calculation requiresN4 operations per time step.
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However, if we do not need to calculate them explicitly, we
can reduce the number of operations. We can note that to
calculateδµj (47), we only need to calculate products

∂R

∂ω(0)
ϕj and

∂R

∂f
ϕj . (49)

These products, which are matrices, requireN3 operations.
The algorithm of calculation depends on the time discreti-

sation scheme. One example of this algorithm can be seen
in the Appendix. The algorithm allows us to calculate two
vectors,dξ anddf , as products

(dξ )k =
1

〈ϕ, ϕ∗
〉

∑
i,j

∂Ri,j

∂ω
(0)
k

ϕjϕ
∗

i , ∀k = 2, 3, . . . , N

(dξ )1 =

〈
∂R
∂T
ϕ, ϕ∗

〉

〈ϕ, ϕ∗
〉

and (50)

(df )k =
1

〈ϕ, ϕ∗
〉

∑
i,j

∂Ri,j

∂fk
ϕjϕ

∗

i . (51)

Taking into account (47), (48) and (50), we obtain

δµ = 〈dξ , ξ 〉 + 〈df , δf 〉

= −〈dξ ,D
−1
ξ Df δf 〉 + 〈df , δf 〉

= 〈df −D∗

f

(
D−1
ξ

)∗

dξ , δf 〉 (52)

thanks to (22). Using this formula, we can calculate the vari-
ations of weights (39)

δw =
2δT(∑
j λ

+

j

)
+

1(∑
j λ

+

j

)2

∑
j

〈(df )j −D∗

f

(
D−1
ξ

)∗

(dξ )j , δf 〉

|µ+

j |
(53)

Taking into account thatδT can be obtained as the first com-
ponent of the vectorξ , we obtain from (22)

δT = −(D−1
ξ Df δf )1. (54)

We can express it as a scalar product with the vectorp, which
is defined as

p1 = 1, pk = 0, k = 2, . . . N (55)

δT = 〈−D−1
ξ Df δf, p〉 = 〈−D∗

f

(
D−1
ξ

)∗

p, δf 〉. (56)

In this case,

δw =
1(∑
j λ

+

j

)2
×

[
2

(∑
j

λ+

j

)
〈−D∗

f

(
D−1
ξ

)∗

p, δf 〉

+

∑
j

〈(df )j −D∗

f

(
D−1
ξ

)∗

(dξ )j , δf 〉

|µ+

j |

]
= 〈h, δf 〉, (57)

where

h =
1(∑
j λ

+

j

)2

[
−2

(∑
j

λ+

j

)
D∗

f

(
D−1
ξ

)∗

p

+

∑
j

(df )j −D∗

f

(
D−1
ξ

)∗

(dξ )j

|µ+

j |

]
. (58)

2.4 Approximation of perturbation of the attractor average

Using formulas (7), (28) and (57) we obtain

δω ∼ lim
L→∞

∑L
k=1(δwkηk + wkδηk)∑L

k=1wk

−

∑L
k=1 δwk

∑L
k=1wkηk(∑L

k=1wk

)2

=

∑L
k=1(δwkηk + wkδηk)− ω

∑L
k=1 δwk∑L

k=1wk

=
1∑L

k=1wk

L∑
k=1

[
〈hk, δf 〉(ηk − ω)

+ wk

(
Gf −GξD

−1
ξ Df

)
k
δf

]
= H (1)δf, (59)

where matrixH is defined by

H
(1)
i,j =

1∑L
k=1wk

L∑
k=1

[
h
(k)
j (ηk − ω)i

+ wk

(
Gf −GξD

−1
ξ Df

)
k

]
. (60)

Perturbation of the mean variance of the solution on the
attractorσ = ω2 − ω2 from (3) can be approximated also
with the help of the matrixH (2). To develop this matrix, we
use expressions (7), (30), and (57)

δσ ∼ lim
L→∞

∑L
k=1(δwkζk + wkδζk)∑L

k=1wk

−

∑L
k=1 δwk

∑L
k=1wkζk(∑L

k=1wk

)2
− 2ωδω

∼

∑L
k=1(δwkζk + wkδζk)− ω2

∑L
k=1 δwk∑L

k=1wk
− 2ωδω

=
1∑L

k=1wk

L∑
k=1

[
〈hk, δf 〉(ζk − ω2)

+ wk

(
G
(2)
f −G

(2)
ξ D

−1
ξ Df

)
k
δf

]
− 2ωH (1)δf

= H (2)δf, (61)

whereH (2) is the matrix defined by

H
(2)
i,j =

1∑L
k=1wk

L∑
k=1

[
h
(k)
j (ζk − ω2)i
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+wk

(
G
(2)
f −G

(2)
ξ D

−1
ξ Df

)
k

]
− 2ωiH

(1)
i,j . (62)

Equations (59) and (61) can help us to determine if there
exists a forcing perturbation which provides the prescribed
perturbation of the average solution or its mean variance. Of
course, if the matrixH (1) is not degenerated, any small per-
turbation of the average solution can be obtained by an ap-
propriate forcing perturbation. Otherwise, one has to analyze
the kernel of

(
H (1)

)∗
. If the prescribed perturbation of the

average solution is orthogonal to the kernel of the adjoint
matrix, we can solve the system (59) and obtain the neces-
sary forcing perturbation. If the perturbation of the average
solution is not orthogonal to the kernel, the system (59) pos-
sesses no solution and we can state that there is no forcing
perturbation which results in the prescribed perturbation of
the average solution.

A similar procedure with theH (2) matrix must be per-
formed if we look for a forcing perturbation resulting in a
prescribed perturbation of the mean variance.

3 Barotropic ocean model in a square

3.1 Model and its parameters

We consider barotropic ocean dynamics, i.e. all the thermo-
dynamic effects are neglected and the vertical structure of the
ocean is supposed to be uniform. The equation of dynamics
of the wind-driven ocean is written for the barotropic vortic-
ity ω

∂ω

∂t
+ J (ψ, ω + `) = µ1ω − σω + f, ω = 1ψ (63)

We assume theβ-plane approximation for the Coriolis pa-
rameter̀ , which represents the effect of the Earth’s rotation
in this equation, i.e. we suppose that this parameter is lin-
ear iny coordinate:` = `0 + βy, where`0 is the value of
the Coriolis parameter at the mid-latitude of the basin. We
use very simple basin geometry represented by a square box
of side lengthL = 4000 km. We suppose that this basin
is located in the middle of North Atlantic, so we take the
value of the Coriolis parameter in the middle of basin to be
equal to`0 = 9.3 × 10−5 s−1, and its meridional gradient
β = 2 × 10−11 (m s)−1.

The source of energy in this equation is presented by the
atmospheric wind stress applied to the surface. In this paper,
we take a steady zonal wind with a classical two gyre anti-
symmetric pattern. This is seen as a schematic pattern for the
mean curl of the wind stress over the North Atlantic ocean in
middle latitudes. Its magnitude is equal to

f = −
2πτ0
ρHL

sin
2πy

L
(64)

whereτ0 = 1.1 dyn/cm2 is the wind tension on the sur-
face,ρ = 1000 kg/m3 is the density of water. The depth
of the active wind driven currentH has been chosen to be

500 m. The dissipation in Eq. (63) is composed by the har-
monic lateral frictionµ1ω and the bottom drag parametrized
by σω. Values of friction coefficients used in this paper are
µ = 1250 m2/s andσ = 5 × 10−8 s−1.

The equation (63) is subjected to impermeability and free-
slip boundary conditions

ψ |∂�= 0, ω |∂�= 0. (65)

In order to look for a weak solution to the problem (63),
(65) we perform its variational formulation:

〈
∂ω

∂t
, ϕ〉 + 〈J (ψ, ω + βy), ϕ〉

= −µ〈∇ω,∇ϕ〉 − σ 〈ω, ϕ〉 + 〈f, ϕ〉, (66)

〈ω, ϕ〉 = −〈∇ψ,∇ϕ〉.

for any functionϕ(ω, y) ∈ H 1
0 (�). Here,H 1

0 (�) denotes the
linear space of functions such that the square is integrable, as
well as the square of their first derivatives. Functions in this
space must vanish on the boundary of the domain. Brackets
〈., .〉 denote theL2 scalar product:

〈ψ, ϕ〉 =

∫ ∫
�

ψϕdxdy (67)

3.2 Discretisation

The variational formulation (66), (67) of the problem (63)
allows one to look for a solution by the finite element method
(FEM). So far, the solution produced by the barotropic model
of the North Atlantic typically includes a western boundary
layer with intense velocity gradients; the advantage of refin-
ing the triangulation along the western boundary of the do-
main is rather clear. This helps one to keep the quality of
explicit eddy resolution of the model, while working with a
lower number of grid nodes.

In spite of the fact that the number of operations per time
step and grid node is much higher for the FE model, the pos-
sibility of considerably reducing the number of grid points
diminishs the computational cost of a model run. The possi-
bility of having a better working precision with a lower num-
ber of grid points is very valuable in this work due to a high
number of operations per point.

The package MODULEF Bernadou (1988) has been used
to perform a triangulation of a domain. This package pro-
duces quasi-regular triangulation of the domain based on the
prescribed grid nodes on its boundary. We require the refin-
ing of the triangulation near the western boundary and espe-
cially in the middle of the domain, where velocity gradients
are extremely sharp.

The domain� is covered by a set of non-intersecting tri-
angles. The set of integration points is defined as the union
of vertices and mi-edges of triangles. Finite elements of type
P2 are used here, i.e. the polynomials of the second degree
pi(x, y) = aix

2
+ bixy + ciy

2
+ dix + eiy + fi . The ith

finite element is taken to be equal to 1 at the i-th integration
point and zero at all other points.
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Fig. 1. Triangulation of a unit square. The integration points set is
the union of vertices and mi-edges of triangles.

The grid used in this paper is presented in Fig. 1. This
triangulation is composed of 92 triangles. The integration
points set, which is a union of vertices and mi-edges of trian-
gles, equals 211 nodes. The resolution of the grid varies be-
tween 1/40 of the side length (about 100 km) near the west-
ern boundary, and 1/7 of the side length (about 550 km) near
the eastern one.

According to the Dirichlet boundary conditions (65), we
only consider internal points of the domain:(xi, yi) ∈ �\∂�

for i = 1, . . . , N., so the functionsψ,ω are presented as
linear combinations

ψ(x, y, t) =

N∑
i=1

ψi(t)pi(x, y),

ω(x, y, t) =

N∑
i=1

ωi(t)pi(x, y).

To simplify notations, we define matrices of mass and rigid-
ity as

Mi,j = 〈pi, pj 〉,

Ci,j = 〈∇pi,∇pj 〉

{
i = 1, . . . , N
j = 1, . . . , N

(68)

Using these expressions, we can write the discretised sys-
tem (66):

M
∂ω

∂t
+ J (ψ, ω + βy) = −µCω − σMω +Mf (69)

Mω = −Cψ

and

J (ψ, ω + βy)j =

∑
i

∑
m

ψm(ωi + βyi)〈J (pm, pi), pj 〉

This system has been forwarded in time by the following
scheme,

M
ωn+1

− ωn−1

2τ
+ J (ψn, ωn + βy)

= −µC
ωn+1

+ ωn−1

2
− σM

ωn+1
+ ωn−1

2
+Mf. (70)

The first step is performed by the second order scheme for
the nonlinear advection term:

M
ω1/2

− ω0

τ/2
+ J (ψ0, ω0

+ βy)

= −µC
ω1/2

+ ω0

2
− σM

ω1/2
+ ω0

2
+Mf

M
ω1

− ω0

τ
+ J (ψ1/2, ω1/2

+ βy)

= −µC
ω1

+ ω0

2
− σM

ω1
+ ω0

2
+Mf (71)

4 Sensitivity of the barotropic ocean model

We do not intend to reproduce actual oceanographic data,
which would be hopeless in the framework of a barotropic
model. This model is used in this paper just as a simple,
well studied geophysical model to test the approximation of
the attractor by periodic orbits and to test the possibility of
explaining the sensitivity of a multi-dimensional chaotic sys-
tem by means of its unstable periodic orbits.

The purpose of this chapter is threefold:

– to find the external influenceδf which maximizes the
norm of the perturbation of the average of the solution
of the barotropic ocean model on its attractor‖δω‖ and
the mean variance of the solution‖δσ‖,

– to estimate the quantity of UPO necessary to construct
matricesH (1) andH (2),

– to compare the perturbation predicted by a linear ap-
proach with the reference perturbation produced by this
forcing and to verify to what extent the linear approach
remains valid. The reference perturbation is calculated
from a long trajectory using the formula (6).

In order to study the sensitivity of the model attractor, we
formulate first the tangent linear model. This model can be
obtained easily as the linearisation of the (63) around its tra-
jectoryS(ω(0), t, f ) for t ∈ [0, T ]:

∂δω

∂t
+J (1−1S(ω(0), t, f ), δω)+ J (δψ, S(ω(0), t, f )+ `)

= µ1(δω)− σδω,

1(δψ) = δω. (72)

This model describes the linear evolution of a small pertur-
bation δω that has been added to the basic trajectory
S(ω(0), t, f ). The tangent linear model has been discretised
in the same way as the model (63). Finite elements were
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used to perform spatial discretisation and the scheme (70) is
applied for time stepping.

M
δωn+1

− δωn−1

2τ
+ J (1−1S(ω(0), tn, f ), δωn)

+ J (δψn, S(ω(0), tn, f )+ βy)

= −µC
δωn+1

+ δωn−1

2
− σM

δωn+1
+ δωn−1

2
. (73)

As seen before, the first step is performed by the scheme
for the nonlinear advection term,

M
δω1/2

− δω0

τ/2
+ J (1−1S(ω(0),0, f ), δω0)

+ J (δψ0, S(ω(0), 0, f )+ βy)

= −µC
δω1/2

+ δω0

2
− σM

δω1/2
+ δω0

2
,

M
δω1

− δω0

τ
+ J (1−1S(ω(0), τ/2, f ), δω1/2)

+ J (δψ1/2, S(ω(0), τ/2, f )+ βy)

= −µC
δω1

+ δω0

2
− σM

δω1
+ δω0

2
(74)

Unstable periodic orbits have been found for this model
using the method proposed in Kazantsev (1998). For each
orbit, we construct matricesR (18),Dξ , Df (21),Gξ , Gf
(27),G(2)ξ , G

(2)
f (35), (34), as well as vectorsdξ , df (50)

andh (58). The numerical algorithm of construction of these
matrices and vectors is presented in the Appendix.

This allows us to calculate matricesH (1) (60) andH (2)

(62), which describe the linear part of relationship the be-
tween forcing variation and the average solution on the at-
tractor, and its mean variance.

4.1 The choice of the weight

One important question addressed in this paper is the choice
of the weight,w, used in the approximation of the attrac-
tor by UPO set (7). All calculations above have been per-
formed for the weight defined by the formula (9). However,
the choice of this weight is absolutely empiric and requires
some discussion.

The use of Lyapunov exponents as a measure of instability
of UPO is not well justified. A more classical measure used
for non-dissipative systems is the Floquet multiplier,|µ| =

exp(λT ). If the system is hyperbolic, then the UPO set is
dense in the invariant set; zeta functions and cycle expansion
can be used to perform accurate computations. This is much
less evident when we work with a dissipative system such as
an ocean model.

It has been argued in Eckhard and Grossman (1994) and in
Cvitanovic (1995) to use weights proportional to
|det[I − R⊥

]|
−1 for hyperbolic systems. Here, the symbol

⊥ means the projection orthogonal to the direction of the or-
bit. One can easily see that this weight is based on a Floquet
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Fig. 2. Difference
‖ψapprox(L)− ψdirect‖

‖ψdirect‖
for different weightsw.

multiplier:

|det[I − R⊥
]|

−1
=

[ ∏
µk 6=1

|(1 − µk)|

]−1

=

[ ∏
λk 6=0

|(1 − eλkT )|

]−1

. (75)

However, statistical averages of UPOs based on cycle ex-
pansions developed in the context of known symbolic dy-
namics of a hyperbolic system may fail in the case of dissi-
pative systems, especially when the symbolic dynamics is
not understood. For dissipative systems, it has been pro-
posed in Zoldi and Greenside (1998), Zoldi (1998) to use
the escape-time weighting, i.e. weights equal to the inverses
sums of positive Lyapunov exponents. The reasoning behind
this is rather clear: less unstable orbits must be weighted
more heavily.

However, it is also reasonable to suppose that orbits with
longer periods must be weighted more heavily. So far, they
are longer and should provide greater contribution to the total
sum.

In this paper, we compare the approximation of the baro-
tropic model’s average solution, approximated using four dif-
ferent weights. The first one is the inverse determinant,
|det[I−R⊥

]|
−1, proposed by Eckhard and Grossman (1994).

The second one is simply the inverse of the product of all Flo-
quet multipliers greater than one. The third is the escape-time
weighting from Zoldi and Greenside (1998), and the fourth
is the escape-time multiplied by the period of orbit.
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Fig. 3. Average streamfunction calculated by 104 years model integration(a) and approximated by the UPO set(b). Contours from−80 to
80 interval 10 Sv.

w(1) =

[ ∏
µk 6=1

|(1 − µk)|

]−1

w(2) =
1

exp
(∑

λi>0 λiT
)

w(3) =
1∑

λi>0 λi

w(4) =
T∑
λi>0 λi

(76)

In order to compare these four weights, we integrate the
model for ten thousands years and calculate directly the av-
erage solution by (6):

ψdirect =
1

104years

104 years∫
0

ψ(t)dt, (77)

After that, this average is approximated as a weighted mean
of the increasing number of UPOs arranged by period.

ψapprox(L) =

∑L
k=1wkηk∑L
k=1wk

, ηk =
1

Tk

Tk∫
0

ψk(t)dt (78)

The relative difference‖ψapprox(L)− ψdirect‖/‖ψdirect‖ as
a function ofL is shown in Fig. 2 for different weightsw.
As one can see in Fig. 2, any two weights based on the Flo-
quet multipliers results in a monotonous convergence. But
this convergence is much slower than the convergence pro-
vided by escape-time weighting. Even 30 orbits are not suffi-
cient to approximate the average with an acceptable accuracy
when we use eitherw(1) or w(2). Butw(3) andw(4) provide
non-monotonous convergence, which is rather rapid, and we

obtain good approximation accuracy. Thirty orbits are nec-
essary to obtain an approximation error less than 1% using
w(3), and only 20 are sufficient for usingw(4). This com-
parison has determined the choice of the weightw(4) as the
weight used in this paper.

One can see in Fig. 3 the average streamfunction pattern,
calculated by 104 years model integration (Fig. 3a) and ap-
proximated by the UPO set (Fig. 3b). Thirty UPOs have been
used in approximation with weightw(4) = T

/∑
λi>0 λi .

The difference between Fig. 3a and Fig. 3b is difficult to
see. Indeed, as seen in Fig. 2, the relative approximation
error is about 0.7%.

We can note here, that Fig. 2 and Fig. 3 also inform us
about the quantity of UPO, which is necessary to approxi-
mate attractor properties and to obtain a required accuracy.
Such a simple experiment shows us whether the number of
UPOs we have found is sufficient or not.

4.2 The “most dangerous” forcing perturbation

Now we proceed to the sensitivity of the model’s attractor.
We look for a forcing perturbation to which the attractor av-
erage is the most sensible, i.e. we want to findδf which
maximizes the ratio

max
〈δω, δω〉

〈δf, δf 〉
(79)

Taking into account (59), we obtain

max
〈δω, δω〉

〈δf, δf 〉
= max

〈H (1)δf,H (1)δf 〉

〈δf, δf 〉

= max
〈(H (1))∗H (1)δf, δf 〉

〈δf, δf 〉

= maxν (80)

whereν are singular values ofH (1)

(H (1))∗H (1)δf = νδf (81)
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Fig. 4. Singular values of matricesH (1) (a) andH (2) (b).

Thus, the “most dangerous” forcing perturbation can be found
as the singular vector ofH (1) corresponding to the largest
singular value. The value of the ratio〈δω, δω〉/〈δf, δf 〉 is
expressed by the singular valueν.

Similarly, the forcing perturbation to which the mean vari-
ance of the solution on the attractor is the most sensitive, is
expressed as a singular vector of the matrixH (2) correspond-
ing to the largest singular value.

Singular values ofH (1) andH (2) are shown in Fig. 4a and
Fig. 4b, respectively. Their spectra have been truncated at
the 150th value because of a lack of computer accuracy.

One can note the wide range covered by these values, i.e.
there exists a forcing perturbation which provokes a drastic
changes in the average solution. In addition, the model av-
erage exhibits 104–105 times lower sensitivity to some other
perturbations of the forcing. One can even see a larger differ-
ence in the sensitivity of the mean variance of the solution.

Moreover, there exists a forcing perturbation which is re-
ally “the most dangerous” for the attractor. This perturba-
tion corresponds to the first singular vector and it provokes
the perturbation of the model average at least 23 times larger
than any otherδf of the same amplitude in the orthogonal
space. The first singular valueν of theH (1) matrix is equal
to 4.15 × 108, the second and the third ones are equal to
1.75× 107 and 1.14× 107, respectively.

For the barotropic ocean model, the “most dangerous”δf

for the average solution is also the “most dangerous” for the
mean variance. First singular vectors ofH (1) andH (2) co-
incide. The model’s mean variance is also at least 6 times
more sensitive to this forcing perturbation than to any other
one. The first singular valueν of theH (2) matrix is equal to

917, the second and the third are 151 and 122, respectively.
This δf is the most dangerous for the attractor of the model.

The pattern of this forcing perturbation is shown in Fig.
5a. In spite of the fact that the major model activity takes
place near the western boundary, the “most dangerous”δf

has a maxima near the eastern one. The perturbation which
is concentrated in the region of the jet stream of the model
corresponds to the third singular vector, which provokes a
25 times lower response of the model average. This forcing
perturbation is shown in Fig. 5b.

The perturbation of the average solution caused by the
“most dangerous”δf (Fig. 5a) is concentrated in the region
of the jet steam near the western boundary. The perturba-
tion of the average streamfunctionδψ is shown in Fig. 6a,
the perturbation of the average vorticityδω in Fig. 7a, and
the perturbation of the mean varianceδσ is shown in Fig.
8a. One can point out that only a part of the total basin is
shown in these figures, because perturbations are vanishing
elsewhere.

This forcing perturbation causes the streamfunction to be-
come asymmetrical. The jet stream in the middle of the basin
turns to the north or to the south.

4.3 Comparison of approximation with direct simulation

In order to estimate the error of the approximation of the pro-
posed method, we compare this approximation with values
calculated directly. Direct calculation has been performed in
the following way. We perform firstT = 104 years integra-
tion of the model with original forcing (63) and calculate the
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Fig. 5. (a)The “most dangerous” forcing perturbation. (First singular vector ofH (1) matrix.) This perturbation results inδ‖ω‖ = 4.15×

108δ‖f ‖. (b) “Less dangerous” forcing perturbation. (Third singular vector ofH (1) matrix.) This perturbation results inδ‖ω‖ = 1.14×

107δ‖f ‖.

Fig. 6. Perturbation of the streamfunction average approximated by the whole UPO set(a) and calculated by 104 years model integration
(b). Contours from−10 to 22 interval 2 Sv.

reference averages:

ω =
1

T

T∫
0

ω(t)dt, ω2 =
1

T

T∫
0

ω2(t)dt. (82)

Second, we performT = 104 years run of the perturbed
model with forcing equal tof + δf and calculate averages
of the perturbed model solution:

ω′ =
1

T

T∫
0

ω′(t)dt, (ω′)2 =
1

T

T∫
0

(ω′)2(t)dt, (83)

The forcing perturbation used in this run is proportional to
the first singular vector of theH (1) matrix in Fig. 5a. The

norm of the perturbation is chosen to be 2% of the original
forcing;

‖δf ‖ = 0.02‖f ‖ (84)

We calculate the differences between averages of the per-
turbed model’s solution and averages obtained in the refer-
ence run. These differences are calculated for the stream-
functionψ , vorticity ω and mean variance of the vorticity
σ .

δωdirect = ω′
− ω (85)

δψdirect = ψ
′
− ψ = 1−1(ω′

− ω)

δσdirect = (ω′2 − ω′
2
)− (ω2 − ω2) (86)

These values are shown in Fig. 6b, Fig. 7b, and Fig. 8b
respectively. They are to be compared with the values ap-
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Fig. 7. Perturbation of the vorticity average approximated by the UPO set(a) and calculated by 104 years model integration(b). Contours
from −5 × 10−6 to 3× 10−6 interval 5× 10−7 s−1.

Fig. 8. Perturbation of the mean variance of vorticity approximated by the UPO set (contours from−9 × 10−12 to 9 × 10−12 interval
1 × 10−12 s−2) (a) and calculated by 104 years model integration (contours from−8 × 10−12 to 8× 10−12 interval 1× 10−12 s−2) (b).

proximated by the UPO set, shown in partA of the same
pictures. The approximation has been calculated as

δωapprox(L) = H (1)(L)δf (87)

δψapprox(L) = 1−1H (1)(L)δf

δσapprox(L) = H (2)(L)δf

whereH (1)(L),H (2)(L) are matrices computed by (60), (62),
usingL periodic orbits. All available UPOs were used in the
approximations shown in Fig. 6a, Fig. 7a, and Fig. 8a.

As one can see in Fig. 6, Fig. 7, and Fig. 8, there is only
a slight difference in the approximation of the mean variance
of the vorticity, while patterns of the streamfunction and vor-
ticity seem to be identical to each other. This fact shows that
the approximation is rather accurate, especially for averages.

The same comparison can be performed for another forc-
ing perturbation: the third singular vector of theH (1) matrix,
in Fig. 5b, for example. This forcing results in the accelera-
tion of the jet stream in the middle of the basin. The jet be-
comes longer. The perturbation of the streamfunction caused
by this forcing is shown in Fig. 9 and it is approximated by
the UPO set in Fig. 9a and calculated directly by (86) in Fig.
9b.

Now, we will say a few words about the precision of the
reconstruction of the attractor perturbation and about the sen-
sitivity of the final result to the number of UPOs used in the
reconstruction. As we have seen in Fig. 2, about 20 UPOs
are necessary to reconstruct the attractor averages with a pre-
cision less than 1%. This precision has been obtained using
the weightw(4) = T

/∑
λi>0 λi . We use the same weight in

the approximation of the attractor perturbation.
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Fig. 9. Perturbation of the streamfunction average approximated by the UPO set(a) and calculated by 104 years model integration(b).
Contours from−1 to 1 interval 0.1 Sv.
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Fig. 10. (a)Values of 1−α(L) andρ(L) for different number of UPOs’L. (b) Three largest singular values ofH (1)(L) for different number
of UPOs’L.

To estimate precision we compare the perturbation cal-
culated directly,δωdirect (85), with the reconstructed one,
δωapprox(L) (87), obtained using the increasing numberL of
UPOs arranged by period.

We estimate separately the precision of the reconstruction
of the perturbation’s pattern and its amplitude. The recon-
struction of the pattern is evaluated by the correlation coeffi-
cient

α(L) =
〈δωdirect, δωapprox(L)〉

‖δωdirect‖‖δωapprox(L)‖
(88)

where the scalar product is defined by (67). If the correlation
coefficient is close to one, thus indicates a good reconstruc-
tion of the pattern.

The accuracy of the reconstruction of the amplitude is eval-
uated by the relative difference in the norm

ρ(L) =
‖δωdirect − δωapprox(L)‖

‖δωdirect‖
.

These two values,α(L) andρ(L), are shown in Fig. 10a for
an increasing number of UPOs’L used in reconstruction.

One can see that the pattern of the perturbation is very
well reconstructed, even using 5 orbits only with low periods.
The correlation coefficient (88) rapidly reaches the value of
99.8% and an additional increasing of the number of UPOs
does not improve it. This fact can be explained by the in-
sufficient accuracy in evaluation ofδωdirect, due to the finite
integration time (10 000 years). Indeed, when we look at Fig.
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Fig. 11. Perturbation of the streamfunction average approximated by 3 UPOs (contours from−0.4 to 1.1 interval 0.1 Sv)(a) and 6 UPOs
(contours from−5 to 10 interval 1 Sv)(b).

7b, we can see that the pattern is slightly asymmetrical. This
asymmetry results in an error which prohibits the improve-
ment of the correlation between the directly calculated per-
turbation and the reconstructed one which is perfectly sym-
metrical.

The amplitude of the perturbation is more difficult to ap-
proximate. Even with thirty orbits the precision remains at a
6—10% level. This fact can be explained by the slow con-
vergence of the first singular value of the matrixH (1)(L).
As we can see in Fig. 10b, the first singular value varies a
lot when we increase the number of UPOs used in the con-
struction of the matrix. When we first use four orbits with
low periods, we get a strong underestimate of the first singu-
lar value. This error is due to the fact that these four orbits
are antisymmetrical, while all other orbits do not possess any
symmetry.

The perturbation of the average solution is reconstructed
using 3 and 6 UPOs, as shown in Fig. 11. As one can see,
the pattern of the perturbation is close to the pattern obtained
with the whole set of 30 UPOs (Fig. 6a, but the amplitude
is much lower). The maximum value of the streamfunc-
tion’s perturbation reconstructed with 3 UPOs is equal to 1
Sv, i.e. 22 times lower than the real perturbation. However,
the correlation of patterns Fig. 11a and Fig. 6b is equal to
81%. When we reconstruct the perturbation with 6 UPOs
(Fig. 11b), the correlation becomes 99.2 %, but the maxi-
mum value remains 2 times lower than the real perturbation.
We need to use all 30 orbits in this approximation to obtain
the pattern shown in Fig. 6b and an error lower than 10%.

5 Discussion and conclusions

In this paper we describe a method of estimates of varia-
tions of statistical averages of the barotropic ocean model’s
attractor caused by perturbations of the right-hand side of the

model. To realize this approach, one has to find several or-
bits numerically. Each orbit must be tested from the point of
view of possible bifurcations. This implies the analysis of in-
vertibility of the matrixDξ (22). If this matrix is degenerated
or its determinant is too close to zero, the orbit must not be
used in the sensitivity analysis. The elimination of one orbit
is not very important because we cannot take into account all
UPOs of the system due to its infinite number.

After that, one has to observe the spectrum of the matrix
R = ∂S/∂ω(0)|ω(0),T ,f (18) and determine whether the ma-
trix possesses multiple eigenvalues. In this case, this orbit
must also be eliminated from consideration because we can-
not estimate variations of its eigenvaluesδµj by the formula
(47). For multiple eigenvalues, the scalar product〈ϕj , ϕ

∗

j 〉

may be equal to zero and perturbationsδµj cannot be calcu-
lated from (47).

Having constructed matricesH (1) andH (2) (60), (62), one
can analyze their invertibility and kernels in order to deter-
mine the possibility of finding a forcing which provides the
prescribed perturbation of the average solution. If the pre-
scribed perturbation is orthogonal to the kernel of the adjoint
matrix, we can solve the system and obtain the forcing per-
turbation. If we want to find “the most dangerous forcing
perturbation”, we can analyze singular vectors and singular
values of these matrices.

For the barotropic ocean model, we can state that the pre-
diction obtained using the UPO approach corresponds well
to the values ofδω andδσ calculated from long model inte-
gration. Linear prediction remains valid up to and including
rather high values ofδf . About 20 UPOs are sufficient to
construct matricesH for this model.

Finally, we shall note several advantages and shortcomings
of this method. The principal advantage is the fact that this is
ana priori method. It allows us to determine if there exists a
forcing perturbation which produces a given perturbation of
the average of the model solution or its mean variance. If this
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forcing perturbation exists, one can find it solving the system
(59) or (61).

This method also allows us to determine the forcing per-
turbation, which maximizes the perturbation in the statistical
average of the model solution. Another advantage lies in the
fact that any UPO belongs to the attractor. This fact ensures
that we discuss the attractor perturbation rather than a partic-
ular trajectory. This method does not require a long model
integration, which is necessary for the direct method to ob-
tain a good accuracy of the statistical averages. In this paper,
we obtain the reconstruction of the perturbation of the attrac-
tor, which is more precise, in some sense, than the directly
calculated value. The reconstructed perturbation is perfectly
antisymmetric with respect to the middle line (as it must be),
while even the integration for 10 000 years is not sufficient
to obtain the exact antisymmetry in the directly calculated
value.

This method cannot allow us to take into account possi-
ble bifurcations leading to the creation of new periodic orbits
and stationary points. This is one of the shortcomings of
the method, because new UPOs and equilibria may strongly
modify the attractor topology and average values. Thus, if
any inverse Hopf bifurcation takes place, a stable equilibrium
may arise. In this case, the attractor dimension is suddenly
reduced to zero and all the attractor’s parameters undergo
considerable changes. Unfortunately, the available UPO set
does not possess any information about orbits that may ap-
pear and the method does not predict these changes.

However, this method can automatically take into account
some possible changes in the structure of the attractor. Let
us suppose one orbit may become stable under some forcing
perturbation. In this case, the attractor of the model becomes
a one-dimensional regular attractor without chaos. Its av-
erage becomes the average of this “stabilized” UPO. Using
this method, we will simply obtain this forcing perturbation
as the singular vector ofH (1). The reason for this is very
simple and can be explained by the following reasoning:

– if any orbit in the UPO set is stable, this orbit is weighted
with the infinite weightw defined by (9). (A stable orbit
has no positive Lyapunov exponents; hence, the denom-
inator of (9) is equal to zero);

– if any unstable orbit can be “stabilized” by some forcing
perturbation, the perturbation of the weightδw for this
orbit will be very large (theoretically infinite) realizing
the difference between a finite weight of the unstable
original orbit and an infinite weight of the stable per-
turbed one;

– to realize this large perturbation of the weightδw, the
vectorh in (57) must be collinear toδf and must have a
large norm;

– if we have an orbit for which the norm ofh(k) is very
large, we can neglect all other orbits and terms in the
formula (60). In this case, the matrixH (1) becomes

(dropping the indexk)

H
(1)
i,j = (η − ω)ihj ;

– in order to look for singular values and vectors ofH (1)

we first calculate the product(
(H (1))∗ ×H (1)

)
i,j

=

∑
m

(H (1))m,i(H
(1))m,j

= hihj
∑
m

(η − ω)2m

= hihj‖η − ω‖
2
;

– this matrix has an eigenvectorh with eigenvalueν =

‖η − ω‖
2
‖h‖2 because(

(H (1))∗H (1)
)
h =

∑
j

hihj‖η − ω‖
2hj

= ‖η − ω‖
2
‖h‖2h

The eigenvalueν is large because we assumed the norm
of h to be large, and the eigenvector points in the direc-
tion of δf ;

– if we multiply the matrixH (1) by anyδf , we obtain the
perturbation of the average solution according to (59)

δω = H (1)δf = 〈h, δf 〉(η − ω)

hence, the attractor average will move towards the aver-
age of the UPOη, which is going to become stable.

The main shortcoming of this method lies in the neces-
sity of finding several UPOs numerically. For the barotropic
ocean model, the search procedure requires the number of
operations equivalent to the 104–105 years model integration.
Of course, such a long integration is only possible now for a
simple model. Its application to more complicated models,
such as the eddy-resolving multilayer model and the primi-
tive equations model would require more powerful comput-
ers.

Appendix A Calculation of matricesH (1) andH (2)

In order to calculate matricesH (1) andH (2), we need to cal-
culate the following derivatives for each UPO:

– R = ∂S/∂ω(0)|ω(0),T ,f defined by (18) which is used to
construct matrixDξ (21) for the Eq. (22);

– Df = ∂S/∂f |ω(0),T ,f the right-hand side of the Eq. (22);

– ∂η/∂ω(0) defined by (26) which is used to construct ma-
trix Gξ (27) for the Eq. (28);

– ∂η/∂f defined by (26) which is used to construct matrix
Gf for the Eq. (28);



E. Kazantsev: Attractor of the barotropic ocean model 297

– (∂R/∂ω(0))ϕ defined by (49) which is used to calculate
vectorsdξ defined by (50);

– (∂R/∂f )ϕ defined by (49) which is used to calculate
vectorsdf defined by (51);

– ∂R/∂T defined by (49) which is used to calculate the
first component of the vectordξ defined by (50).

We begin with the time discretisation scheme of the tan-
gent linear model, linearized around the UPOω(t) =

S(ω(0), t, f ) for t ∈ [0, T ],ω(T ) = ω(0) (73). Let us rewrite
(73) in the compact matricial form. Let us suppose that UPO
ω(t) is defined by M pointsω(0), ω(1), . . . , ω(M−1), ω(M).
The final point of the orbitω(M) is equal to its initial point
ω(0). We define matrices

E+(τ ) = M+ τσM+ τµC,
E−(τ ) = M− τσM− τµC,
I(ω(n))ϕ = −J (1−1ω(n), ϕ)− J (1−1ϕ, ω(n) + βy) (A1)

Then, the schemes (73), (74) writes

δω1/2
= −

τ

2
E−1

+ (
τ

4
)I(ω(0))︸ ︷︷ ︸

A(ω(0))

δω0
+ E−1

+ (
τ

4
)E−(

τ

4
)︸ ︷︷ ︸

D(τ/4)

δω0

=

(
A(ω(0))+D(τ/4)

)
︸ ︷︷ ︸

R(1/2)

δω0
= R(1/2)δω0

δω1
= −τE−1

+ (
τ

2
)I(ω(1/2))︸ ︷︷ ︸

A(ω(1/2))

δω1/2
+ E−1

+ (
τ

2
)E−(

τ

2
)︸ ︷︷ ︸

D(τ/2)

δω0

=

(
A(ω(1/2))R1/2

+D(τ/2)
)

︸ ︷︷ ︸
R(1)

δω0
= R(1)δω0

δω2
= −2τE−1

+ (τ )I(ω(1))︸ ︷︷ ︸
A(ω(1))

δω1
+ E−1

+ (τ )E−(τ )︸ ︷︷ ︸
D(τ)

δω0

=

(
A(ω(1))R1

+D(τ)
)

︸ ︷︷ ︸
R(2)

δω0
= R(2)δω0

δωn+1
= −2τE−1

+ (τ )I(ω(n))︸ ︷︷ ︸
A(ω(n))

δωn + E−1
+ (τ )E−(τ )︸ ︷︷ ︸

D(τ)

δωn−1

=

(
A(ω(n))Rn +D(τ)Rn−1

)
︸ ︷︷ ︸

R(n+1)

δω0

= R(n+1)δω0 n = 2, 3, . . . ,M (A2)

Finally we obtain

δωM = RMδω0 (A3)

Thus, the matrixRM obtained at theMth time step is equal
to the matrixR = ∂S/∂ω(0)|ω(0),T ,f .

Let us now consider the derivative∂S/∂f |ω(0),T ,f = Df .
From the time integration scheme (70) of the model equation

(63), we obtain

ωn+1
= E−1

+ (τ )J (ψn, ωn + βy)+ E−1
+ (τ )E−(τ )ω

n−1

+ E−1
+ (τ )Mf (A4)

Hence,

∂ωn+1

∂f
= E−1

+ (τ )
∂J (ψn, ωn + βy)

∂ωn
∂ωn

∂f

+ E−1
+ (τ )E−(τ )

∂ωn−1

∂f
+ E−1

+ (τ )M (A5)

Using notations (A1), we obtain the evolution ofδω pro-
duced by the time-independent perturbation of forcingδf̃ =

Mδf

δω1/2
=
τ

2
E−1

+ (
τ

4
)δf̃ = D

(1/2)
f δf̃

δω1
= τE−1

+ (
τ

2
)δf̃ −τE−1

+ (
τ

2
)I(ω(1/2))︸ ︷︷ ︸

A(ω(1/2))

δω1/2

=

(
τE−1

+ (
τ

2
)+ A(ω(1/2))D

(1/2)
f

)
︸ ︷︷ ︸

D
(1)
f

δf̃ = D
(1)
f δf̃

δω2
= 2τE−1

+ (τ )δf̃ −2τE−1
+ (τ )I(ω(1))︸ ︷︷ ︸
A(ω(1))

δω1

=

(
2τE−1

+ (τ )+ A(ω(1))D
(1)
f

)
︸ ︷︷ ︸

D
(2)
f

δf̃ = D
(2)
f δf̃

δω(n+1)
= 2τE−1

+ (τ )δf̃ −2τE−1
+ (τ )I(ω(n))︸ ︷︷ ︸
A(ω(n))

δωn

+ E−1
+ (τ )E−(τ )︸ ︷︷ ︸

D(τ)

δωn−1

=

(
2τE−1

+ (τ )+ A(ω(n))D
(n)
f +D(τ)D

(n−1)
f

)
︸ ︷︷ ︸

D
(n+1)
f

δf̃

= D
(n+1)
f δf̃ n = 2, 3, . . . ,M (A6)

Finally, we obtain

δωM = D
(M)
f δf̃ = D

(M)
f Mδf (A7)

Thus, the matrixDMf M obtained at theMth time step is
equal to the matrixDf = ∂S/∂f |ω(0),T ,f .

Derivatives∂η/∂ω(0) and∂η/∂f can now easily be calcu-
lated from (26) and (A2), (A6):

∂η

∂ω(0)
=

1

M

M∑
m=1

(
∂S

∂ω(0)

∣∣∣∣
t=mτ

)
=

1

M

M∑
m=1

R(m),

∂η

∂f
=

1

M

M∑
m=1

(
∂S

∂f

∣∣∣∣
mτ

)
=

1

M

M∑
m=1

D
(m)
f M (A8)
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Let us now calculate the derivative∂R/∂ω(0). First of all,
we have to estimate the derivative∂A/∂ω. As defined in
(A2),

Ai,j (ω
(n)) = −2τE−1

+ (τ )I(ω(n))

= 2τ
∑
m

(E−1
+ )i,m(τ )

[ ∑
l,p

Jl,m,p(1−1
p,j (ω

(n)
+ βy)l

−

∑
l,p

Jp,m,j1−1
l,pω

(n)
p

]

= 2τ
∑
m

(E−1
+ )i,m(τ )

[ ∑
l,p

(Jl,m,p1−1
p,j − Jp,m,j1−1

l,p)ω
(n)
l

+ Jl,m,p1−1
p,j (βy)l

]
where1−1

= MC−1 is the matrix of the inverse Laplacian
in the finite element’s discretisation, andJi,m,j =

〈J (pi, pm), pj 〉 is the discretisation of the Jacobian. Then,
the derivative∂A/∂ω can easily be written

∂A

∂ω
=
∂Ai,j (ω)

∂ωl

= 2τ
∑
m

(E−1
+ )i,m(τ )

∑
l,p

(Jl,m,p1−1
p,j − Jp,m,j1−1

l,p) (A9)

We have from (A2)

R(0) = I

R(1/2) =

(
A(ω(0))+D(τ/4)

)
R(1) =

(
A(ω(1/2))R1/2

+D(τ/2)
)

R(2) =

(
A(ω(1))R1

+D(τ)
)

R(n+1)
=

(
A(ω(n))Rn +D(τ)Rn−1

)
(A10)

then

∂R(1/2)

∂ω(0)
=
∂A

∂ω
= X (1/2)

∂R(1)

∂ω(0)
=
∂A

∂ω

∂ω(1/2)

∂ω(0)
R1/2

+ A(ω(1/2))
∂R(1/2)

∂ω(0)

=
∂A

∂ω
R1/2R1/2

+ A(ω(1/2))X (1/2)
= X (1)

∂R(2)

∂ω(0)
=
∂A

∂ω

∂ω(1)

∂ω(0)
R1

+ A(ω(1))
∂R(1)

∂ω(0)

=
∂A

∂ω
R1R1

+ A(ω(1))X (1)
= X (2)

∂R(n+1)

∂ω(0)
=
∂A

∂ω

∂ω(n)

∂ω(0)
Rn + A(ω(n))

∂R(n)

∂ω(0)
+D(τ)

∂R(n−1)

∂ω(0)

=
∂A

∂ω
RnRn + A(ω(n))X (n)

+D(τ)X (n−1) (A11)

= X (n+1) (A12)

Finally, we obtain

X (M)
=
∂R(M)

∂ω(0)
=

∂R

∂ω(0)
(A13)

The derivativeX (M)
= ∂R(M)/∂ω(0) = ∂R

(M)
i,m /∂ω

(0)
p is

three-dimensional. If we write the equation (A11) in explicit
form, we obtain

∂R
(n+1)
i,m

∂ω
(0)
p

=

∑
l

∑
j

∂Ai,j

∂ωl
Rnj,mR

n
l,p +

∑
j

Ai,j (ω
(n))X (n)

j,m,p

+

∑
j

Di,j (τ )X (n−1)
j,m,p (A14)

Hence, the procedure (A12) requiresN4 operations per
time step and is impossible to compute for values ofN ex-
ceeding 100. Fortunately, in this work, we do not need the
explicit form of∂R(M)/∂ω(0); we need only its product with
the vectorϕ. This fact allows us to decrease the number of
operations toN3 per time step.

Let us denote

Q
(n)
i,p =

∑
m

X (n)
i,m,pϕm (A15)

From (A14) we obtain

Q
(n+1)
i,p =

∑
m

X (n+1)
i,m,p ϕm

=

∑
m

[∑
l

∑
j

∂Ai,j

∂ωl
Rnj,mR

n
l,p

+

∑
j

Ai,j (ω
(n))X (n)

j,m,p +

∑
j

Di,j (τ )X (n−1)
j,m,p

]
ϕm

=

∑
l

[∑
j

(
∂Ai,j

∂ωl
(
∑
m

Rnj,mϕm)︸ ︷︷ ︸
vnj

)
Rnl,p

]

+

∑
j

Ai,j (ω
(n))Q

(n)
j,p +

∑
j

Di,j (τ )Q
(n−1)
j,p

=

∑
l

[∑
j

(
∂Ai,j

∂ωl
vnj

)
︸ ︷︷ ︸

Wn
i,l

Rnl,p

]

+

∑
j

Ai,j (ω
(n))Q

(n)
j,p +

∑
j

Di,j (τ )Q
(n−1)
j,p

=

∑
l

W n
i,lR

n
l,p +

∑
j

Ai,j (ω
(n))Q

(n)
j,p

+

∑
j

Di,j (τ )Q
(n−1)
j,p (A16)

This procedure requires approximately 4N3 operations per
time step. In order to obtaindξ (50), we calculate the product

(dξ )p =

∑
i Q

(M)
i,p ϕ

∗

i

〈ϕ, ϕ∗
〉

(A17)

The matrix∂R/∂T is calculated by finite differences

∂R

∂T
=
R(M+1)

− R(M−1)

2τ
(A18)
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To obtain the first component ofdξ , we need just to calculate

(dξ )1 =

〈
∂R
∂T
ϕ, ϕ∗

〉

〈ϕ, ϕ∗
〉

(A19)

To calculatedf (51) we perform similar calculations. Let us
calculate first the derivative∂R/∂f . We have from (A10) and
(A6)

∂R(1/2)

∂f
= 0

∂R(1)

∂f
=
∂A

∂ω

∂ω(1/2)

∂f
R1/2

+ A(ω(1/2))
∂R(1/2)

∂f

=
∂A

∂ω
D

1/2
f R1/2

= F (1)

∂R(2)

∂f
=
∂A

∂ω

∂ω(1)

∂f
R1

+ A(ω(1))
∂R(1)

∂f

=
∂A

∂ω
D1
fR

1
+ A(ω(1))F (1) = F (2)

∂R(n+1)

∂f
=
∂A

∂ω

∂ω(n)

∂f
Rn + A(ω(n))

∂R(n)

∂f
+D(τ)

∂R(n−1)

∂f

=
∂A

∂ω
DnfR

n
+ A(ω(n))F (n) +D(τ)F (n−1) (A20)

= F (n+1) (A21)

Finally, we obtain

F (M) =
∂R(M)

∂f
=
∂R

∂f
(A22)

The derivativeF (M) = ∂R
(M)
i,m /∂fp is also three-dimensional.

The explicit form of the equation (A20) writes

∂R
(n+1)
i,m

∂fp
=

∑
l

∑
j

∂Ai,j

∂ωl
Rnj,m(Df )

n
l,p

+

∑
j

Ai,j (ω
(n))F (n)j,m,p +

∑
j

Di,j (τ )F (n−1)
j,m,p (A23)

Hence, the procedure (A21) also requiresN4 operations
per time step. Similarly, if we do not need the explicit form
of ∂R/∂f , we write

V
(n)
i,p =

∑
m

F (n)i,m,pϕm (A24)

From (A14) we obtain

V
(n+1)
i,p =

∑
m

F (n+1)
i,m,p ϕm

=

∑
m

[∑
l

∑
j

∂Ai,j

∂ωl
Rnj,m(Df )

n
l,p

+

∑
j

Ai,j (ω
(n))F (n)j,m,p

+

∑
j

Di,j (τ )F (n−1)
j,m,p

]
ϕm

=

∑
l

W n
i,l(Df )

n
l,p +

∑
j

Ai,j (ω
(n))V

(n)
j,p

+

∑
j

Di,j (τ )V
(n−1)
j,p (A25)

where the matrixW n is the same as in (A16).
In order to obtaindf (51), we calculate the product

(df )p =

∑
i V

(M)
i,p ϕ∗

i

〈ϕ, ϕ∗
〉

(A26)

All of these derivatives can be calculated in two model
runs as follows. The first run is necessary to calculate the
matrixR by (A2) and to solve eigenvalue problems

Rϕk = µkϕk andR∗ϕ∗

k = µkϕ
∗

k (A27)

For the second run, we define matrices

R0
= I, D0

f = 0,(
∂η

∂ω(0)

)0

= 0,

(
∂η

∂f

)0

= 0 (A28)

and according to (A15), (A24), we define for each
µk : |µk| > 1

Q(0,k)
= 0 V (0,k) = 0 (A29)

We use the following iterational procedure for anyk =

0, 1, . . . ,M − 1

Rn+1
=

(
A(ω(n))Rn +D(τ)Rn−1

)
Dn+1
f =

(
2τE−1

+ (τ )+ A(ω(n))D
(n)
f +D(τ)D

(n−1)
f

)
(
∂η

∂ω(0)

)n+1

=

(
∂η

∂ω(0)

)n
+ Rn(

∂η

∂f

)n+1

=

(
∂η

∂f

)n
+Df n

W n,k
=

(
∂A

∂ω
(Rnϕk)

)
Q(n+1,k)

= W n,kRn + A(ω(n))Q(n,k)
+D(τ)Q(n−1,k)

V (n+1,k)
= W n,k(Df )

n
+ A(ω(n))V (n,k) +D(τ)V (n−1,k)

This procedure provides at theMth step

RM = R =
∂S

∂ω(0)

∣∣∣∣
ω(0),T ,f

, DMf =
∂S

∂f

∣∣∣∣
ω(0),T ,f

,(
∂η

∂ω(0)

)M
=

∂η

∂ω(0)

∣∣∣∣
ω(0),T ,f

,

(
∂η

∂f

)M
=
∂η

∂f

∣∣∣∣
ω(0),T ,f

,

Q(M,k)
=

∂R

∂ω(0)

∣∣∣∣
ω(0),T ,f

ϕk, V (M,k) =
∂R

∂f

∣∣∣∣
ω(0),T ,f

ϕk
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