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Abstract. We investigate the flow between coaxial co-
rotating disks in the situation where a strong axial vor-
tex 1s present over a turbulent background. This flow
1s nonstationnary and inhomogeneous as is commun in
most turbulent geophysical flows. We describe the small
scale statistics using tools recently introduced for homo-
genecous turbulent flows. 1t seems that the cascade pro-
cess is preserved although modified by the large scale
coherent structure.

1 Introduction

Apart from the fundamental problem of description of
a non-linear dissipative system, one of the long stand-
ing goals of the study of homogencous turbulence has
been to derive tools that can be applied to solve the
problems of inhomogencous turbuleni flows which have
a wider practical importance. In the analysis of the low
field behavior, it has been customary since the works of
Osborne Reynolds to represent the velocity of a high
Reynolds number flows as the sum of two contributions:

where 17 is the mean flow field — experimentally, it can
be constructed by low-pass filtering ¥ in space and time
— and % are the turbulent fluctuations. In inhomoge-
neous flows, U is not constant in space and time and the
question arises about the interaction and equilibrium be-
tween the large scale flow and the turbulent fluctuations.
Such inhomogeneous 3D turbulent flows are common in
geophysics. The present study is concerned with a flow
in which a large scale coherent vortex is superimposed
on a turbulent background. Such a flow has some char-
acteristics of a moving tornado {high rotation rate at
large scale together with {urbulent three dimensional
fluctuations}.

Correspondence to: J.-F. Pinton

Fig. 1. (a) Experimental set-up. The working fluid is air. R =
10cm, H = 30cm. f; and f, are the disks rotation frequencies,
and (r = Tcm, b = 15cm) are the coordinates of the hot-wire
probe. (b) Contour plot of the velocity modulus [v|{#) measured
with a 3D hot-wire probe; it reveals the large scale coherent vortex
(core size ~ 2cm: the rotation rates of the motors are equal to 11
and 43 Hz). The arrows indicate the directions of rotation of the
disks, of the vortex and of its slow precession motian.

We analyze the influence of the vortex structurc on
the turbulence properties at small scales. The charac-
terization is done using adapted forms of some of the
most recent tools used in the study of homogeneous,
isotropic turbulence. We do not attempt here to dis-
criminate bewteen the different intermittency models
that are currently being debated in the homogeneous
turbulence community. However, we show using two
cxamples that such models can be used in inhomoge-
neous turbulent situations and that they give some in-
sight about the modification of the energy cascade by
the presence of a large scale coherent structure.
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Fig. 2. Low frequency evelution of the flow about the coherent vortex — f; = 11Hz, fo = 43Hz, i = 30cm. (a) : direct time-recording

of the velocity at A = 15¢cm, r = Tem. (b) Power Spectral Density of the velocity field (no coherent averaging). (c) :

mean velocity

profile during one oscillation as obtained by the coherent averaging process. The numbers on the lower x-axis correspond to an index
in the subdivision of one period of the vortex precession motion. The corresponding distances to the vortex core are indicated on the

upper x-axis.

2 Flow and Experimental set-up

The flow is produced in the gap between two coaxial
corotating disks driven at regulated constant speeds, see
fig. 1(a). Air is the working fluid, in a free geometry
in order to eliminate side-wall effects. The detailed ex-
perimental set-up is described in Labbé et al. (1995)
where it is also shown that when the disks are corotat-
ing at different angular speeds, the structure of the flow
is made up of a large scale strong vortex superimposed
to a turbulent background. The vortex has a Burgers
type structure and is anchored on each disk at the point
of maximum stretching. This point is not on the axis of
rotation (as it would if the flow was enclosed in axisym-
metric cylindrical walls); as a result the outgoing flow
near the disk surface induce a slow, counter-rotating,
precession motion of the vortex about the axis of ro-
tation of the disks (Magnus force). This is illustrated
in figure 1(b), where the vortex shape is reconstructed
from 3D velocity measurement — again see the details in
reference Labbé et al. {19953.

In our study, local velocity measurements are per-
formed using a TSI subminiature hol-film probe with a
sensing element 10 pm thick and 1 mm long — the probe
sensing element is set paralle] to the rotation axis so that
the velocity actually measured mixes the radial and az-
imuthal components v = v/v,2 + vg2. The TSI IFA100
anemormeter voltage is recorded using a National Instru-
ment NB-MIO16-X1 16 bits data acquisition card. Ve-
locities v are derived from voltage data E using the usual
Kings law \/(v) = (E* — a)/b, the validity of which has
been checked and the constants ¢ and b obtained from
measurements in a calibrated wind tunnel. The inde-
pendence of the result with the probe support position
has also been checked.

An instantaneous velocity recording is shown in fig-

ure 2{a), where one observes the slow periodic sweeping
of the vortex on the fixed anemometer probe, in ad-
dition to a very fluctuating velocity signal, resembling
usual turbulent velocity variations. The two times scales
are very different as may be seen on the corresponding
power spectrum of figure 2(b}. The low frequency pre-
cession motion, and its harmonics, are clearly identified
as well as the typical turbulent Kolmogorov 5/3 scaling
in the higher frequencies region. 'The large separation
between the time scales allows to perform a Reynolds-
like decomposition with a slowly evolving mean flow.
To wit, we have used the coherent adaptive-averaging
technique described in Labbé et al. (1995); Labbé, PhD
Thesis (1998}, first to extract the time-periodic mean
flow due to the precession of the axial vortex, and sec-
ond to characterize the statistical properties of the tur-
bulent fluctuations at different phases of the mean-flow
cycle, The main steps of the technique are the follow-
ing: starting with a time recording like the one of figure
2(a), one calculates the mean period 7' (about 3 sec-
onds in our case) and then choses a model pattern (one
burst of length T) and translate it to maximize the cor-
relation with the next burst. The average of the two
bursts is then calculated and serves as the model pat-
tern for the next iteration. The process is self-adaptive
and converges to the time recording of the mean flow
cycle as shown in figure 2(c). The point of maximum av-
erage velocity corresponds to the passage of the vortex
core, while the points of low mean velocity correspond
to instants when the vortex is farthest from the probe.
The fluctuation component is analyzed in the follow-
ing way: the algorithm is re-run to identify and mark
each individual oscillation by best correlation with the
previously calculated averaged pattern, then each pe-
riod is viewed as one realization of the turbulent flow
about the vortex. If it is divided into subintervals then
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ensemble averages can be calculated, conditioned to a
particular phase of the mean flow. In the following, we
have taken 50 subintervals; at the chosen sampling rate
(30kHz), each interval holds 1200 points and the condi-
tioning over 2300 periods of the vortex precession yields
statistics calculated with about 2.4 x 10® data points.
As the motion of the vortex is periodic in space, we can
identify each subinterval with a particular (curvilinear)
distance between the vortex and the anemometer probe,
so that we analyze the structure of the turbulent fluc-
tuations conditioned to the distance d to the large scale
vortex.

3 Results

3.1 General characteristics of the turbulent fluctua-
tions

We first need some characterization of the turbulence
intensity of the velocity fluctuations, conditioned to the
distance d to the vortex core. For lack of a real defini-
tion of a turbulent state, we resort to traditional anal-
ysis which suggests to consider the power density spec-
trum of the velocity fluctuations, the scale separation in
the flow and the scaling properties of the velocity dif-
ferences. Figure 3(a) shows the spectra of the velocity
fluctuations for several values of d. As can be observed
each curve display a —5/3 Kolmogorov scaling region.
The range over which this scaling extends is limited due
to the finite values of the Reynolds number in the flow.
Indeed, a measurement of scale separation can be ob-
tained by calculation of the Taylor microscale £ and
Kolmogorov dissipation length 5. Both quantities rely
on an estimation of the energy dissipation ¢ in the flow,
We have used the usual one-dimensional surrogate:

e(dy = 15VUL§ (g—?)z (2)

where v is the air’s kinematic viscosity and Uy is the
local average velocity. We use a local implementation of
the Taylor hypothesis to relate space and time velocity
derivatives (see Pinton et al. (1994)), in order to account
for the advection of the turbulent fluctuations by the
large scale velocity variations. The results show that
the dissipation is maximum about the vortex core. The
scales {7 and 5 are then calculated as follows (see Monin
& Yaglom (1971)):

u\?  ul
m(s) ~am )
Z\ar) " a(d)?

and,

n(d) = (%) 1/4. (4)

The variation of 5(d) is displayed in figure 3(b). Assum-
ing an integral scale L of the order of a few centimeters

(order the size of the coherent vortex and of the blades
fitted on the disks), one anticipates an inertial range of
the order of one decade at most. To compare this with
traditional, homogeneous turbulence measurements, we
calculate the local Reynolds number Ry based on the
Taylor microscale and the intensity of the turbulent ve-
locity fluctuations:

Urmsdr
Rp = == (5)
As can be observed in figure 3(c), Rr varies in the range
70 to 350, where a decade of inertial range at best may
be expected. Te wit, we study the scaling of the third or-
der structure function, which, according to the Karmdn-
Howarth relationship, traditionally defines the inertial
range. In our case the statistical ensemble is not large
enough to calculate accurately the odd moments of the
velocity increments; in the wake of some recents works
(see Benzi et al. (1993, 1995b)) we use for odd moments
the absolute value of the velocity differences, i.e. for the
third moment:

Fa(r) =< |o(z + 1) —v(z)]® >, (6)

There is some evidence (for example Benzi et al. (1995a))
that this quantity gives the same information as the ac-
tual third order structure function. Figure 3(d) shows a
plot of F(r) conditioned to a few values of d. A clear
inertial range is observed, whose extent increases closer
to the vortex core. This in agreement with our previous
observations, c.g. the spectra of figure 3(a) and the de-
crease of i in figure 3(c). It also agrees with traditional
homogeneous turbulence results: in the neighborhood of
the vortex R increases so that the range of self-similar
scales is widened.

The picture we get from this first analysis is the fol-
lowing: at every step of the flow cycle, i.e. for each
distance {o the coherent vortex, the flow is locally tur-
bulent. Our results seem to be locally in agreement with
homogeneous turbulence measurements. We note that
this local assumption of homogeneous, isotropic turbu-
lence is often used in numerical simulations of flows that
are inhomogeneous at large scales (examples include me-
teorology, aircraft engineering, ctc.). In such cases, the
effects of the small scale turbulence are taken into ac-
count using local variables only (L.IL.S., k£ — ¢ model).
Our aim here is to go one step beyond and investigate
the possible influence of the inhomogencity of the flow at
large scale on the structure of the energy cascade. This
is a natural question to ask in flows where the scale sep-
aration is limited, as in many practical sitnations. We
then need to analyze the flow using tools that are partic-
ularly sensitive to finite Reynolds number effects. Such
techniques have recently been developed for the study
of homogencous, isotropic turbulence. In the following
we use two frameworks: one, based on the study of the
modification of the PDFs of velocity increments with
scales, proposed by B. Castaing and the Extended Self
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compensated third moment F3(r), as

Similarity (ESS) analysis as proposed by R. Benzi and
co-workers. We emphasize again that our goal is not
to discriminate between different intermittency models
of homogeneons turbulence (it would not be possible
here) but to show how a large scale coherent structure
influences the energy cascade at small scales. For this
purpose we have used two convenient techniques and
obtained coherent results.

3.2 PDF description, Castaing’s model

It has become customary to study the energy cascade

through the behavior of the longitudinal velocity incre-

ments du, = &.[@(¥ + r&) — 4(F)]. For homogeneous

turbulence situations, it has been proposed by Castaing

at al. (1990) and confirmed experimentally by Gagne

et al. (1994) that the Probability Density Function (PDF)
of Ju, may be reconsiructed as a superposition of func-

tions having the shape of the integral scale statistics Pr,

and a range of width o

P (du) = ]Grﬂ(lng)%PL (%) dlne (7)

where (5,1 is the distnbution function of In o, with char-
acteristic width A2 =< (Alne)? >. Indeed, AZ grows
as the cascade proceeds to finer scales and thus gives a
measure of the deepness of the turbulent cascade; the
way it varies with scale r thus provides a description of
the intermittency phenomenon. For example, the Kol-
mogorov (1962) intermittency corrections are recovered
if onc assumes a lognormal distribution of In(e).

In the original formulation of the Castaing’s approach
A? was obtained from direct fit of the PDFs P, {du) with
a superposition of GGaussian statistics. Here, we use a re-
cent result of Castaing (1996) showing that in the range
of scales where the cascade is self-similar the distribu-
tion function G, is an infinitely divisible one, and z\E

gl,'.'S 415 125 -1 075 405 025 0 025 05

one gets closer to the vortex core (in-

dices 18 to 28).
log10(r {em])

may be easily computed from the kurtosis K of Pr(du)
(see Chilla et al. (1996)):
K

A2 = Dln —-
r "k,

(8)

In the above expression Ry is the kurtosis of the large
scale distribution Py, and D is a proportionality constant
whose expression depends on the intermittency model
and weakly on the Reynolds number {numerically, one
finds D ~ 0.3 in most laboratory experiments studying
homogeneous isotropic turbulence). We note that equa-
tion (8) provides an efficient calculation of A? and does
not make any particular assumption about the PDFs’
skewness as discussed in Caslaing (1996). We thus pro-
ceed to the calculation of the behavior of A2, conditioned
to the cycle of the coherent large scale vortex motion.
Figure 4(a) shows the PDFs of velocity differences,
for different values of r, at 7.6cm to the vortex core
and figure 4(b) shows the corresponding AZ curve. It is
observed that the intermittency increases at small scales
and that one can identify a scaling region:
Ao p? (9
for r € I = [£1,£;]. We want to stress that what is
tested here is the way the intermittency grows when
going to smaller scales. In particular, the scaling inter-
val I defined above differs from the inertial range inter-
val considered in the previous section. Indeed, it can
be shown (see Castaing (1996)) using equation (7) that
In < duf > AZ, so that a power law behavior of the
velocity increments cannot be observed in the interval
of scales I. However, the r~# behavior of A? is firmly
established in homogeneous turbulent flows at moder-
ate to high Reynolds numbers (Castaing at al. (1993);
Chabaud et al. (1995)). That it is observed here in the
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presence of a large scale coherent structure is encour-
aging as to the capacity of the model to describe the
intermittency in more complex flows.

We now proceed with calculations conditioned to the
proximity to the large scale vortex. Figure 4(c) shows
the AZ(r) curves at distances d =4.4,9.2 and 10.3cm be-
fore the vortex and 4cm after. An almost linear region in
In(AZ) vs In(r) coordinates can be found at each distance
to the vortex, indicating again a power law behavior but
with a varying slope. Figure 4(d) shows that g increases
closer to the vortex core. This can be explained if one in-
terprets the curves in the following manner: (i) at small
scales the value of AZ are almost the same for each d, i.e.
the intermittency at small scales is little affected by the
vortex (as much as the variations of )}, (ii} in the large
scales the values of A2 decreases with |d|, showing the
effect of the coherent structure; as a result 8 increases
as one gets closer to the vortex core. This description is
in agreement with the expected effect of a large vortical
motion. However, this behavior is different from what
is observed in homogeneous turbulent flows, where 3
decreases with increasing Reynolds numbers (Chabaud
et al. (1995)) - remember that Ry increases close to the
vortex. ’

An attempt to solve this apparent contradiction may
be done using for g the following expression

1 L
- In—

g 7 (10)

where L is the integral length scale and the Kolmogorov
dissipative length. In the turbulent flows, L/n ~ Re=3/¢

Values of 3(d) calculated at all phases
of the coherent vortex motion.

index

so that the observed 1/4 ~ In (Re) law is recovered. In
the turbulent flow near the vortex, n decreases (see fig-
ure 3(c}), but at the same time so does L. Assume,
then, that the local effective integral length scale at dis-
tance d is equal to d itself. Furthermore, the variations
of ne~3* are much smaller than the variations of I ~ d,
so that L/n actually decreases with d. This "rescaling”
of the integral length scale by the proximity of the co-
herent vortex gives the correct trend for variations of
G(d). However, a plot of #ln{d/n) as in figure 5 does
not reveal a trivial behavior. Finally, we note that it
would possible to redefine the integral scale L in order
to enforce the validity of equation (10). With the mea-
sured variations of 3 it would lead to very large values
of L at large distance from the vortex; such a behavior
cannot ke ruled out since the flow is not confined.

As a partial conclusion, we observe that the above
framework yields a description of the local intermit-
tency. However, the results show some difference with
hemogeneous turbulence analysis and seem to indicate
that global structure of the flow may thus be of im-
portance, so that the energy cascade is modified by the
proximity of the coherent structure. To check this find-
ings we have analyzed our data using a different frame-
work, based on the Extended Self Similarity ansatz.

3.3  Extended Self Similarity
It has been observed by Benzi et al. (1993), in the case

of isotropic homogeneous turbulence, that the scaling
range of the velocity increments structure functions can
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Fig. 5. Values of #(d), renormalized by taking an effectiveintegral
length scale equal to the distance to the vortex core: (o) before
and (*) after the passage of the vortex.

be greatly extended when they are plotted one against
the other. More specifically, extending the Kdrman-
Howarth relationship to use the third order structure
function as a surrogate for the scale r, one observes the
scaling:

< dup [P >ox< |Fu,l® >4 (n

over a very wide range of scales, from integral length
scale L to a few times the dissipative Kolmogorov length.
In addition, the exponents £, are identical to the usual
structure functions exponents (p. This property, has
been widely used {see Arnéodo et al. (1996}) to calculate
the values of {, in flows at moderate turbulent Reynolds
numbers R, . Recently, it has been shown that the ESS
property can be obtained as a consequence of infinite
divisibility assumption for the turbulent cascade (She &
Waymire (1995); Castaing (1996)).

We have thus calculated the structure functions expo-
nents (; using the ESS ansatz, conditioned to the dis-
tance to the vortex. As in homogenecus turbulent flows,
the ’local’ structure functions exhibit the ESS property
for a range of scale varying between a few Kolmogorov
lengths and the effective integral scale {in the condi-
tioning procedure the motion of the vortex is divided
in subintervals, so that the largest scale in each inter-
val is roughly 2 cm). The corresponding exponents are
reported in figure 6(a). Note that we have plotted the
intermittency corrections ¢, — p/3, which is the differ-
ence between the observed structure function exponent
and the Kolmogorov p/3 predicted values. We observe
that they vary by over 30% during one cycle of the co-
herent vortex motion, with systematic trends: as one
approaches the vortex core the exponents get closer to
their K41 value ((; — p/3) showing that the intermit-
tency is reduced. This is in agreement with our findings
of the previous section.

However, some unusual behavior has been found in
other inhomogeneous flows, as in presence of a large
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shear as shown by Benzi et al. (1995b) (ESS not working
at all) but the self scaling behavior was recovered using
a generalized version of the ESS ansatz. Indeed it was
shown in these cases that a 'universal’ behavior of the
exponents was recovered if one cousidered their relative
variations. More precisely, it was shown that the so-
called generalized exponents:

Cp — pGa/3
C — QC3/3

had identical values in a very wide variety of flow sit-
uations. We have thus computed the value of p(4,2),
conditioned to the distance to the vortex core. As can
be observed in figure 6{b) it is not constant (it varies
by a factor of 2!), although the average over the entire
vorbex motion has the "universal’ (-1.58) value proposed
by Benzi et al. (1995h).

This study shows again that the turbulent cascade is
meodified in the vicinity of a large scale coherent vor-
tex: the intermittency decreases as one gets closer to
the vortex core.

plp,q) = (12)

4 Conclusion

We have shown that the tools recently developed for the
analysis of the turbulent cascade in homogeneouns flows
can be applied to inhomogeneous anisotropic ones, at
least when the large scale inhomogenecus flow consist
of a single coherent vortex. It should be noted that
in such condition with finite Reynold numbers, the tra-
ditional analysis (such as presented in section 3.1} is
not sensitive enough to detail the influence of the large
scale structure on the turbulent fluctuations. Finer ap-
proaches are based on a direct description of the cas-
cade process. They reveal that the self-similarity of the
cascade is preserved although strongly modified by the
presence of the coherent structure. It is not clear at
present if the observed modifications can be modeled
by variations of the usual parameters of homogeneous
turbulence alone. Some additional parameters describ-
ing the overall geometrical structure of the flow may be
needed. Further investigations with coherent structures
of different generic shapes (eg. a plane shear) are un-
derway.
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