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Abstract. In this paper we test the Unified Multifractal
model of atmaspheric dynamics in the tropics. In the first
part, we empirically investigate the scaling behaviour along
the horizontal, in the second part atong the vertical. Here
we concentrate on the presentation of basic multifractal
notions and techniques and on how they give rise to self-
organized critical structures. Indeed, we point out a rather
simple and clear characterisation of these structures which
may help to clarify both the nature of the ofi-cited coherent
structures and the generation of cyclones. Using 30 aircraft
series of horizontal wind and temperature, we find rather
remarkable constancy of the three universal multifractal
indices H, C; and o as well as the value of critical
exponents gp v, associated with multifractal phase
transitions and self-organized critical structures. This
constancy extends not only from wind tunncl and
midlatitude to the tropics, but also to multifractals
generated by Navier-Stokes like equations.

1 Introduction

During the last few decadcs, numerous investigations have
been performed on the tropical atmospheric structures:
boundary layer coherent structures, cloud bands, typhoons,
tropical storms and depressions (see for review Mikhailova
and Ordanovich (1991)). Indeed, in spite of its strong
mixing, there are identifiable structures at all scales inside
of the tropical boundary layer. Of particular importance
are the large convective rolls with their axes approximately
in the direction of the mcan flow (geostrophic wind), and
whose cross-sections are comparable in scale to the height
of the boundary layer. A wvisual confirmation of the
occurrence of such structures is given by the ordered "cloud
streets” structures observed, for instance on satellite images
of the earth's cloud cover. Until now there exisls no
satisfactory theory of the appearance of these structures and
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the mechanism of their generation remains rather
mysterious. However, it has been recently pointed out that
inhomogeneity plays a ccntral role by increasing the
stability of these structures (Ordanovich and Chigirinskaya,
1993). In the present paper, we develop considerably this
idea by considering inhomogceneity as intervening at all
scales.

Indeed, contrary to classical approaches, we investigate
the inhomogeneity over a large range of scales and
intensities and we try to understand the crucial relationships
between extremes events {such as extreme wind shears) and
the mean cvents (more quiescent flow regions) including
how the latter can build up to the appearance of the former,
The simplest and most natural framework for considering
extreme nonlinear variability over a wide range of scales is
multifractals since the variability simply results from an
elementary scale invariant process, the generator of the
ficld, which reproduces itself from scale to scale. Indeed, a
unified multifractal modet of atmospheric dynamics (also
called the “Unified Scaling model”) has been developed
{Schertzer and Lovejoy, 1983, 1985; Lovejoy et al., 1993)
involving a uniquc multifractal and anisotropic regime in
opposition to the classical model (e.g. Monin, 1972), which
involves two distinct (quasi-) isotropic and rather
homogencous regimes. These regimes are separated by
“meso-scale gap” or a “dimensional transition™ (Schertzer
and Lovcjoy, 1985); isotropic two dimenstonal turbulence?
for large scales and isotropic three dimensional turbulence
for small scales. In the Unified Scaling model, at a given
scalc, the generator creates structures of all intensities while
simultaneously creating structures over a wide range of
scales in anisotropic manner. The model therefore unifies
both intense and weak events as well as events with
different degrees of stratification. Different typhoon
expeditions give us an unique opportunity to test and
improve this model since data were collected along both the

3'T'h(: same comment applics to quasi two dimengional, quasi geostraphic
pp! q q g P
variants.
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Fig. 1-a. The spectrum (open squarcs) of horizontal wind velocity
fluctuations, averaged over the 3 data sets taken roughly at one year
intervals (each contains 10 samples) and also the 3 individual spectra
{closed squares) obtained by averaging over the 10 samples of each
expedition. As all these spectra were very similar, in order to improve the
display, their Log was respectively vertically shifted by -3, -5, -7. The
absolute slopes are close to Kolmogorov-Obukhov value 5/3 : B, = 1.68 +
0.05 over the frequencies range g /20 — wg /20430 (wp =8 Hz ).

horizontal (by plane)} as well as along the vertical (by
balloon soundings). The identification of the multifractal
generator in both directions is particularly straightforward
in the framework of universal multifractals (Schertzer and
Lovejoy, 1987, 1989; Schertzer et al., 1991; Lovejoy and
Schertzer, 1990, 1991; Schmitt et al., 1992a; see the
discussion in Sect. 2 below).

In order to recast the rather different scaling behaviors
along the horizontal and the vertical within the Unified
Scaling model, in Part II (Lazarev et al., 1994) we will
consider the rather general framework of Generalized Scale
Invariance (GSI) (Schertzer and Lovgjoy, 1983, 1984,
1985; Lovejoy et al., 1993), displaying scaling anisotropy
involving rather more complex scale transformations than
self-similar (isotropic) dilations.

At the same time, the determination of the underlying
multifractal processes allows us to discuss the origin of the
appearance of the ordered tropical siructures in terms of
non classical Self-Organized Criticality. Indeed, as we
discuss in Sect. 3, whereas classical self-organized
criticality (Bak ¢t al., 1987, 1988) is related to cellular
automata and a deterministic dynamics, an alternative
stochastic route has been discussed in a series of papers
(Schertzer and Lovejoy, 1992, 1993; Schertzer et al., 1993).
Building on the earlier closely related notion of “hyperbolic
intermittency” (Schertzer and Lovejoy, 1983, 1985), these
papers show how Self-Organized Criticality is generically
reached in scaling processes via a first order multifractal
phase {ransition at a critical order of singularity and order
of statistical moment both of which are empirically
determined.
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Fig. 1-b. The spectrum {(open squares) of temperature [luctuations,
averaged over the 3 data sets taken roughly at one year intervals {each
contains 10 samples) and also the 3 individual spectra (closed squares)
obtained by averaging over the 10 samples of each expedition. As all these
spectra were very similar, in order to improve the display, their Log was
respectively vertically shified by -3, -5, -7. The absolute slopes are close
to Corrsin-Obukhov value 5/3 : B,= 1.7 £ 0.05 over the frequencies range
W 20—wy20480 (wo= 8 Hz).

After the presentation of the data sets (Sect. 4) we
proceed (Sect. 5) to the empirical determination of the
corresponding universal exponents and compare them 10
those determined in rather different meteorological
conditions as well as in time rather than in space (Schmitt
et al., 1992a, 1993, 1994). In Sect. 6 we determine the
critical order of singularity and order of statistical moment
of the multifractal phase transition. In Sect. 7, we discuss
the features of dynamics which should theoretically
determine the values of the universal exponents. In
conclusion, we summarize and discuss our findings and
their importance for the understanding of structures of the
tropical atmosphere as well as for the unified multifractal
model.

2 Universal multifractals and their statistical anakysis

In the case of a stochastic muitifractal field, — for example
the turbulent energy flux density (€) — observed at different
scale ratios A (= L/l, where L is the outer scale and / is the
scale of observation), the statistics of the field can be
described in the framework of the codimension multifractal
formalism (Schertzer and Lovejoy, 1987, 1989, 1992;
Schertzer et al., 1991; Mandelbrot, 1991} either in terms of
probability distributions or statistical moments, involving
respectively the codimension function (¢fy)) of the order of
singularities (7) and scaling function (X(g}) of the moments
of order ¢:

Pr{g; 2 A7) = 47D (1)



160

80

£ (x)

0 200 400 600 800 1000

X (unit=12 m)

Fig. 2-a. One of the time series of the estimale of the energy flux density £.
It displays rather strong intermittency: most of the time the values are less
than 1 but there are very extreme values. The normalization <£>=1 has
been performed over the 30 realizations.

(514)=AK(4) V)

ofy) and K(g} are dual for the (involutive) Legendre
transform (Parisi and Frisch, 1985):

c(y)= mgX(qy— K(g));

3
K(q)= max(gy (1) &

the codimensions and the order of singularity of the density
are related in the following manner to the dimension
formalism (Halsey et al., 1986) of deterministic chaos? (see
Schertzer et al. (1991); Schertzer and Lovejoy (1992) for
more discussion especially conceming the limitations of the
dimension formalism when congidering stochastic
processes);
f[)(ap)= D-e(yl op=D-y )
The only constraints that must be respected by the two
functions K(g) and c(y) are that they should both be convex,
and ¢(y) should be an increasing function®. Therefore, the
determination of these functions generally corresponds to
the determination of an infinity of parameters, which would
be prohibitive both at the empirical and theoretical level.
Fortunately, due to the exisience of stable and attractive
multifractal processes, under rather general circumstances,
mixing of different multifractal processes may lead to
universal processes which depend on very few aspects of
the initial processes. Indeed — up to a critical order

4We add a subscript D in order to render explicit the D dimensicnal
dependency of the deterministic chaos notation when applied to a
stochastic process observed on a D dimensional space. The o should not
be confused with the Levy index discussed below.

SWhen defined as the exponent of the probability distribution (as in Eq.
(1)) rather than the probability density.
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Fig. 2-b. One of the time serics of the estimate of the energy flnx density
. It displays rather strong intermitiency: most of the time the values are
less than 1 but there are very extreme values. The normalization
<@>=1has been performed over the 30 realizations.

discussed below — these universal multifractal processes
have codimension and moment scaling functions ruled by
only three common exponents. The three basic universal
exponent are:

-The Hurst exponent H measuring the degree of non
conservation of the mean field®,

<g,> =1t &)

-The mean singularity C;, i.e. those contributing to the
mean ficld, measures the fractality/sparseness of the mean
field, it corresponds at the same time to the codimension of
the mean field. Therefore {(by Legendre transform) it
corresponds to the following fixed point:

¢lC,-H) = C, (6)

-The Lévy index o« determines the extent of
multifractality, it is indeed the Levy index « of the
generator of the process. It is proportional to the radius of
the curvature (R, } of the codimension function arcund
mean singularitics:

R(C,-H) =22 C,ax N

The corresponding universal moment scaling and
codimension functions have the following forms (Schertzer
and Lovejoy, 1987; Brax and Peschanski, 1991; Kida,
1991; Schinitt et al., 1992a):

C [ a

—— - azl

K(g)+ Hq= i) @®
CigLn(q) =1

6]_f € represents the rbulent energy flux density, then H=0.
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Fig. 3. A Log-Log plot, the double trace moment as a function of the scale
ratio A for different values of 17 and g=1.5. The straight lines confirm that
scale invariance for moments of the wind are well respected.

o
Cl(]g{iﬁ—i] o+l {1

e(y)= @ —+—=1 (9
Clexp(

r+f —1} a=1 ¢
Cy
where non conservative fields (H#0) are obtained by
fractional integration of order A over a conservative field.
In the case of the wind shears Avj at scale ratio A (the
amplitude of wind fluctuations: Avy = ly(x +Ax)- y(x); 1Ax
I=LiA in the isotropic case), this fractional integration
(H{=1/3) intervenes on the 1/31d power of the conservative
energy flux €3, this can be expressed 4 la Kolmogorov

(Kolmogorov, 1941, 1962)7:

Av, = (g, ) a7t (10)

Hy, can be estimated by the help of power spectrum, whose
absolute slope f, is related to Hj, by8:

By =2H, +1-K(2/3) ; E(k) =k~ (11)

where the -K(2/3) term is the multifractal fractal
intermittency correction. Using the values of C,, & below,
we obtain -K(2/3)=0.08. Thercfore, by power law filtering
the wind velocity time series in Fourier space, we may
obtain (Schmitt ¢t al., 1992a) estimates of conservative
turbulent energy [lux densities (the scalar multifractal
models of turbulence discussed by Schertzer and Lovejoy
(1987), were explicitly based on this type of relationship
between fields and fluxes). Using thesc cstimates of the

The subscript £ refers to the scaling of the horizontal shears of the
horizontal wind.

Because the spectrum is the Fourier transform of a 294 grder moment of
v, 2/3™ moment of ¢.

turbulent energy flux density, universal multifractal
cxponents C, and o can be estimated with the help of the
double trace moment technique (DTM) (Lavallée, 1991;
Lavallée et al., 1992, 1993). Tndeed, we may first consider
the normalized 1 powers of the field &, £/™; defined in the

following way:

e =) f{e)") (12)
Obviously, £, will have a moment scaling function
K(g.n)

(. VN _ qkam
<(£ *)> A (13)
K(g,m)=K(gn)-qgkK{m

In the same way that we estimate the statistical moments
<g&%> by (simple) tracc moments (Schertzer and Lovejoy,
1987) by combining spatial and statistical averages, we use
their natural extension — the double tracc moments — to
estimate <£,(M4>, More precisely, we are degrading the
scale resolution A of the observations (the ratio of the outer
or largest scale of interest to the smallest scale of
measurement) by "dressing” (averaging) the nth power of
£4 over larger and larger scales, i.e. over smaller and
smaller scale ratio A<A. We then study the scaling behavior
of the various q”‘ trace moments at decreasing values of the
scale ratios A. As showed by Schertzer and Lovejoy
(1993), this corresponds o analysing the scaling behaviour
of the dressed counterpart of the "bare” nm power observed
£4 at the scale ratio A defined as:

eMin =£"((e,)") (14)

which is simply proportional to £;{™ and therefore has the
same scaling behaviour. As a consequence, until a critical
moment order gp(1) discussed below, the DTM indeed wil
be ruled by the scaling exponent K¢g.n) of Eq. {13). The
real advantage of the DTM technigue becomes apparent
when it is applied to universal multifractals sincc Kiq,n)
has a particularly simple dependence on 77 :

K(g.n)=n"K({qg) (15)

3 Self Organized Criticality and coherent structures

Many scaling phenomena display not only structures at all
scales, but also at all intensities, i.e. for a fixed scale there
is no characteristic intensity — at least for intensities greater
than a critical intensity discussed below. This is contrary to
for instance (fractional} brownian motion (which has
gaussian probabilities). This absence of a characteristic
intensity is expressed by an algebraic fall-off of the
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top) is shown with K{g,1} cstimated from the slopes of the straight lines of
Fig.3. The value of & is then estimated as the slope of Log(K{g,m}) vs.
Log{n), C; from the intercept with the vertical axis. We display the
straight line with corresponding equation Log(K(g,n)}=-0.91+1.35Log( 7).

probability distribution (which itself is often called
"hyperbolic” or "fat tailed"):

Pr(g; >x) =x™1D x >>1 (16)
the critical order g, depends on the dimension D of the
space-time integration and is the critical order of
divergence of moments. This can be easily checked, we
have equivalently to Eq. (16):

<Ey¥>= oo q24qp (17

However, a critical singularity ¥, corresponds to
qp=K'(qp) and A™ is a lower bound on &, which
corresponds to the algebraic regime of the probability
distributions, Therefore 4, objectively discriminates the
extreme behaviour of the field £ from the mean events, and
the former are sensitive to the dimension of integration D
whereas the latter are not (for universal muitifractals they
depend only on the exponents H, C,, a). It is worthwhile
emphasizing the nontrivial "hard behaviour” resulting from
this divergence of moments. Tf entails the breakdown of the
law of large numbers so that standard statistical estimators
diverge and give spurious scaling estimates {Schertzer and
Lovejoy, 1983). A single contribution can be of the same
order as the sum of all the others. Furthermore due io the
existence of rare singularities present in the process but
almost surely absent in individual realizations, there is a
loss of ergodicity which can be precisely quantified
(Scherizer and Lovejoy, 1992).

Recently, scaling coupled with algebraic probability
distributions has been considered as the defining features of
self-organized critical (SOC) phenomena (Bak et al., 1987,
1988). However the classical origin of SOC is both
deterministic and with vanishing input (vanishing flux of
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Fig. 4-b. Curves of Log(K(q.11}) vs. Log(n)for g=1.5 and g=2 (bottom to
tap). The value of et is estimated as the slope of Log{K(q,7)) vs. Log(nk
€ from the intercept with the vertical axis. We display the straight line
with corresponding equation Log(K(q,n}H=-0.94+1.23Log( 7).

particles) and therefore could not apply to our problem
since turbulence is maintained by a non zero flux of
turbulent energy. Indeed this is one of the fundamental
difficulties in directly linking turbulence to SOC {(as
speculated by Bak and Paczuski (1993)). Nevertheless, an
alternative stochastic route to SOC with non zero flux has
been more recently discussed in a series of papers
(Schertzer and Lovejoy, 1992, 1993; Schertzer et al., 1993).
Indeed the significance of this extreme multifractal
behaviour (and the consequent necessity of using the
general canenical rather than geometric or microcanonical
multifractals) has been constantly emphasized (Schertzer
and Lovejoy, 1983, 1985, 1987, 1989; Lovejoy and
Schertzer, 1991) although the original term: "hyperbolic
intermittency” has been dropped in favour of the more
popular “Self-Organized Criticality™.

Without relying on any specific model, ane can consider
a rather generic statistical mechanism for open dissipative
nonequilibrium systems: the analogue of a non-zero
transition temperature associated with a first order
mullifractal phase iransition. The analogy (c.g. Tel, 1988;
Schuster, 1988) between multifractal exponents and
thermodynamic variables can be made using the following
correspondences9 (Schertzer and Lovejoy, 1991): (v, c(¥})
description is the analogue of (energy, entropy), whereas
{q. K(q)) description is the analogue of (inverse of
temperature, thermodynamic poteniial), the scale ratio is
the analogue of the correlation length. Indeed, the first
order multifractal transition comresponds to the fact that for
a finite ¢, and corresponding v, the effective scale ratio

IThere are slight variations between authors over the exact analogies
which are used.
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Fig. 5-a. The codimension function c(y) estimated by single scale PDMS
on the whole data set (30 samples) at maximum resclutien (A:Zm ). One
may note the tangency to the first bisectrix at the point (T, C});
C,;=0.340.05 and the linear asymptote (¥27p) with the slope gp=2.430.05.

will diverge in analogy with the correlation length for
thermodynamic phase transitions. Indeed, the scale of
obscrvation becomes irrelevant since the D - dimensional
integration becomes unable to smooth singularities ¥2y,,
i.e. the small scale activity is dominani. Only the scale of
homogeneity of the phenomena remains relevant and its
corresponding ratio diverges for fully developed cascades.

We therefore have a clear framework in order to study
the coherent or ordered tropical structures as (stochastic)
seif organized critical structures. Indeed. we first may
define structures by the order of the singularity of their flux
(scale by scale and intensity by intensity), i.e. filtering out
the rest of the field having flux singularities smaller than a
given order of singularity. Self organized critical structures
are then those having avalanche-like fluxes, i.e.
corresponding to singularities higher than the critical .
We will estimate this critical singularity and the
corresponding analogue of the critical temperature in
Secl.6,

4 Data sets

We analyzed aircraft data sets on thermodynamic and wind
fluctuation characteristics of three-dimensional convection
in the tropical atmospheric boundary layer. Experimental
data are obtained using the aircraft-laboratory IL-18D
"Cyclone” during three Soviet-Vietnamese flying
expeditions over the South China Sea in 1988, 1989
(Mikhailova et al, 1991) and 1990 equipped with special
devices capable of measuring all the thermodynamic
parameters as well as the component of the wind in the
(horizontal) flight direction (Babrikin, 1981).
Measurements were usually performed during the period
from July to October on levels increasing from 50m up to

C(v)

Fig. 5-b. Superposition of PDMS estimates of codimension function cfy)
at ratio seales A; =A /27> A=210and i=0, 1, ..., 6 of (dressed) €4 / 4;
obtained by averaging €4 by factor 4;.

5km heights, along 20-40 km distances, cvery 0.1255 (i.e.
the frequency was @o= 8 Hz and corresponding spatial
distance Ax=~12m for a speed of =100 m/s) in the
horizontal for each level across the largest clouds bands.
During these expeditions, cyclones in various stages of
their life history were studied.

For our preliminary study we selected one day per year
corresponding to rather different meteorological situations.
The first data set was laken during flight of 05/09/1988, in
the central part of South China Sea where ordered cloud
bands were observed. The synoptic situation in this region
was determined by a continental monsoon depression and
the influence of the Pacific Ocean subtropical anticyclone.
This anticyclone came through the Philippines, reached the
South China Sea and preserved this region from tropical
disturbances (which took place only in central parl of the
Pacific Ocean from where they tended to travel northward).
The flights trails were normal to the ordered cloud bands,
whose base was at a height of =450m and top at =800m.
The average length of the flights was 40km with speed
=100m/s on the 11 vertical levels from 90 to 5000 m, the
experiment lasted 2hr, 13 min.

On the contrary, on 20/10/1989 measurements were
performed closer to cyclone Elsy, which was in a stage of
growih. Cyclone Elsy was in the Eastern part of the South
China Sea centred at 17°10' N, 117°20" E. The flights were
over a region roughly 700 km from the center (15° N,
110° E), i.e. on the periphery of the tropical cyclone, The
region with ordered cloud bands was chosen for study. The
base of the cloud layer was at 750m, the top level at the
height of 1270m. The measurements were carried out on 8
vertical levels: 50, 200, 300, 400, 500, 600, 750 and 1270
m. The average length of the flights was 20 km with speed
118m/s, the experiment lasted 147,10 min.
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Fig. 6. The empirical K(g) function for the 10 series of the first experiment
and for the combined 30 series of the three experiments (bottom to top)
with theoretical bare curve corresponds to @ =1.35 and €;=0.32 (solid
line). As expected, the results are independent of the sample size for g<qy;
= 2.4. The variation of the asymptotic slope (A s} is very close 1o that
predicted theoretically (see Sect. 6).

The third day studied was 16/09/1990, the flight path
was around typhoon Ed's center and it lasted Shr, 38 min at
an altitude of 3000 ». During the flight the cyclone was in
the stage of strong tropical storm, with center coordinates
of 18°50' N, 119° E. The pressure in the center of the
cyclone was p,;, =970, the velocity was v, 235m/s.
For our study we chose the straight part of the flight which
was as close as 7 km to the center of the typhoon. In Part 11,
we will study vertical soundings made in the same arca and
period during the years 1989 and 1990.

For each experiment, we studied 10 samples each of
length 210 at a fixed level. Study of individual samples
shows that the height of the level does not seem to be
relevant in the determination of the universal multifractal
exponents (it simply changes the overall amplitude of the
fluctuations), thercfore in order to obtain more robust
statistics we pooled the data from all the samples
corresponding to different levels.

5 Empirical determination of universal exponents

The spectra of wind velocity and temperatare fluctuations
(Figs. 1 - a,b) were first computed in order to estimatc the
exponent f. This figure displays the spectra averaged over
the 3 data sets taken roughly at one year interval (each
contains 10 samples) and also 3 individual spectra obtained
by averaging over 10 samples each. One may note the
rather small dispersion around the average slope close to
the Kolmogorov-Obukhov and Corrsin-Obukhov value of
5/3 (Kolmogorov, 1941: Obukhov, 1941, 1949; Corrsin,
1951): B, = 1.68 +0.05 and Br= 1.70 £0.05 over the
frequency range @g20— 0y20480 (wo= 8 Hz). Using the
aircraft speed we converted the time series into a spatial
series and then, following the devclopment of Sect. 2, the
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velocity amplitude signal is then passed through a filter that
weighs its Fourier components by @'/3. This removes the
A3 scaling of the velocily (see Eq. (10)) yielding the
conservative quantity €13, Fig. 2 - a,b confirm the very
strong intermittency of the estimate of the energy flux
densities: most of the time the values are lower than 1 but
occasionally there arc very high values. The normalisations
<g>=1 and <@>=1 have been performed over the 30
realizations. Mutadis mutandis, the same technique is
applied for the temperature (Schimitt et al., 1992b):

ATA' - (PA'IIS,'L—H.’ (PJ. = 81—11‘22{13/2 (18)

where ¢ is the flux density; y is the temperature vanance,
which is conserved in the case of passive advection.

We may then proceed to estimate the C, and « valucs of
the flux densities £, ¢. We first check that the
corresponding DTM are indeed scaling for different orders
of moments ¢ and 77 (Fig. 3). K{g.n), displayed in Fig.4, is
then estimated by the slopes of the Log of the trace
moments vs. Log(A).

The exponent o is then estimated as the slope of
Log(K(g,n)} vs. Log(n) (Fig. 4) and C, is estimated with
the help of K(g./}=K(q} which is the intercept with the
vertical axis (Logn =0). For the horizontal shears of
velocity ficld we obtain: &= o~ 1.35+0.07, C; =03 +
0.05, Hy = 0.33 = 0.03 and for the temperature field: o, =
ar= 125 £ 0.06, C; 4~ 0.14 * 0.05, Hr= 0.33 £ 0.03.
These values remain close to those obtained in mid-latitude
boundary layers or wind tunnel experiments in time rather
than in horizontal space (see Schmiit et al. (1992a, 1993)
and Table 1, Part IT).

6 Empirical analysis of multifractal fransitions

Because the Lévy index o is greater than 1, we are in the
case of unconditional hard turbulence: no matter what the
dimension of the averaging space is, high enough order
statistical moments will diverge leading to "hard"
turbulence (Schertzer et Lovejoy, 1992). Therefore - at
least for large enough sample sizes as discussed in Sect. 3 -
we expect first order multifractal phase transitions, for
singularities y>y, and corresponding moments of order
g>qp (the analoguc of the inverse of the critical
temperature). For the different powers 1 we will have the
same phenomenology with corresponding critical y,(n) and
qp(M). These phase transitions explain the departure from
the (bare) theoretical K(q,n)} from the straight line
behaviour for Log(K(q,n)) vs. Log(n} (Figs. 4 - a)b), for
large 7 (N27p(9)=4qp (1) ).

We thus studied the probability distribution of &;¢, €9, £g
&7, € 1.e. with A = 210 (observation scale ratio} and A= 719
- 26 respectively. Figs. 5 - ab shows the corresponding
estimates of ¢f ) obtained by:

¢(y) =~- Log (Pr(e,>AY) ¥ Log(d) (19)
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The slope of the asymptote (=Y} of the resulting curves
gives us gp =2.4 = 0.05 in close agreement (Table 1, Part I)
with estimates of mid-latitude boundary layers or wind
tunnel experiments. With the estimates of ¢ and C; from
the previous section we obtain for the critical singularity of
the transition to the self-organized critical behaviour:
¥p=0.7 £ 0.05. Because of Eq. (10), the corresponding
transition for the velocity field occurs for gy = 3g,~7 = 1
and ¥, = ¥/ 3-Hy =-0.1£0.02.

Figure 6 displays the theoretical bare moment scaling
function K(g) and the observed dressed X 4qg)
corresponding to a number of samples ¥, of respectively 10
(2 single expedition) and 30 (the full three expeditions).
Onc may note (hat in agreement with the theory of
multifractal phase transitions (Schestzer and Lovejoy 1992,
1993; Schertzer et al., 1993) the asymptotic linear
behaviour of the dressed Kgfg) has a steeper slope a5 -
contrary to a finite D = d-7 4 as often hypothesised (e.g.
Bershadskii and Tsinober, 1992; Bershadskii et al., 1993).
More precisely its variation Ay 4 follows:

Ayas = ADg /gy (20)

where AD, ts the difference of the sampling dimension
(Ds=Log(N.)/Log(A)} for the different sample sizes. Indeed,
we have AD; = Log(30/10)/Log(2") = 0.16 and according
to the estimate of g, given above, we oblain Ay 4, = 0.066t
0.0015, in agreement with the variation of the slope
estimated by linear regression: Ay 4, = 0.00.

Finally, we may note that the dimension of integration
(the “dressing dimension™) leading to this phase transition,
is the implicit solution of:

K(gp)=(qp-1)D 21

using the estimates of & and €, one obtains: D=0.51+0.1.

7 Dynamics beyond multifractal statistics

The remarkable constancy of the universal multifractal
exponents (A, C;, o) obtaincd in tropical conditions
compared with those of Schmitt et al. (1992a, 1993)
suggests that they should be related to some fundamental
structures of Navier-Stokes type equations, more or less
independently of different boundary conditions and forcing.
Therefore, one may suspect that these exponents might be
recoverable in simplified Navier-Stokes like equations
retaining just some of the fundamental aspects determining
these exponents.

Indeed, Chigirinskaya et al. (1994a) reports very
comparable estimates of (H, C;, «) using a dynamical
model of intermittency which is based on the Lie structure
of the Navier-Stokes equations. We briefly summarize
pertinent aspects below.

Obukhov (1973), Dolzhansky et al. (1974), following
Arnold (1966) considered the similarities between Lie
structures of hydrodynamic equations (e.g. the vorticity
equation) and Euler's equations of the gyroscope. Obukhov
proposed studying a hierarchical model of cascade of
triplets (equivalent to gyroscopes). Gloukovsky (1975)
pointed out that there should be a single most energetic path
along which most of thc cnergy flows, This observation
lead subsequent workers to reduce the cascade of triplets to
the "one path model”. In fact this one path model may be
obtained by some other direct phenomenological
considerations (Gledzer, 1980) and is a predecessor of the
"shell-models”, obtained by averaging the flux energy over
wave-vectors corresponding to octaves in Fourier space.
These models are only able to study the flow of energy
through different scales (wave numbers) and loses the
important property of having an increasing number of
spatial degrees of freedom as the resolution increases (i.e.
with increasing Reynolds number). Despite this
fundamental deficiency, shell-models became extremely
popular (see, ¢.g. Gledzer et al., 1981}, unfortunately the
original full model was forgotten.

On the contrary, due to the fundamental role played by
the spatial degrees of freedom, Chigirinskaya et al. (1994b)
argued that the full model is indispensable to investigating
intermittency. It is further argued that this model and
refined versions of it can be derived by partial iruncations
of the direct interactions of Navier-Stokes equations in
Fourier space, whereas “"one path” models require some
other steps involving oversimplifications. Indeed, the
hierarchical structure of the cascade creating A< structures
at resolution A is broken in favour of a fixed number of
eddies (V) at each scale (N=1 in the case of the derivation
of the one-path models). The same criticisms were made
about the model developed by Grossmann and Lohse
(1993), which is rather similar to the one-path model and
which — not too surprisingly — might generate vanishing
intermittenicy correclions to the scaling of Kolmogorov
(1941) with increasing Reynolds number.

For several tens of large eddy turn-over times and
Re=105, DTM analysis of simulations of the full model
yields the Kolmogorov value H = 1/3 (due to the scaling
structure of the model), C; = 035+ 0.05, a=1.5:0.05. It
is even more remarkable that this model generates nearly
the same critical order (g,) for the first order phase
transition 1o self-organized criticality : g, = 2.2 £0.06. This
opens up new perspeclives on the non classical SOC
peointed out in the present paper.

Finally, due to the relative simplicity of these
hierarchical dynamical trbulent cascade models, one may
speculale, at least in the framework of these models, that
the universal exponents (C;, « ) and g;, may be analytically
computable.



8 Conclusion

A basic scientific goal in the study of the tropical
atmosphere is the understanding of the generation of
extreme events such as cyclones, We used the universal
multifractal model to study the scale invariant horizontal
variability of atmospheric cyclone velocity and temperature
data. We focus this (preliminary) study on threc very
different stages of coherent structures and cyclone
development. We showed that — in spite of the presence of
fluctuations — the three universal multifractal exponents H,
C; and e, directly obtained with the help of spectral
analysis and the double trace moment technique, have a
rather remarkable constancy. Furthermore, since their
values are close to those obtained in very different
situations (mid-latitude boundary layers or wind tunnel
experiments) we may first conclude that these exponents
are indeed universal for turbulence describing very general
properties of turbulence and this validates the Unified
Scaling model of atmospheric dynamics which unifies both
weak and intense events as well as those at different scales.

On the other hand, the underlying dynamical multifractal
processes undergo a first order phase tramnsition, which
explaing the appearance of self-organized critical struciures,
Contrary to the usual deterministic models of self-
organized crilicality these arise from stochastic dynamics.
We therefore propose to identify (scale by scale) the
different types of structures by the order of singularities of
their associated fluxes. In particular the critical singularity
at which the phase transition occurs defines the self-
organized critical structures. The dynamics of the structures
— unlike the weaker ones — are dominated by the small
scale interactions. The apparent constancy of j;, values
suggests that they are new universal exponents. In
addition, the fact that the ¥, values for the horizontal,
vertical and time are (to within experimental precision) the
same {see Table 1, Part II: ¥, = — 0.10 + 0.02 ) may be
significant. This opens up an original way of understanding
not only the generation of cyclones and other tropical
structures, but more gencrally of coherent structures. These
universal exponents also should be indispensable for
modeling of critical phenomena such as "hot spots” of
dispersion of chemical or radioactive pollutants (Salvadori
ctal., 1994),
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