N
N

N

HAL

open science

Empirical study of multifractal phase transitions in
atmospheric turbulence
Francgois G Schmitt, D Schertzer, S. Lovejoy, Y. Brunet

» To cite this version:

Francois G Schmitt, D Schertzer, S. Lovejoy, Y. Brunet.
transitions in atmospheric turbulence. Nonlinear Processes in Geophysics, 1994, 1 (2/3), pp.95-104.

10.5194 /npg-1-95-1994 . hal-00331026

HAL Id: hal-00331026
https://hal.science/hal-00331026
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Empirical study of multifractal phase


https://hal.science/hal-00331026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Nonlinear Processes in Geophysics (1994) 1: 95 - 104

Nonlinear Processes
in Geophysics

© European Geophysical Society 1994

Empirical study of multifractal phase transitions in atmospheric turbulence

E. Schmitt, D. Schertzer,, §. Lovejoy™ and Y. Brunet

* Laboratoire de Météorologie Dynamique (CNRS), Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex o3, France
* Département de Physique, Université McGill, 3600 rue Université, Montréal (Québec), H3A 2T8, Canada

* present address L.M.D,, Paris, France

3 INRA Bioclimatologie, 71, Aveniue Edouard-Bourleaux, BP 81, 33883 Villenave d'Ornon Cedex, France

Received 14 December 1993 - Accepted 11 March 1994 - Communicated by 8.8, Moiseev

Abstract. We study atmospheric wind turbulence in
the framework of universal multifractals, using several
medium resolution (10 Hz) time series. We cut these
original time series into 704 scale invariant realizations.
We then compute the moment scaling exponent of the
energy flux K (gq) for 4 and 704 realizations, in order to
study qualitative differences between strong and weak
events associated with multifractal phase transitions,
We detect a first order multifractal phase transition of
the energy flux at statistical moment of order qp =
2.4 3 0.2: this means that when the number of realiza-
tions increascs, moments order ¢ > ¢p diverge. These
results are confirmned by the study of probability distri-
butions, and wind structure functions. A conseguence
of these findings is that it is no use to compare different
cascade models in turbulence by using the high order
wind structure functions, because a linear part will al-
ways be encountered for high enough order moments.
Another important implication for multifractal studies
of turbulence is that the asymptotic slope of the scaling
moment function is purely a function of sample size and
diverges with it; it implies the same for D, which has
often be considered as finite.

1 Introduction

Universal multifraclals (Schertzer and Lovejoy, 1987,
1989, 1991; Fan, 1989; Lovejoy and Schertzer, 1990; Brax
and Peschanski, 1991; Kida, 1991) have been shown to
describe well the high variability of atmospheric and
wind tunnel turbulence data (Schmitt et al., 1992b, 1992a,
1993; Schmitt, 1993). Here we focus on “multifractal
phase transitions” (Schertzer and Lovejoy, 1992; Schert-
zer et al., 1993; Schertzer and Lovejoy, 1994¢) which are
predicted to occur with spatially or temporally averaged
empirical data, and which are connected with (nenclas-
sical) self-organized criticality (Bak et al., 1987). To do
this, we compare the empirical scaling behaviour with
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Fig. i. The spectrum of wind velocity measurements sampled at
10 Hz. There is a scaling behaviour for frequencies from «/1000 =
0.01 to w/2 = 5 Hz: the data are scaling over a scale ratio of
500. The slope of the spectrum is close to Kolmogorov scaling:
Ey{w) = w=?f with 2 = 1.68 £ 0.02.

the theoretical one for a large database, and we analyse
the tails of the probability distributions.

2 Wind database and its transformation into
energy flux

2.1 Turbulent wind velocity database

The turbulent velocity measurements we study here were
obtained over a pine forest in south-west France, using a
sonic anemometer located 25 m above ground, sampling
at w=10 Hz. Using the mean wind speed of 1.8 m/s,
this acquisition rate corresponds to wind data averaged
over scales of about 18 cm. Figure 1 shows the average
energy spectrum of the velocity fluctuations of 22 pro-
files of duration 55 minutes each. It presents a scaling
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behaviour for frequencies from about w/1000 = 0.01 to
w/2 =5 Hz. In this “inertial” range, the energy spec-
trum follows a power-law behaviour:

Ey(w) ~w™? (1)
where the slope 3 is close to the Kolmogorav value -5/3
(Kolmogorov, 1941; Obukhov, 1941): we obtain 7 =~
1.68 £ 0.02.

In order to obtain series whosc smallest scale 1s within
the scaling regime, we averaged and resampled pairs of
data points. Finally we considered each consecutive sec-
tion with 512 such points as separate realizations. This
gave us 704 different realizations.

2.2 'Transformation of the inertial range wind data into
cnergy flux

The rate of energy transfer is, at dissipation scales (i.e.
scales of the order of the Kolmogorov scale) equal to the
disstpation (e.g. Monin and Yaglom, 1975):

v By By’

(=) =3 (azj + aa;,-) @
where v 15 the kinematic viscosity. This relation has
often been used (e.g. Monin and Yaglom, 1975; Men-
evean et al., 1990; Meneveau and Srcenivasan, 1991;
Chhabra and Sreenivasan, 1991) to estimate (via the
Taylor and isotropy hypotheses) the encrgy dissipation
¢ as (2)?. If this transformation can ever be justified
for fluxes, it is for sampling frequencies high enough to
reach dissipation scales. Since our resolution was two
or three orders of magnitude lower than the dissipation
scale, we proposed another way of estimating the energy
flux (Schmitt et al., 1992b, 1992a, 1993; Schmitt, 1993),
using the “refined similarity hypothesis” (Kolmogorov,
1941, 1962):

Avy e (e;) /32113 (3)

where A = L/f is the scale ratio (L is the outer scale,
and £ is the scale of interest) and Avy = |v(z + £) —
v(z)|. Equation 3 has recently been questionned both
on thecretical (Frisch, 1991) and on empirical grounds
{Hosokawa and Yamamoto, 1992), but careful empirical
studies have shown its validity (Chen et al., 1993; Gross-
mann and Lohse, 1993; Praskovsky, 1992; Stolovitzky
et al., 1992). .

In order to estimate the energy flux € we exploit Eq. 3
and perform a fractionnal integration of the wind field of
order 1/3 (i.e. a power law filter of order w!/? in Fourier
space), and then take the cube of the absolute value of
the result. This removes the A~1/3 Kolmogorov scal-
ing, and yields a conservative (and positive) quantity,
which is an estimate of ¢;. This transformation con-
serves the original scaling of the data, and yields a very
intermittent field, a small portion of which is shown in
Fig. 2. We now turn to the analysis of the scale invariant
properties of this field, using powerful new multifractal
analysis techniques.
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Fig. 2. A portion of the energy Hux ¢, computed from the wind
field as indicated in the text {normalized so that the mean=1 for
all 704 realizations). This represents 1 realization consisting of
512 points and a total duration of about 1 mn 20 s, This field is
very intermittent: on average over the 704 realizations, its value
1s 1, and some values reach here almost 150, while most of the
tirne they are smaller than 1.

3 Multiscaling description of the turbulent fie-
lds: multifractals and universal multifractal
relations

3.1 Multiplicative cascades as generic multifractal pro-
cesses

Multiplicative cascade processes have been shown to
generically lead o scale invariant multifractal measures
(Schertzer and Lovejoy, 1987; Mandelbrot, 1991). When
such cascades have proceeded over a scale ratio A = L/f
(the ratio of the largest scale to the scale of interest)
the density of the rate of energy ey flowing from scale
£ = L/A to smaller scales has the singular behaviour
(Schertzer and Lovejoy, 1987):

€ x A7 {4)

¥ > 0 is an order of singularity and v < 0 18 an “order
of regularity”, since as A — oo (or £ — 0 ), e will
respectively diverge or converge to zero. The probability
distribution of singularities whose order exceeds v and
the related statistical moments will have the following
scaling behaviour (Schertzer and Lovejoy, 1987):

Prey > A m A7 = ((e)F) & AKD (5)

where e() is the codimnension function of the singulari-
ties, and is related by a Legendre transform (Parisi and
Frisch, 1985) to the scaling exponent K(g¢) associated
with statistical moments (“( . }” indicates ensemble av-

eraging):

{ K@+e)=qv { K@+ =g
y = K'(q) g =< (7)



This gives a one-to-one relation between singularitics
and order of moments. FEither the characterization of
K(g) or c(y) is enough to describe all the statistics of
the multifractal field.

3.2 Universal multifractals and turbulence

When studying either the continuous limit of multiplica-
tive processes or the limit of the multiplicative “mixing”
of many processes, stable and atiractive multiplicative
cascade processes are obtained (Schertzer and Lovejoy,
1987, 1989, 1991; Lovejoy and Schertzer, 1990). Because
the resulting statistics depend on few of the details of
the elementary process, these are called the universal
maultifractels. For conservative universal multifractals,
the functions K(g) and ¢(vy) depend only on two param-
eters:

(0" =0), o) =0 (g + 1)0' (7)

. C
Klg) = : Cia'  «

a—1
with 0 < a < 2 (for a = 1, we have K(q) = Ciqin(q)
and e(y) = Crexp(g-—1)), ¢ > 0and 14 = 1. These
parameters entirely determine the statistics of conser-
vative fields (i.e. those whose mean is independant of
the scale). The most important is the Levy index o
of the generator of ¢ (see Lévy (1925, 1954) for uni-
versality of random processes under addition of random
variables). In universal multifractals, it charactcrizes
the degree of multifractality (Schertzer et al., 1991) of
the field: it 1s proportional to the radius of curvature of
the codimension funection around the mean singularities
(monofractals are linear). It is bounded and the ex-
tremes correspond to well-known models of turbulence:
a = 0 for the #-model (Novikov and Stewart, 1964; Man-
delbrot, 1974; Frisch et al., 1978) and a = 2 for the
log-normal model (Kolmogorov, 1962; Obukhov, 1962;
Yaglom, 1966). The second parameter C; is the codi-
mension of the mean singularities of the field, and mea-
sures 1ts mean fractal inhomogeneity. It is also bounded
(0 <) <d): €] =0 for a homogeneous process, and
€1 = d (the dimension of the embedding space) for a
process whose mean intensity is extremely sparse.

3.3 Universal multifractals and empirical moments

Because it s conserved by the nonlinear terms of the
Navier-Stokes equations, the turbulent energy flux is
commonly considered as being conserved (on average)
when an energy cascade is developed from larger scales
to dissipation scales. We empiricaly show that the en-
ergy flux is indeed a conservative universal multifractal
process.

To determine the indices o« and ', we previously
(Schmitt et al., 1992b, 1992a, 1993; Schmitt, 1993) ap-
plied a powerful and direct analysis technique — DTM
- (double trace moment, Lavallée (1991)) to the energy
flux data, which yiclded the values: o ~ 1.45 £ 0.1 and
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Cy =~ 0.24 = 0.05 for atmospheric, and ¢ =~ 1.3 £ 0.1
and ¢y ~ 0.25 £ 0.05 for wind tunnel turbulence. For a
superficial comparison with other empirical results, we
may calculate the standard mtermittency parameter p
which is the autocorrelation exponent for e: p = K(2).
For the lognormal model we have g = 2C}, whereas for
the A-model g = ). Here, with o = 1.45, we obtain
p=0C(2*-2)/(ee — 1) = 1.6C, ~ 0.38 0.1 which is
close to various empirical estimates (Monin and Yaglom,
1975) 1.

To confirm and illustrate these results, we compute
the empirical moment scaling exponent K (g) which de-
scribes the scaling of the moments, and we compare it to
the “universal fit” obtained for o = 1.45 and Cp = 0.24
in equation (7). As shown by Fig. 3, the two functions
are in excellent agreement until the moment of order
Zerit = 2.5. What happens to the empirical fields at this
critical moment is a “multifractal phase transition” and
is studied in the next section.

4 Multifractal phase transitions

4.1 Multifractal phase transitions as statistical ther-
modynamics analogues

Various analogies can be formulated between multifrac-
tal formalisms (as a non-equilibrium flux dynamics) and
statistical thermodynamics {Katzen and Procaccia, 1987;
Feigenbanm et al., 1986; Schuster, 1988; Chhabra, 1989;
Schertzer and Lovejoy, 1991; Schertzer et al., 1993; Scher-
tzer and Lovejoy, 1994c, 1994b); for example the order
of singularity % is analogous to the energy and the codi-
mension function ¢(y) to the entropy. This can be seen
by recalling that in thermodynamics a Legendre trans-
form associates the free energy F to the corresponding
entropy S

F(TY = B — TS(E) (8)

here T is the temperature. Similarly, a Legendre trans-
form expressed by Eq. (6) relates the scaling moment
function K (¢) to the codimension function e¢(vy) for mul-
tifractal processes. Following this analogy, the moment
order g is associated with the inverse temperature §
(Schuster, 1988}, and the K (g) function to the Massieu
potential? 3(8) = —FF (Schertzer et al., 1993; Scher-
tzer and Lovejoy, 1994c, 1994b). Therefore, discontinu-
ities in the first or second derivative of K(g) are called
first or second order “multifractal phase transitions”,
since this corresponds to discontinuities in the deriva-
tives of thermodynamics potentials.

1Recently Sreenivasan and Kailasnath {1993) proposed a value
of u ~ 0.25 + 0.05. We belicve that this slight difference may
comes from their different way of estimating «. We will discuss
this question in detail in another paper.

2For a presentation of Massieu potential in thermodynarnics,
one can refer to Balian (1982).



98
K(q)

q

Fig. 3. The empirical moment scaling function (for 4 realizations)
for the energy flux ¢ (triangular dots), compared to the thearetical
one obtained for universal multifractals and o = 1.45, C| == 0.24
in equation (7) (continuous line). The agreement is excellent until
moment order g.r; = 2.5, after while the empirical curve becomes
linear.

Discontinuities in the derivative of K(g) are indeed
expected when studying empirical scaling of multifrac-
tal fields. Such discontinuities can arise in several ways,
that of particular interest here being due to a combi-
nation of fimite sample size and spatial integration. In
order to understand this it must be recalled that empir-
ical data correspond to “dressed” quantities (Schertzer
and Lovejoy, 1987), which are spatial (or temporal) av-
erages of the “bare” small scale field; the bare field is
the result of a multiplicative cascade developed from
large to smaller scales. Below, the dressed scaling func-
tions are denoted K4(g) and cq(7), to distingunish them
from the bare ones given by Eq. (7). Indeed, contrary
to widespead opinion, bare and dressed quantities are
often qualitatively different.

4.2 First order multifractal phase transition

When a bare multifractal process is averaged over a
D-dimensional space, the resulting dressed quantities
will display a divergence of moments order ¢p given by
(Schertzer and Lovejoy, 1987):

K(gp)=(ep -1 D (9)

where 1) is an “effective” dimension of dressing, and
can be smaller than d, the dimension of the embedding
space. Such a divergence is equivalent to having a “hy-
perbolic” (or algebraic) tail for the probability distribu-
tion of the dressed field (ie. Pr(e > 2) = 2~70 2> 1).
Taking the combination of scaling with hyperbolic prob-
abilities as the defining feature of self-organized critical-
ity (SOC) (Bak et al., 1987}, this dressing provides a
generic stochastic route to SOC (Schertzer et al., 1993;

Ln Pr( € »x)
oﬂﬂaa

=10 4

Ln x

Fig. 4. The probability distribution of the dressed ¢ field at the
finest accessible resolution, corresponding to 5 Hz. There is a
“hyperbolic” tail: Pr{c > z) & =24 for z 3 1.

Schertzer and Lovejoy, 1994c). Therefore, some paral-
lels can be made between the two behaviours: intermit-
tency, dommant influence of larger events, ete.

The hyperbolic behaviour of the probabilily distribu-
tion leads to the following expression for the dressed
codimension function (Schertzer and Lovejoy, 1994c):

e(7)
c =
(1) { gp(7 — 7o) +c(vp)
where yp = K'(gp) is the critical singularity associated
to the critical order of divergence of moments, and v, 4 is
the maximum reachable singularity for a finite number
of realizations, which is given by (Schertzer and Lovejoy,
1989):

ca (s,a) = As (11)

where A, is an effective dimension depending on the
dimension of the observing space (d), and the number
of realizations studied N,: A, = d + log(N,)/log(A).
This gives, via the Legendre transform (Eq. (6)), the
corresponding expression of the dressed “moment scal-
ing” characteristic function for a finite number of real-
1Zzations:

Ka(a) :{ Fa

Y<TD
10
7DSTS75,& ( )

veal — B g qp

This result is a refinement of an earlier argument in-
volving divergence of moments (Schertzer and Lovejoy,
1985) which was used to explain Anselmes et al. (1984)’s
velocity structure functions. This last equation shows
that:

~ for ¢ > qp, K4{q) is lincar;

— the slope v;,4 of this linear part increases with the
number of realizations, and diverges with it;



— the first derivative of K4(g) is discontinuous at ¢ =
gp: there is a first order multifractal phase trans:-
tion at this point.

4.3 Second order multifractal phase transitions

Second order multifractal phase Lransitions are obtained
because of sampling limitations, when the number of re-
alizations studicd 1s fintte, butl too small to obtain a first
order phase transition (yp is too large to be observed
with the available sample).

In this case, we still have a maximum reachable sin-
gularity 7, given by:

¢(ys) = A, (13)

with the condition ¥, < ¥p showing that the number
of realizations is too low for the first order multifractal
phase transition to be reached.

Then the dressed codimension function is simply :

T < s (14)

The Legendre transform then gives the dressed charac-
teristic function (Schertzer and Lovejoy, 1994c¢):

Ka(g) = { {;gql A,

ea(7) = e(y)

g <q;
15
q4>4s ( )

where the critical moment g, (the upper bound of the
moments giving the bare scaling exponent) is given by
¢s = ¢ (v,), which gives, in case of universality {with
the help of Eq. (7)):

Equation (15) shows that:

— for ¢ > q,, K4(q) 1s linear, and foliows the tangency
of K(g) for ¢ = ¢, (the dressed curve is “outside”
the bare one);

— ¢, depends of the number of realizations, and in-
creases with it, contrary to ¢p, which is indepen-
dent of the number of realizations;

— the second derivative of K;(g) is discontinuous for
q¢ = ¢ there is & second order multifractal phase
transilion at this point.

44 Relation to the strange attractor/dimension for-
malism

The codimension multifractal formalism used here is re-
lated to the dimension formalism (Halsey et al., 1986)
developed to study strange attractors. In particular, we
obtain

- _, K (17)

tT -1 YT
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Fig. 5. Moments of the energy flux at different scales, in a log-log
plot: the straight lines show the scaling behaviour, here for g=1.6,
1.8, 2, 2.2, 2.4 from botiom to top. The slopes of these lines give
estimates of K 4(g).

for the scaling exponent 7(g) and dimension D, asso-
ciated to the ¢'* order moment. This formalism has
strong limitations, since the scaling exponents depend
on the dimension d of the space in which the process is
embedded. Furthermore, Eqgs. (12}, (15) and (17) show
that

Do = d — “max (18)

where Ymax = 7,2 for a first order and Juax = 7, for a
second order multifractal phase transition.

The value of D, has been theoretically derived for
varions turbulence models (sce e.g. Bershadskii and
Tsinober (1992}, and references therein). These mod-
els are microcanonical: the energy flux is conserved lor
each sample. So, there is a maximum singularity ¥,ax
given by vmax = d, i.e. independent of sample size
when ¥, > d. Nevertheless, when the number of realiza-
lions increases, the maximum singularity in Eq. (18) is
not bounded, and D, depends on the sample size and
diverges with it to —oo (the existence of D, was al-
ready discussed in Schertzer and Lovejoy (1985)). These
results show that for general (canonical) multifractals,
there is nothing fundamental about this quantity, be-
cause the codimensions are not bounded.

5 Empirical study of multifractal phase transi-
tions

5.1 Probability distributions and moments

The empirical probabilily distribution of energy flux is

shown in Fig. 4; there is evidence for a “hyperbolic” tail
with an (absolute) slope of g5 =~ 2.4. We analyse below
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K{q)

Fig. 6. The empirical scaling exponent moment function Kz(g)
estimated for 4 {crosses) and 704 realizations (dots), compared
to the theoretical one computed from Eq. 7 and o« = 1.45 and
C1 = 0.24 (continuous line). The different curves are in excellent
agreement until moment order g < qerir = ¢p =~ 2.4. For larger
moments, the empirical estimates follow straight lines. For 704
realizations, the straight line is clearly “inside” the theoretical
curve, which is only possible for a first order multifractal phase
transition.

the behaviour of K;(g) when the number of realizations
varies, in order to confirm this estimate.

We computed the scaling of the moments of the energy
flux, as shown in Fig. 5: the statistical moments are
shown as functions of the scale ratio, in a log-log plot.
The straight lines show that Eq. (5) is valid over a wide
range of scales. The slope of these straight lines give
estimates of K(g).

Figure 6 shows the plot of Kg(g) for 4 and 704 re-
alizations, compared to the universal fit obtamned for
@ = 145 and €, = 0.24 in Eq. (7). The different
curves are in excellent agreement for moments order
q < gerit = gp == 2.4. For larger moments, the empirical
estimates of K;(g) follow straight lines, as predicted by
Egs. (12) and (15). We now analyse numerical values
in order to distinguish between first and second order
multifractal phase transitions.

5.2 Consistency of the numerical values

The straight lines obtained are of the form :

-Kd(Q) = Ymax — A, (19)

With Ymax = 7s,4 for first order, and ymax = 7. for
second order multifractal phase transition. Hence ~y,ay
can be determined by the slope and A, from the inter-
cept of the asymptote with the K axis. Empirical val-
ues and computations using these relations are shown
in Table 1, which presentls the empirical values of A,
and vmax for 4 and 704 realizations. We then compute

Table 1. Empirical values and computations showing:

1. that gp < gs for 4 and 704 realizations {gs estimated with
a = 1.45, ¢y = 0.24), hence that there is a first order mul-
tifractal phase transition in all cases;

2. the value of v, 4 computed from A; and gp is very close to
the empirical . in all cases;

3. cq ("fs,d) computed from v, 4 and gp is very close to the
empirical estimate of A,.

This forms a very consistent sct of results.

Ne 4 704
A empirical 090 145
“Ymax empirical 061  0.84
10 2.4 2.4
p = Kt (qD} 0.59 0.59
gs = (As/C1)M 2.57  3.61
~ve = K {gs) 063 0.80
Ys,d = (As + K{gp)} /ap 0.63 0.85

cd (’?s,d) =4qpu (’re,d - "."D) +e(vyp) 087 143

the corresponding values of ¢, and #,: in each cases,
¢; > qp =~ 2.4 and v, > vp =~ 0.59; this shows that the
multifractal phase transition is first order. As a confir-
mation, we verify that 7,4 =~ Ymax and cq(7ys q4) =~ A;.
Considering that there are N, = 22 independant re-
alizations (because the 704 realizations come from 22
independant profiles), we can compute the theoretical
sampling dimension A,(22) ~ d +log Ns/logA ~ 1+
log 22/ 1og 512 ~ 1.50, which is in good agreement with
the value 1.45 estimated in another way.

Previous relations (Eqs. (10), (11) and (12)) can also
be used to quantify the divergence of moments of the
dressed quantities: empirical estimates of the moments
of order ¢ > gp diverge as:

A\Kalg) oy A2K(gn) 90 (AdN,)% o N:;; (20)

when N, — oo, and for a fixed scalc ratio A

Thus, for ¢ > ¢p and a given scale ratio, the diver-
gence of moments follows a power law on the number
of realizations N,. The above Eq. (20) was derived in a
quite different way in Schertzer and Lovejoy (1984).

We have shown here a critical order of first order mul-
tifractal phase transition of gp ~ 2.4+0.2 for the energy
flux. Below we directly analyse the wind data.

6 Velocity structure functions and probability
distributions

6.1 Velocity structure functions

Because of Eq. (3), there is a link between the exponents
of the wind structure functions and the function K(g)
for the energy flux:

(o) =5-5(3) (2)
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Fig. 7. The structure functions versus ¢ in a log-log plot for
g=1.5, 1.75, 2, 2.25, 2.5, 2.75 and 3 {from bottom to top). The

straight lines show the scaling ranges.

where the moment scaling exponent ((¢) is given by
((Ave)?) & £409). Using Eq. (21} and the “bare” uni-
versal expression of K(g) (Eq. (7)), we can compare
empirical and theoretical wind structure function expo-
nents. In Fig. 7, we represent the log of different strue-
ture functions versus log £. The interpolation straight
lines for certain values of £ indicate the scaling range.
The slopes of these straight lines give estimates of the
exponents ((gq). These empirical estimates are repre-
sented in Fig. 8, and compared with the theoretical
curve: the agreement is very good until moment of or-
der about 7, which corresponds roughly to the value
3gp = 3(2.4%0.2) ~ 7.2+ 0.6. For larger moments, the
empirical {(¢) function is linear. This confirms the va-
lidity (at least for the scaling behaviour) of the “refined
simtlarity hypothesis” (Eq. (3)).

For a large enough database, we argue that this crit-
ical order of multifractal phase transition is ubiquitous.
Therefore, to compare different theoretical cascade mod-
els or scale invariant models of turbulence?, it is no
use to compute moments of velocity structure function
larger than this critical value. This fact brings into ques-
tion certain attempts to determine which model of tur-
bulence fits, using the scaling exponents of wind struc-
ture functions up to order 18 (e.g. Anselmet et al., 1984;
Kida, 1991), and explains other empirical findings con-

3With the help of generalived scale invariance (Schertzer and
Lovejoy, 1983, 1984, 1985, 1987; Pflug et al., 1993), we can talk
about space-time multifractal processes: in this context, cas-
cades provide dynamical multifractal models (Schertzer and Love-
joy, 1994a}). Other authors (e.g. Parisi and Frisch, 1985} avoid
discussion of specific cascade processes, considering purely geo-
metric (and abstract) multifractal characterizations of the scale
invariance.

TYTYTYYTITTY

0,0 Frrrrrre e
6 7 8 9 10

Fig. 8. The structure functions exponents {{g) for theoretical
curve given by o = 1.45 and ¢ = 0.24 in Eq. (21) (continucus
line), compared to empirical estimates (rectangular dots). The
two curves agree well until moment of order about 7. For larger
moments, empirical curve is linear. This empirically confirms that
Eq. (3) (Kolmogorov's “refined’ similarity hypothesis”) holds, at
least for scaling behaviour.

sidering the large g linear behaviour of the structure
functions, or the K {(¢) function for the energy flux (Ber-
shadskii and Tsinober, 1992).

6.2 Velocity probability distributions

The probability distribution of wind velocity shear (at
the finest available resolution) is shown in Fig. ¢: for suf-
ficently large fluctuations, it displays a hyperbolic tail,
whose slope is of the order ¢p, ~ 7.5 £ 0.5, which is
very close to the previous estimate of the same criti-
cal moment (=3x2.4). Taking into account these two
consistent estimales, we propose here the value:

gp = 7.0x£1 (22)

Early estimates corresponding to gp. =~ 5 {(Schertzer
and Lovejoy, 1983, 1984}, were obtained [rom vertical
velocity measurements and extremely small (=~ 100 po-
ints) histogrammes from herizontal velocity measure-
ments. No estimates of the temporal ¢p, have been
made up until now. See Chigirinskaya et al. (1994)
and Lazarev et al. (1994) for a systematic comparison
(with larger databascs) between critical order of moment
for horizontal and vertical velocity measurements, which
tend to support the different vertical exponent {~ b).
It should be underlined that previous studies of the
probability density or probability distribution of turbu-
lent wind fluctuations (e.g. Anselmet et al., 1984; Cas-
taing et al., 1990; Gagne, 1991; Meneveau and Sreeni-
vasan, 1991; She et al., 1991) have detected exponential
tails rather than hyperbolic when the sample size is suf-
ficient to detect a hyperbolic tail. One the one hand,
such distributions are ad hoc since they could only hold
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Fig. 9. The probability distribution of the wind shear, showing
a hyperbolic tail, of slope gp3,p >~ 7.5 £ 0.5,

exactly at a unique scale (they are incompatible with
scaling), on the other hand this may be due to problems
of precision of the representation of tails in log-linear or
log-log plots. In Fig. 10 we display the theoretical prob-
ability density of the wind (in a log-linear plot) with
parameters to* Cy = 0.05, o = 1.45, A = 512 for the
bare and dressed fields (Eqgs. (7) and (10)): as can be
seen, for both bare and dressed velocity fields, the tail
is roughly linear, starting at Pr ~ 10=2 to 1077 (the
typically available range). Over the observed probabil-
ity range, our hyperbolic results are therefore visually
compatible with (ad hoc) exponential regressions.

7 Conclusions

Analysing the empirical energy flux for an atmospheric
wind turbulent database, we showed that a first order
multifractal phase transition occurs for moments order
gp = 2.4+ 0.2 of the “dressed” empirical energy flux.
This shows that turbulence intermittency is very hard:
the probability distribution of the extreme values of the
energy flux is hyperbolic. This means that extreme val-
ues are much more frequent than for usual exponen-
tial tails; however, because of the very large databases
needed the hyperbolic tail has not always been clearly
visible. Indeed we develop a quantitative estimate of the
necessary sample size.

4 As shown in Lavallée (1991), universal multifractals indices
a and ] are transformed as follows when the field is raised to
a power a: & — o and C7 -+ C1a®. Therefore these indices are
for the wind field & ~ 1.45 £ 0.1 and Cy = {0.24 &+ 0.05)/3° ~
0.05 4 0.01.

-10 T T r ' T T T
0 2 4 6 8
° v

Fig- 10. The theoretical (bare and dressed) wind probability den-
sities in a log-linear plot, with parameters C1 = 0.05, o = 1.45,
A = 512 in Eq. (7) for the bare velocity field (white squares)
and ¢n = 7 in Eq. (10) for the dressed velocity field (black di-
amonds). Using this log-linear representation the two tails are
approximately linear, showing that we are not able to discer-
nate between the two types of tails. Therefore our results look
like being compatible with such {ad hoc) exponential regressions,
whereas the (theoretical) dressed density is definitely hyperbolic!
Note that empirical data can be seen as dressed quantities, except
maybe when the sampling frequency is high enough to reach the
dissipation scales: in this case they correspond to bare quantities,

The empirical scaling exponent function Ky(g) is lin-
ear for moments larger than the relatively low critical
value of ¢p: this shows also that one must be careful
when computing high order moments to compare differ-
ent cascade models of turbulence. Furthermore, the esti-
mates will depend strongly and diverge with the number
of realizations in the sample studied, so it is no use to
caleulate moments of ¢ greater than 2.4 as is often tried,
or to estimate moments of structure functions of the ve-
locity fluctuations order greater than about 7. Finally,
we have shown that the generalized dimension D, is
not a fundamental parameter because it depends on the
maximurm reachable singularity, which diverges with the
number of realizations N.

We may underline here that the database we anal-
ysed is not so large (700,000 data points), but because
of the sampling frequency of 10 Hz, the velocity data al-
ready correspond to dressed data. As a comparison,
for usual studies of probability distributions of wind
fluctuations, the sampling frequency of a few kllz (e.g.
Castaing et al., 1990) gave bare velocity quantities (i.e.
they reached dissipation quantities), whose fluctuations
cannot show hyperbolic tails. It is only when averaged
(dressed) sullicently, as in the present study, hyperbolic
tails will appear. Furthermore, because of the low sam-
pling frequency of our data, our database would corre-
spond to a 700 million points database sampled at 10
kHz, which would be a much larger database than anal-



ysed up until now. We also showed here that because of
problems of precision of representation, hyperbolic and
exponential tails are almost linear when represented in
log-linear plots; therefore such plots are not useful in
distinguishing the models — the scaling properties must
be used.

Our results clearly do not support some recent spec-
ulations (e.g. Procaccia and Constantin, 1993; Gross-
mann and Lohse, 1994) saying that the intermittency
corrections of the “trivial” scaling of the structure func-
tions given by K41 theory are due to finite Reynolds
number corrections. These speculations are based on a
particular cascade model (see Chigirinskaya et al. (1994)
for a discussion about models of this genre), and on the
other hand, the procedures we followed here were self
consistent in checking the scaling behaviour of the wind
field for a range of scales between 0.01 and & Hz in the
atmosphere 25 m above ground, which corresponds to
Reynolds numbers of about 5 10°.
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