Evaluation of tsunami risk in the Lesser Antilles
Narcisse Zahibo, E. N. Pelinovsky

To cite this version:

HAL Id: hal-00330894
https://hal.archives-ouvertes.fr/hal-00330894
Submitted on 1 Jan 2001

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evaluation of tsunami risk in the Lesser Antilles

N. Zahibo\(^1\) and E. N. Pelinovsky\(^2\)

\(^1\)Université Antilles Guyane, UFR Sciences Exactes et Naturelles Département de Physique, Laboratoire de Physique Atmosphérique et Tropicale 97159 Pointe-à-Pitre Cedex, Guadeloupe (F.W.I.)

\(^2\)Laboratory of Hydrophysics and Nonlinear Acoustics, Institute of Applied Physics, Russian Academy of Sciences, 46 Uljanov Street, 603950 Nizhny Novgorod, Russia

Received: 27 July 2001 – Revised: 11 February 2002 – Accepted: 14 February 2002

Abstract. The main goal of this study is to give the preliminary estimates of the tsunami risks for the Lesser Antilles. We investigated the available data of the tsunamis in the French West Indies using the historical data and catalogue of the tsunamis in the Lesser Antilles. In total, twenty-four (24) tsunamis were recorded in this area for last 400 years; sixteen (16) events of the seismic origin, five (5) events of volcanic origin and three (3) events of unknown source. Most of the tsunamigenic earthquakes (13) occurred in the Caribbean, and three tsunamis were generated during far away earthquakes (near the coasts of Portugal and Costa Rica). The estimates of tsunami risk are based on a preliminary analysis of the seismicity of the Caribbean area and the historical data of tsunamis. In particular, we investigate the occurrence of historical extreme runup tsunami data on Guadeloupe, and these data are revised after a survey in Guadeloupe.

1 Introduction

The evaluation of the risk of tsunami on the scales of the Lesser Antilles is closely related to the evaluation of the seismic and volcanologic risk. The seismic risk is high in this region, mainly because it results there from an active geodynamic context, also expressed by volcanic activity along a contact zone materialized by the arc of the Lesser Antilles, and the tectonic deformations in the vicinity of this contact zone. The Lesser Antilles volcanic arc draws a curve of 850 km in length and a 450 km ray. It runs from the southern American continental margin to the Anegada passage which marks the current limit with the Greater Antilles (shelf of Puerto Rico and Virgin Islands). The arc results from subduction of the American plate under the Caribbean plate at a rate of about 2 cm/year. The subduction angle is stronger in the center of the arc (Martinique, 60\(^\circ\)) than in the north (Guadeloupe, 50\(^\circ\)) and the south. This type of subduction is considered as an intermediate type between the two fundamental types (BRGM, 1990):

- The “Chili” type, characterized by a high speed of convergence, a mode of compression in the overlapping plate and a strong coupling between the two plates. The subduction earthquakes are very strong (magnitude higher than 8);

- The “Mariane” type, characterized by a low speed of convergence, a mode of distension in the overlapping plate and, on the contrary, “a decoupling” of the plates. The subduction earthquakes are, in general, weaker than in the previous case.

Taking into account both the important age (about 100 millions years) of the American oceanic crust in subduction under the Lesser Antilles arc and the weak rate of convergence between the plates, we can retain a probable value of about 7.5 for the maximum magnitude of subduction earthquakes in the Caribbean. The distribution of historical earthquakes throughout the arc confirms such a probability (Fig. 2). We can notice that the seismicity of the Lesser Antilles is located for the major part in the eastern sector of the arc. The America/Caribbean subduction zone and the tectonic zone (inside the American plate), with its mechanisms of normal and reverse faults, are the zones likely to store the most energy and are thus, the potential sources of tsunami. Tectonic tsunamis are expected to be more important regionally than volcanic and landslide tsunamis.

Some theories (BRGM, 1990) estimate that the overlap of plates is strongly coupled and that the slip is partially and temporarily blocked on broad portions of the arc. This seems to explain the seismic “gap” east of Guadeloupe, identified by Dorel (1981) which is likely to be filled in the immediate
future by a very strong subduction earthquake, a probable source of tsunami.

Tsunamis in the Caribbean region are not very rare events. The first version of the Caribbean regional tsunami catalogue prepared by Lander and Whiteside (1997) covers the period from 1530 to 1991 and contains 56 events. For the last 100 years, the catalogue lists 20 tsunamis, about one every 5 years. There is a high probability of a tsunami occurring in the Caribbean comparable with other areas and this risk should be specially investigated. James Lander and Karin O’Loughlin are preparing the extended version of tsunami catalogue to be published soon in the special issue of the international journal “Natural Hazards”. Weissert (1990) has calculated the tsunami travel time charts for the Caribbean Sea. The travel time for a complete crossing of the Caribbean is estimated at 3.2 h laterally and 1.5 h meridionally. These charts can be used for developing the regional tsunami warning system. Tsunamis of volcanic origin in the Caribbean were also studied, for instance, the numerical simulation shows that the potential debris avalanche in the Soufriere volcano (Montserrat, Lesser Antilles) can induce the tsunami waves of 1–2 m at distances of 10 km from the generated area (Heinrich et al., 1998).

The goal of this paper is to study the tsunami hazard in the Lesser Antilles, the group of islands from Anguilla in the north, to Trinidad and Tobago in the south. The location of the Lesser Antilles Islands is shown in Fig. 3. Data of historical tsunamis in this area are discussed in Sect. 2. They are analyzed in Sect. 3. The rough estimations of the tsunami risk for some islands of the Lesser Antilles (Antigua, Barbados) are presented. Results of a field trip in Guadeloupe (France), where the extreme high tsunami wave heights (18 m) were recorded during two tsunamis, are discussed in Sect. 4. These historical data are revised.

2 Historical tsunami data

Recently, the tsunami catalogue for the whole Caribbean Sea was prepared (Lander and Whiteside, 1997). Also, data from the NOAA/NESDIS National Geophysical Data Center is used. Not all sources and original descriptions are available now; this leads to the preliminary character of results. Nevertheless, some rough conclusions can be done for an estimation of tsunami risk for the Lesser Antilles. According to the available data, 24 tsunami events in the Lesser Antilles can be selected for the whole historical period. The earthquakes produced most of the events (16). Sometimes the origin of tsunami is not quite clear, because heavy weather conditions were at the time of the shocks. Four tsunamis are from volcanic eruption origin. The source of three tsunamis is unknown.

2.1 Tsunami of the seismic origin (16 events)

First of all, the two teletsunamis, which crossed the Atlantic, should be mentioned.

1 November 1755. The significant tsunami (with maximal height of 7 m) was induced by the famous Lisbon earthquake. The tsunami waves crossed the Atlantic Ocean for 7–8 h and manifested on many islands of the Lesser Antilles. Table 1 contains the observed runup heights in the Lesser Antilles taken from NOAA/NESDIS web site1. Lander and Whiteside (1997) give wave heights 1.5–1.8 m for Barbados (not 0.8–1.5 m as in Table 1) and add, “the water was

1 Coordinates of some locations are corrected
Table 1. Runup heights of the 1755 teletsunami in Lesser Antilles

<table>
<thead>
<tr>
<th>Country</th>
<th>Location</th>
<th>Lat. N</th>
<th>Long. W</th>
<th>Run-up (m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbados</td>
<td>Barbados</td>
<td>13.08</td>
<td>57.62</td>
<td>1.5</td>
<td>Period of 5 min.</td>
</tr>
<tr>
<td>Barbados</td>
<td>Carlisle Bay</td>
<td>13.08</td>
<td>57.62</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Martinique</td>
<td>14.67</td>
<td>61.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominica</td>
<td>Dominica</td>
<td>15.42</td>
<td>61.33</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Dominica</td>
<td>Portsmouth</td>
<td>15.58</td>
<td>61.47</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Antigua and Barbuda</td>
<td>Antigua</td>
<td>17.05</td>
<td>61.80</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>Saba</td>
<td>17.63</td>
<td>63.23</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>St. Martin</td>
<td>18.07</td>
<td>63.07</td>
<td>4.5</td>
<td>Sloop anchored in 4.6 m water was found lying on dry bottom.</td>
</tr>
</tbody>
</table>
Table 2. Runup heights of the 1751 tsunami in Lesser Antilles

<table>
<thead>
<tr>
<th>Location</th>
<th>Lat. N</th>
<th>Long. W</th>
<th>Run-up (m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbados</td>
<td>13.17</td>
<td>59.53</td>
<td>3.6</td>
<td>Portion of coast fell into the sea</td>
</tr>
<tr>
<td>Martinique</td>
<td>14.67</td>
<td>61.00</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Antigua</td>
<td>12.00</td>
<td>62.00</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>St. Martin</td>
<td>18.07</td>
<td>63.07</td>
<td>7.0</td>
<td></td>
</tr>
</tbody>
</table>

black as ink” relating this to a possible local landslide. They also pointed out that “the lowlands on most of the other French Islands were inundated”. An agitation of the sea at Antigua is also reported by Affleck (1809).

31 March 1761. The second teletsunami was generated again by an earthquake close to Lisbon in 1761, and it “caused an extraordinary flux and reflux of the sea at Barbados” (Lander and Whiteside, 1997). Wave height is 1.2 m according to NOAA/NESDIS data.

The other 14 events have been induced by the earthquakes that occurred in the Caribbean Sea or with unknown locations (some of them probably had atmospheric origin). Below are the descriptions of these events.

20 November 1751. Tsunami wave heights induced by the earthquake (its parameters are unknown) are given in Table 2 taken from NOAA/NESDIS web site (coordinates of Antigua are corrected).

19 March 1802. Coordinates of the earthquake epicenter: 17.2° N 62.4° W. It was accompanied by great agitation of the sea at Antigua and St. Kitts (St. Christopher) Islands (NOAA/NESDIS data).

30 November 1824. Severe shocks at Saint Pierre Harbour (Martinique) were reported. A very high tide threw many ships upon the strand. Heavy rain followed lasting 10 days (Lander and Whiteside, 1997).

3 December 1831. An earthquake occurred. The sea was in a state of violent agitation on Trinidad, Antigua and St. Kitts (St. Christopher) Islands. Note the large distance between reporting areas. An earthquake was also reported at Grenada, St. Vincent (Lander and Whiteside, 1997).

7 May 1842. A strong earthquake (magnitude > 8.0; epicenter coordinates: 18.5° N 72.5° W) at 17:30 LT produced the tsunami waves (Lander and Whiteside, 1997). Their heights are summarized in Table 3 (NOAA/NESDIS data). Coordinates of Gouyave and Grenada in Table 3 are corrected. Lander and Whiteside (1997) give 8.3 m for Deshaies and 1.8 m for Sainte-Rose.

8 February 1843. A strong earthquake (magnitude, 8.3; coordinates, 16.5° N 62.2° W; depth < 50 km; NOAA/NESDIS data) was felt at Guadeloupe, St. Lucia, St. Kitts, Montserrat, Martinique, and other islands. The sea rose 1.2 m at Antigua but sank again immediately (Lander and Whiteside, 1997). The motion of the sea on the coast at Pointe-à-Pitre (Guadeloupe) was, in fact, rather weak. Water barely invaded the quays of the city on some steps, which were, however, relatively low about its level. It had been similar in Basse-Terre and Isles de Saintes (Guadeloupe), in Dominica, etc. (Sainte-Claire Deville, 1867).

18 November 1867. An earthquake (magnitude, 7.5, depth < 50 km, epicenter coordinates: 18.5° N 65.5° W) occurred in the
Table 3. Runup heights of the 1842 tsunami in Lesser Antilles

<table>
<thead>
<tr>
<th>Location</th>
<th>Lat. N</th>
<th>Long. W</th>
<th>Run-up (m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gouyave, Grenada</td>
<td></td>
<td></td>
<td></td>
<td>All floatable objects carried away</td>
</tr>
<tr>
<td>Bass-Terre, Guadeloupe</td>
<td>16.00</td>
<td>−61.73</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Deshaies, Guadeloupe</td>
<td>16.30</td>
<td>−61.58</td>
<td>18.3</td>
<td>20 m wave carried off floatable objects</td>
</tr>
<tr>
<td>Sainte-Rose, Guadeloupe</td>
<td>16.33</td>
<td>−61.70</td>
<td>18.3</td>
<td>20 m wave carried off floatable objects</td>
</tr>
<tr>
<td>St. John’s, Antigua</td>
<td>17.13</td>
<td>−61.85</td>
<td>3.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Runup heights of the 1867 tsunami in Lesser Antilles

<table>
<thead>
<tr>
<th>Location</th>
<th>Lat. N</th>
<th>Long. W</th>
<th>Run-up (m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. George’s, Grenada</td>
<td>12.05</td>
<td>−61.75</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Gouyave, Grenada</td>
<td>12.15</td>
<td>−61.73</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Basse Terre, Guadeloupe</td>
<td>16.00</td>
<td>−61.71</td>
<td>1.0</td>
<td>Sea retreated far from coast</td>
</tr>
<tr>
<td>Deshaies, Guadeloupe</td>
<td>16.30</td>
<td>−61.78</td>
<td>18.3</td>
<td>Houses destroyed, sea receded</td>
</tr>
<tr>
<td>Sainte-Rose, Guadeloupe</td>
<td>16.33</td>
<td>−61.70</td>
<td>10.0</td>
<td>Sea withdrew 100 m and damaged houses, upon a return 10 m wave</td>
</tr>
<tr>
<td>St. John’s, Antigua</td>
<td>17.16</td>
<td>−61.83</td>
<td>3</td>
<td>Data of Lander and Whiteside (1997)</td>
</tr>
</tbody>
</table>

Virgin Islands. It induced tsunami waves; their heights are given in Table 4 (NOAA/NESDIS data). At St. Barthelemy and St. Martin, there was some damage; at St. Vincent and Martinique, there was unusually high water; at Pointe-à-Pitre and Isles des Saintes (Guadeloupe), there was a slight swell.

11 March 1874. A submarine shock to the southeast of St. Thomas (Virgin Islands) shook the island and ships in the harbor. At Dominica, the steamer Corsica reported at 05:00 LT a series of heavy rollers in the harbor during half an hour, rendering communication with the shore impossible. They did not feel the earthquake (Lander and Whiteside, 1997).

25 December 1969. Earthquake had parameters: magnitude, 7.0; depth 15 km; epicenter coordinate, 15.8° N 59.7° W. Tsunami with the height of 0.1 m was recorded in Barbados, Dominica and Antigua (NOAA/NESDIS data). Lander and Whiteside (1997) give the maximum amplitude 46 cm at Barbados.

16 March 1985. A moderate earthquake caused damage at Montserrat. It was felt at Antigua and St. Kitts. A several cm tsunami were recorded at Basse Terre, Guadeloupe (Lander and Whiteside, 1997). NOAA/NESDIS gives for earthquake: $M_w = 6.4$; depth 14 km; epicenter coordinates, 17.0° N 62.5° W. We can observe that this moderate earthquake generated tsunami due to the its low depth.

22 April 1991. A major earthquake of magnitude 7.4 struck the region surrounding the eastern border of Costa Rica and Panama. The epicenter (9.6° N 83.4° W) was at a depth of about 17 km. The reviewer indicates that there are some stories of a tsunami observed in a bay of the Martinique.

9 July 1997. Earthquake had parameters: $M_w = 6.9$; depth 15 km; epicenter coordinates, 10.6° N 63.5° W. There is information of a tsunami at Tobago (NOAA/NESDIS data). The very low depth of this moderate earthquake is probably responsible for the generation of the tsunami.

2.2 Tsunamis of volcanic origin (5 events)

Data of tsunamis of volcanic eruption are more rare (NOAA/NESDIS data).

17 February 1842. Probably, the volcanic eruption produced minor a tsunami at Antigua.

5 May 1902. In 1902, the volcanic eruption of the Montagne Pelée in Martinique occurred from 2 May to 8 May. On 5 May 1902, a 35-m-lahar from Montagne Pelée swept down Rivière Blanche, north of the nearby town of St. Pierre. When it reached the sea, it generated a 4–5 m high tsunami that only affected the lower part of the town, killing one hundred people (Bryant, 2001).

7 May 1902. The 7 May 1902 eruption produced a pyroclastic flow that swept into the harbour of St. Pierre and generated a tsunami that traveled as far as Fort de France, 19 km away (Bryant, 2001).

3 March 1911. The extraordinary waves noticed on the coast of Trinidad and Tobago were following an explosion of mud-volcano island. No quantitative information about the tsunami characteristics is available.

26 December 1997. A tsunami was observed in the southern part of Montserrat, generated by a pyroclastic flow (Cader et al., 1998). It is necessary to mention that the numerical simulation by Heinrich et al. (1998, 1999a, b) shows the potential danger of the tsunami appearance at the possible eruption of the Soufriere volcano (Montserrat). Table 8 summarizes the locations due to these volcanic eruptions.
Table 5. Tsunami heights at Antigua

<table>
<thead>
<tr>
<th>Year</th>
<th>1751</th>
<th>1755</th>
<th>1842</th>
<th>1843</th>
<th>1867</th>
<th>1969</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runup (m)</td>
<td>4.5</td>
<td>3.7</td>
<td>3.1</td>
<td>1.2</td>
<td>3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 6. Tsunami heights at Barbados

<table>
<thead>
<tr>
<th>Year</th>
<th>1751</th>
<th>1755</th>
<th>1761</th>
<th>1969</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runup (m)</td>
<td>3.6</td>
<td>1.5</td>
<td>1.2</td>
<td>0.46</td>
</tr>
</tbody>
</table>

2.3 Tsunamis of unknown origin (3 events)

24 April 1767. The sea was much agitated and had ebbed and flowed in an unusual way at Barbados and Martinique (Lander and Whiteside, 1997).

26 July 1837. Large waves were reported at Martinique (NOAA/NESDIS data).

2 August 1837. Several shocks accompanied by a large wave occurring during a hurricane at Martinique. The source of wave is uncertain (Lander and Whiteside, 1997).

3 Preliminary analysis of historical tsunamis

The quantitative information of the parameters of the tsunamis given above is not quite good enough for statistical analysis. But we should mention that the total number (21) of tsunami events for the period 1530–2000 is high, and the return period for the Lesser Antilles, as a whole, can be estimated in 24 years. This value of the return period is characterized for other regions of the Atlantic, for instance, for the Mediterranean (Soloviev et al., 2000; Pelinovsky et al., 2002). So, the risk of tsunamis for the Lesser Antilles seems to be real.

For estimation of the tsunami risk for each island of the Lesser Antilles, the historical data should be collected for each location. In fact, only a few data are available for some locations in the Lesser Antilles, as a rule, one to three values. The maximal number of runup heights is known for the Antigua Island, summarized in Table 5. Considering the total period of observation as above over 470 years, the cumulative frequency of tsunami appearance can be calculated (Fig. 4). Roughly speaking, the return period of the tsunami wave with runup exceeding 2–3 m can be estimated in 100 years. For Barbados, tsunami runup are known for the four events only (Table 6). The calculated cumulative frequency for tsunamis in Barbados is presented in Fig. 4 as well. The curves for Antigua and Barbados located in different parts of the Lesser Antilles, are relatively close to each other; this demonstrates the same character of tsunami manifestations on both islands. The regression line: cumulative frequency

\[
\ln f = 0.36H^2 - 4.11
\]

and is also presented in Fig. 4 by the solid line. This regression can be used for the rough estimation of the tsunami appearance at the Lesser Antilles. In particular, its value for weak amplitudes, \(f = 0.015/\text{year} \), characterizes the frequency of occurrence of tsunamis in the region. Due to the common origin of tsunami by the underwater earthquakes in the Caribbean, this value should be the same (or slowly varied) for each island. The characteristic slope of this curve, of course, depends on the bathymetry of each island and should vary more significantly from one island to another. It cannot be found from given historical data, and this numerical simulation of the tsunami propagation may be effective in generating missing data for each island. Such an approach to create the synthetic tsunami catalogue for other regions is discussed, for instance, by Curtis and Pelinovsky (1999) and Choi et al. (2001). It will be developed for the tsunamis in the Lesser Antilles.

For the successful numerical simulation of the tsunami propagation, the parameters of tsunamigenic earthquakes should be analyzed. Table 7 summarizes quantitative information of 13 tsunamigenic earthquakes that occurred in the Caribbean Sea with known or unknown coordinates. The epicenters are known for 8 events (they are presented in Fig. 5); the earthquake magnitude is given for 6 events, and only 5 events with “good” seismic data are provided by the observed tsunami wave heights.

First of all, we may mention that 5 tsunamigenic earthquakes (from 8 documented events) occurred in the Lesser Antilles directly. Two strong tsunamis were initiated by the earthquakes at the Greater Antilles (Haiti, 1842, and Virgin Islands, 1867). The earthquake in South America induced
Table 7. Parameters of tsunamigenic earthquakes for the Lesser Antilles

<table>
<thead>
<tr>
<th>Date</th>
<th>Lat. N</th>
<th>Long. W</th>
<th>Magnitude M_w</th>
<th>Depth, km</th>
<th>Area location of effects (Lander 1997)</th>
<th>Runup (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 November 1751</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>St. Martin, Antigua, Martinique, Barbados</td>
<td>7</td>
</tr>
<tr>
<td>19 March 1802</td>
<td>17.2</td>
<td>62.4</td>
<td></td>
<td></td>
<td>Antigua, St. Kitts</td>
<td></td>
</tr>
<tr>
<td>30 November 1823</td>
<td>14.4</td>
<td>61.1</td>
<td></td>
<td></td>
<td>Martinique</td>
<td></td>
</tr>
<tr>
<td>13 September 1824</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Montserrat</td>
<td></td>
</tr>
<tr>
<td>30 November 1824</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Martinique</td>
<td></td>
</tr>
<tr>
<td>3 December 1831</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trinidad, Antigua, St. Kitts</td>
<td></td>
</tr>
<tr>
<td>7 May 1842</td>
<td>18.5</td>
<td>72.5</td>
<td>> 8.0</td>
<td>< 50 km</td>
<td>Guadeloupe, Grenada, Antigua</td>
<td>18.3</td>
</tr>
<tr>
<td>8 February 1843</td>
<td>16.5</td>
<td>62.2</td>
<td>> 8.0</td>
<td>< 50 km</td>
<td>Antigua</td>
<td>1.2</td>
</tr>
<tr>
<td>18 November 1867</td>
<td>18.5</td>
<td>65.0</td>
<td>7.5</td>
<td>< 50 km</td>
<td>St. Martin, St. Barthelemy, Antigua,</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Guadeloupe, Martinique, St. Vincent,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grenada Dominica</td>
<td></td>
</tr>
<tr>
<td>11 March 1874</td>
<td>15.8</td>
<td>59.7</td>
<td>7.0</td>
<td>15</td>
<td>Barbadoss, Antigua, Dominica</td>
<td>0.46</td>
</tr>
<tr>
<td>25 December 1969</td>
<td>17.0</td>
<td>62.5</td>
<td>6.4</td>
<td>14</td>
<td>Guadeloupe</td>
<td>0.1</td>
</tr>
<tr>
<td>9 July 1997</td>
<td>10.6</td>
<td>63.5</td>
<td>6.9</td>
<td>15</td>
<td>Tobago</td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Location of landslide or pyroclastic flows due to volcanic eruptions

<table>
<thead>
<tr>
<th>Date</th>
<th>Island</th>
<th>Lat. N</th>
<th>Long. W</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 February 1842</td>
<td>Antigua</td>
<td>16.5</td>
<td>62.2</td>
</tr>
<tr>
<td>5 May 1902</td>
<td>Martinique</td>
<td>14.4</td>
<td>61.0</td>
</tr>
<tr>
<td>7 May 1902</td>
<td>Martinique</td>
<td>14.4</td>
<td>61.0</td>
</tr>
<tr>
<td>3 March 1911</td>
<td>Trinidad and Tobago</td>
<td>9.5</td>
<td>61.00</td>
</tr>
<tr>
<td>26 December 1997</td>
<td>Montserrat</td>
<td>17</td>
<td>62</td>
</tr>
</tbody>
</table>

Table 9. Focal depth of earthquakes in the Lesser Antilles with magnitude larger than 7

<table>
<thead>
<tr>
<th>Earthquakes</th>
<th>Magnitude M_w</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1690</td>
<td>7.5</td>
<td>< 50 km</td>
</tr>
<tr>
<td>1839</td>
<td>7.3</td>
<td>> 50 km</td>
</tr>
<tr>
<td>1843</td>
<td>8.0</td>
<td>30 km</td>
</tr>
<tr>
<td>3 October 1914</td>
<td>7.4</td>
<td>100 km</td>
</tr>
<tr>
<td>1953</td>
<td>7.5</td>
<td>> 50 km</td>
</tr>
<tr>
<td>8 October 1974</td>
<td>7.4</td>
<td>40 km</td>
</tr>
</tbody>
</table>

a weak tsunami at Tobago. We should also add two teletsunamis that arrived from Portugal. So, the tsunamis at the Lesser Antilles can be related with both the closest and the far away earthquakes.

The earthquakes with magnitudes 6.3–7.0 generated weak tsunamis (maximum recorded height is 46 cm)\(^4\). Significant tsunamis were initiated by the strong earthquakes with a magnitude more than 7.5. This is typical for the Pacific Ocean as well and characterizes the general properties of the mechanism of the tsunami generation. Table 9 summarizes the focal depth of 6 earthquakes with magnitude larger than 7, very close to the Lesser Antilles arc (BRGM, 1990).

For numerical simulation, the 1867 event is of great interest, because it was felt on most islands of the Lesser Antilles, as well on the Greater Antilles (in particular, maximum height at the Virgin Islands, near the epicenter, was reported as 9 m in Frederiksted Harbour, St. Croix Island); this is well documented (Reid and Taber, 1920; Murty, 1977). Below is the description of this event for Lesser Antilles taken from the paper by Reid and Taber (1920) written 50 years later after tsunami:

“Still farther east some damage was done in the islands of Saba, St. Martin, and St. Bartholomew; a high wave is said to have invaded Saba Island; and the sea rose pretty high at St. Christopher. In Antigua the shock was called “severe”, which must be an exaggeration, probably due to the alarm caused by the sea, which was reported to have risen eight or ten feet in the harbor of St. John, on the west coast of the Island. The shock was weakly felt in Guadeloupe and Marie Galante, and apparently not at all in Martinique. There is no report from Dominica, but it is possible that the shock was barely sensible there. At Basse-Terre, Guadeloupe, “towards three o’clock”, the sea suddenly retired a long distance and then “after a certain interval”, advanced; this phenomenon..."
was repeated once, and then all was quiet. The total range
in the height of the sea from its lowest to its highest level
was about two meters. From Deshayes and Sainte-Rose, in
the northwest part of the island, comes a more sensational
report; the sea is said to have withdrawn and to have returned
in a wave “at least 60 feet high”, which broke over the shore
and carried off all floatable objects. Three of these great
waves are described. The account is undoubtedly much ex-
aggerated. In both the accounts from Guadeloupe the waves
are said to have arrived at about three o’clock, and imme-
diately after the light shocks. There was an error either in
the report or in the clocks of the island; probably in both;
for the shock must have been felt at about three o’clock lo-
cal time, and the waves must have arrived about one hour
later. Point-à-Pitre, on the southern side of the island, seems
to have felt the shock, but it is so protected, at the head of
the Petit-Cul-de-Sac, that the waves were barely, if at all,
noticeable there. The waves were also noted at Martinique,
but we have no description of them. At St. Vincent “the wa-
ter was observed to be unusually high; but nothing occurred
to attract attention”, though at Becquia Island, ten or fifteen
miles farther south, there were three great slow waves, the
water rising about six feet above its usual level; the whole
event lasted about forty minutes, and the water was not in
the least agitated. The next island from which we have a report
is Grenada; at St. George, about 17:20 LT, the sea suddenly
sank four or five feet, leaving the reef, in front of the lagoon,
bare; it then rose as much. This was repeated six times and
then all was quiet. At Gouyave, nearby, the sea began to ebb
and flow about 17:00 LT with a range of about twenty feet,
doing some damage to the town. Twenty feet seems to be an
exaggeration; the time of the waves seems also inaccurate;
they would have arrived there at about 16:30 LT. The shock
was not felt at Grenada; the slight shocks felt in that island
at 21:00 LT, 18 November and 01:00 LT on the 19 November
were probably connected with the strong shock on the South
American coast on 19 November.”

The surprising information of 18.3 m at Guadeloupe dur-
during the 1867 event, and also during the 1842 event, should
be specially inspected, taking into account the contradiction
between data in various sources.

4 Have extreme wave heights occurred in Guadeloupe?

Analysis of tsunami wave heights for whole historical period
at the Lesser Antilles shows that the extreme wave heights of
the same value in 18.3 m (or 60 feet) were recorded in Guade-
loupe only during the tsunamis of 1842 and 1867. They were
recorded in the northwestern part of the island, at Deshaies
and Sainte-Rose (Fig. 6). Reid and Taber (1920) mentioned
that this is an overestimation for the 1867 event. At first,
let us systematize the descriptions of tsunamis in these loca-
tions.

7 May 1842. A strong earthquake (magnitude > 8.0) occurred at
Haiti. There was extensive destruction caused by the earthquake
and tsunami; at Port-de-Paix the sea receded 60 m and the returning
wave covered the city with 5 m of water. About 200–300 of the
city’s 3000 inhabitants were killed by the earthquake and tsunami
(NOAA/NESDIS data and Lander and Whiteside, 1997).

The description of the tsunami in both locations in Guadeloupe, at
Deshaies and Sainte-Rose, is the same: a wave carried away all
floatable objects. There is no information of damage in villages.
According to the NOAA/NESDIS data, the wave runup height was
18.3 m in both locations. According to Lander and Whiteside
(1997), the wave runup height was 8.3 m at Deshaies and 1.8 m at
Sainte-Rose.

18 November 1867. This earthquake had the lesser magnitude
(7.5), but it was closer to Guadeloupe; its epicenter was at the Virgin
Islands.

According to NOAA/NESDIS data, the tsunami wave runup
height at Deshaies was 18.3 m. Houses were destroyed; the
sea receded 100 m, and returned as a 18.3 m wave. At Sainte-Rose, the wave runup height was 10 m. The sea withdrew 100 m and damaged houses upon return as a 10 m wave.

According to Lander and Whiteside (1997), at Deshaies, houses in the village were destroyed. At Sainte-Rose, there was a 10 m wave. The sea withdrew 100 m and flooded and damaged houses on return.

According to Reid and Taber (1920), from Deshaies and Sainte-Rose, comes a more sensational report; the sea is said to have withdrawn and to have returned in a wave “at least 60 feet high”, which broke over the shore and carried off all floatable objects. Three of these great waves are described. According to Murty (1977), at Deshaies and Sainte-Rose, the tsunami runup was said to have exceeded 18.3 m.

The papers cited above give the same description of phenomenon for both locations: the first wave has the negative polarity and the sea withdrew 100 m. The second wave was positive and it climbed on the beach (probably, as the broken wave; see Reid and Taber, 1920), destroying houses. The difference is in the height of the crest: 18.3 m in both locations; or 18.3 m at Deshaies and 10 m at Sainte-Rose. Also, Reid and Taber (1920) informed us that this large wave carried off all floatable objects, and in total, three large waves were observed. Reid and Taber (1920) cited an original letter from Sainte-Claire Deville (1867). We found this letter; it gives the following description of tsunami (translating from French). At Deshaies, one writes: Great disaster! The sea devastated and thrusted almost all the houses of the village. It is no longer possible to have bread. The inhabitants took refuge in the church.

An inhabitant of Sainte-Rose wrote: “Today, around 15:00 LT, the sea suddenly receded on more than one hundred meters of the littoral; this withdrawal was preceded by light oscillations from an earthquake, of which the duration can be estimated at five or six seconds. Then suddenly, a first blade, at least 60 feet high, rising about 3 miles to the north in the open sea has rolled violently towards the ground, immersing all the littoral and flooding the houses. A second and third of these enormous blades, rolling from north to south, followed, with short intervals, reversing all in their passage.”

Also, this letter informs us of tsunami waves in other locations of Guadeloupe. At Basse-Terre, around 15:00 LT, the sea suddenly receded from the land on a long distance. After a certain time, it returned to its level. The population was very frightened but there was no damage. In the harbor of Pointe-à-Pitre, the variation of the sea level and coast were less. So, the original letter informs us of a large wave (60 feet) in the open sea at a distance of 3 miles from Sainte-Rose, and the accuracy of such an estimation should be very low. Also, there is no information about wave height at Deshaies.

For an investigation of the possibility of these descriptions, the inspection trip to Deshaies and Sainte-Rose was conducted. The small village of Deshaies is situated at the end of a relatively narrow bay with the beach length less than 1 km. The bay is bounded by the highest hill on the bay entrance. The underwater shelf is not wide. The depth contour of 20 m is on the offshore distance of 0.7 km, and the depth contour of 200 m is on the distance of 4 km. Also, the bathymetry does not show any features indicating the possibility of the wave focus in the bay end, where the main part of the village with two to three streets is located, 1 m above sea level (Fig. 7 Plate 1a). The church is located behind the streets on the hill, 10 m above the sea level. We were not able to recognize the church location in 1867, but the relief features indicate that this should be the same place as the actual one. Since inhabitants took refuge in the church, the possible wave runup could reach 10 m. Certainly such a wave could destroy all the houses on the coast (they are 1–2 floors in the modern village, and have no special defense). Therefore,
the wave height of 10 m at Deshaies seems to be real for the 1867 event. As indirect proof, there is an absence of tsunami registration at the battery located on the cliff of 10 m at the entrance of the bay (Fig. 7, Plates 1b and c). Why inhabitants had time to be saved needs to be analysed. Probably, the wave was high in the open sea, as it was at Sainte-Rose, and people began to run when they saw it. Also, the first wave was negative, as in the other locations and people who experienced the tsunami in 1842 knew that a big wave should come after a “negative” wave.

Concerning the 1842 event at Deshaies, it is difficult to have definite conclusions. First, a 18 m wave should have destroyed the village, but this is not mentioned in the descriptions. Second, there are no descriptions of the 1842 event in the letter (Sainte-Claire Deville, 1867), written 25 years after 1842; but this letter contains a lot of description about the 1843 earthquake, having taken place practically at the same time as the 1842 tsunami. Therefore, the tsunami at Deshaies in 1842 was weak, and its height probably did not exceed 1 m (a 2 m flow flooded the streets at Deshaies, as it did during the cyclone in 1999). But on the other hand, if, in 1867, the people ran away from the tsunami after the first negative wave (if it was in reality), this indicates that people were experienced with tsunami, but the previous tsunami was in 1842, and therefore, it should have been large.

Sainte-Rose (Fig. 7, Plates 1d and e) is a relative large city. It is located on a different altitude, 10–20 m above sea level. In fact, people were able to be saved on hills from a 10 m wave. Unfortunately, we have no marks in the descriptions, which we can find on the land. The possibility of determining the 18 m wave height from the coast, 3 miles in the open sea, seems to be unrealistic, but it cannot be checked. Sainte-Rose is situated on the beach of the very shallow Grand Cul-de-Sac Marin Bay with the depth less than 20 m (this depth contour is 7 km from shore and the depth contour 100 m – on a distance of 8 km). In fact, tsunami waves can be amplified in this shallow bay, and, taking into account the rapid variation of land relief, can focus on some points with large
values of the runup heights. It means that the wave height can be very high at selected points. But it is more realistic to suppose that the wave height during the 1867 event also did not exceed 10 m at Sainte-Rose.

Concerning the 1842 tsunami at Sainte-Rose, there is no information on this tsunami in the letter (Sainte-Claire Deville, 1867). It argues in favour of a weak tsunami, and, perhaps, the estimation of the runup of 1.8 m, given by Lander and Whiteside (1997), is more correct.

5 Conclusion

The historical data of tsunamis in the Lesser Antilles is collected, analyzed and reviewed. We must underline that this study constitutes a preliminary analysis of tsunami risks in the Lesser Antilles. In total, twenty-four (24) tsunamis were recorded in this area for the last 400 years; sixteen (16) events of seismic origin, five (5) events of volcanic origin and 3 events of unknown source. Most of the tsunamigenic earthquakes (16) occurred in the Caribbean, and two tsunamis were generated during far away earthquakes (near the Portuguese coast). Detailed analysis of seismicity and landslide parameters, as well as archives of local newspapers dealing with these events, will be in future.

Rough estimations of the cumulative frequency for tsunami appearance have been done for Antigua and Barbados. In the limit of weak tsunami heights, values of the cumulative frequencies coincide, and this indicates the same character of tsunami origin for the Lesser Antilles. Anomalous high values of tsunami height of 18 m on the Guadeloupe coast are inspected. Tsunami wave heights during the 1867 event probably did not exceed 10 m.

The next step is to perform a numerical simulation of these events in the framework of nonlinear shallow-water theory, including simulation of potential tsunami from hypothetical sources. Results of the numerical simulations of tsunami propagation will be described later.

Acknowledgements. The authors thanks M. Francius and E. Suleimani for assistance to find the references of 1867 and 1920. Particularly, this study was supported by INTAS and EGIDE grant (PAI-RUSSIE) 04500YH. EP had support also from Université des Antilles et de la Guyane.

References

Calder, E., Young, S., Steve, R., Sparks, J., and MVO staff: The Boxing day collapse, Montserrat Volcano Observatory, Special Report 06, 1998.

