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ABSTRACT minimization [5, 6, 7]. These nonlocal PDEs are linked to
an important category of neighborhood Iters which have
shown their ef ciency to better preserve ne and repetitive
image structures than local ones [8, 9, 10, 11].

An alternative methodology to continuous PDEs-based
regularization, is to formalize the problem directly in-dis
crete settings. This is the case for neighborhood lters
which are mainly based on discrete weighted Laplacians.
See [12, 13] for a description of these operators in the gen-
eral context of graph theory. In particular, it is shown that
Laplacian ltering is equivalent to Markov matrix lter-
ing, and by consequence it is also related to spectral graph
Itering. These properties has been used in the context of
image denoising by [14, 15]. Another interesting work is
the digitization of the total variation (TV) and the Rudin-
Osher-Fatemi (ROF) model of images [16] onto unwei-
ghted graphs [17, 18]. This discrete formulation has re-
ceived much less attention than its continuous analog. An
extension of this model, that uses a normaligddirichlet

1. INTRODUCTION energy on weighted graphs, is proposed in [19] in the con-
text of semi-supervised learning.
In image processing and computer vision, techniques ba-  We have presented a similar extension in the context
sed on energy minimization and partial differential equa- of image and mesh processing [20, 21, 22]. There exist
tions (PDESs) have shown their ef ciency in solving many several advantages of these latter graph-based approaches
important problems, such as smoothing, denoising, inter-In particular, they lead to a family of discrete and semi-
polation and segmentation [1, 2, 3, 4]. discrete diffusion processes basederaplacians. These

We focus on two categories of problems based on gra-processes, parametrized by the graph structure (topology
dient norms: regularization and mathematical morphol- and geometry) and by the degeef smoothness, allow to
ogy (MM). Solutions of such problems can be obtained by perform several ltering tasks such as smoothing/dengisin
considering the input discrete data (e.g. images, meshesand simpli cation. Moreover, local and nonlocal image
data sets) as continuous functions de ned on a continuousregularizations are formalized within the same framework,
domain, and by designing continuous PDEs whose solu-that corresponds to the transcription of the nonlocal con-
tions are discretized in order to t with the natural dis- tinuous regularizations proposed in [5, 6]. The unica-
crete domain. Such PDEs-based methods have the advartion of local and nonlocal gradient-based regularization
tages of better mathematical modeling, connections withis realized by de ning explicitly discrete derivatives on
physics and better geometrical approximations. Differen- graphs. These discrete derivatives can be used to tran-
tial operators involved in these PDEs are classically basedscribe other continuous PDEs and energy functionals to
on local derivatives, that re ect local interactions on the partial difference equations (PdEs) and discrete funetion
data. Recently, nonlocal derivatives have been proposed irals over weighted graphs.
the context of image processing to design gradient-based The aim of this paper is twofold. Firstly, the gradient-
regularization functionals and PDEs associated with their based regularization framework presented in [20, 21, 22]

In this paper, local and nonlocal image processing are uni-
ed, within the same framework, by de ning discrete deri-
vatives on weighted graphs. These discrete derivatives
allow to transcribe continuous partial differential equa-
tions and energy functionals to partial difference equa-
tions and discrete functionals over weighted graphs. With
this methodology, we consider two gradient-based prob-
lems: regularization and mathematical morphology. The
gradient-based regularization framework allows to con-
nect isotropic and anisotropgLaplacians diffusions, as
well as neighborhood lItering. Within the same discrete
framework, we present morphological operations that al-
low to recover and to extend well-known PDEs-based and
algebraic operations to nonlocal con gurations. Finally,
experimental results show the ability and the exibility of
the proposed methodology in the context ofimage and un-
organized data set processing.



is extended by taking into account a more general regu-respectively by the two following subsets\6f
larization functional than the-Dirichlet energy. In par-

ticular, this allows to connect isotropic and anisotropic S@A L fu2 AC 9V 2 A; (u;v) 2 Eg;
versions of graph-basgutLaplacians. Secondly, based : def. _ . _ 1)
on the same discrete derivatives, we formulate mathemat- @A ="TuzA:9v2A%(uv) 2 Eg

ical morphology operators (dilation and erosion) which One can note that the boundary\éfcannot be directly

can be used to perform several morphological processes, ' 4 by (1). In this special case, it must be given.

on weighted graphs, such as opening, closing, reconstruc The setV of vertices can be regarded as a discrete
tion and leveling. These operators and processes are ana- o . .
: ) pace. Lef;h : V ! R be two discrete functions (vec-
log to the ones encountered in continuous PDEs-base .
ors) that assign a real value to each vertex of the graph.

MM [23, 24] and in algebralc.MM [25, 26, .27]' In this TheL 2 inner product of these functions is given by:
latter approach, only algebraic MM operations are con-

sidered on particular graphs (binary, minimum spanning
tree). Also, both continuous PDEs-based MM and alge-
braic MM are considered in local settings. Our general
graph-based approach has the advantage to handle locathe space of such function is noteldV).

and nonlocal con gurations within the de nition of MM Similarly, we de ne the spackl (E) of functions de-
operators. ned on the setE of edges. LeF;H : E ! R be two

The rest of this paper is organized as follows: Sec- functions that assign a real value to each edge) 2 E.

tion 2 recalls basic de nitions related to graphs and in- The inner product of these functions is de ned by:

def.

X
Hihiv €5 f (u)h(u): )

u2v

troduces rst and second order operators used in the rest i L XX
of the paper. Section 3 presents the proposed regulariza- W Hig % F (u; V)H (u;v); 3)
tion framework and associated lters. This framework u2vv u

is illustrated in Section 4 on two interpolation problems,
. . . - wherev  u denotes a vertexconnected ta by an edge
namely semi-supervised image colorization and segmen-

tation. Then Section 5 presents the proposed graph—base8f E.
MM operators. Finally, Section 6 shows the application 2.2. Construction of weighted graphs

of the proposed methods to process image partitions and ) . )
unorganized data sets. Functions of the spadd(V), de ned in the previous sec-

tion, represent the data to be processed. These functions

2 DIFFERENCE OPERATORS ON GRAPHS can be originally de ned on geometric spaces, such as im-
ages and unorganized set of points. Indeed, any discrete
In this section, we recall some basic de nitions on graphs, imagel : Z? | R can be regarded as a func-

and we de ne rst and second order operators which can tionf® : V. Z? I R, whereV is the set of pixels.

be considered as discrete versions of continuous differ-More generally, this is also the case of any unorganized
ential operators. Analog de nitions and properties have set of pointV R", which can be seen as a function
also been used in the context of functional analysis onf®:v ~R"! R".

graphs [28, 29] and semi-supervised learning [19, 13]. There exist several popular methods that transform the
setV, with a given pairwise distance measure V
2.1. Preliminary de nitions V I R*,intoaneighborhood graph (or similarity graph).

Constructing such a graph consists in modeling neighbor-
hood relationships between data.
Among the existing graphs, the simplest of them is the
-neighborhood graph, notgd , where two datai;v 2
V are connected by an edge Bfif (u;V) , with
) > 0 a threshold parameter. We can also quote the
Woy i (Uiv) 2 B minimum spanning tree, thike-nearest neighbors graph,
0 otherwise the Delaunay triangulation, or the relative neighborhood
graph, as other possible graph topologies (see [30] for a
Itencodes the similarity between two vertices of the graph. survey on neighborhood graphs used in pattern recogni-
In this paper, graphs are assumed to be connected, undition).
rected, with no self-loops or multiple edges. Under these In this paper, we consider theneighborhood graph,

LetG = ( V; E;w) be aweighted graplwith a nite setV
of verticesand a niteséE  V V of weighted edges.
The weightw,, of an edgdu;v) 2 E is generally de ned
froma functioow : V. V! R* such that

w(u;Vv) =

conditions, the weight function is symmetric{(u; v) = and a modi ed version of th&-nearest neighbors graph

w(v;u),8(u;v) 2V V), andw(u;u) =0 forallu2 V. since this latter graph is not necessarily directed. Iniorde
Let A V be a connected subset ¥f, i.e. for all to make this graph undirected, lehl{u) be the set of

u 2 A there exists a vertex 2 A such that(u;v) 2 E. k-nearest neighbors of the vertex Then, a vertex is

Let A® = V nA be the complement d& in the graphG. connected tal if u 2 nnl(v) orv 2 nni{u). The obtained

Then, the boundary oA in G is composed of theuter graph is notedk-NNG. We also consider the complete
boundaryand theinner boundaryof A, that are dened  graph that we not&; .



When the functiorf © is a discrete imagé® : V 2.3. Difference operator and its adjoint
Z? | R, the choice of the function to construct the

graph can be de ned as the Chebyshev distance: All the basic operators considered in this paper are de-
ned from the difference operator or the discrete deriva-
(u=(xi; i), v=(xy) =maxfixi Xji;jyi Yjio: tive. There exist several de nitions of these operators on

_ o _ ~ graphs[28, 29, 19, 13]. Asin [20], we present here a de -
By using this distance, the shape of the neighborhood in-nition of the difference operator that allows to retrieve th
volved in the -neighborhood graph corresponds to the expression of combinatorigtLaplace operators.

;tandard square Win.dow of si@ +1) (2 +1) ..In par- The difference operatod : H(V) ! H (E) of a
ticular, G, is the8-adjacency grid graph. Theadjacency  functionf 2 H (V) is the vector of all weighted discrete
grid graph is note@y. derivatives:

When the functiof® : Vv R" | R" represents a
discrete set of data, the functioris simply chosen as the o d:ef'(( d)(u; V))(u'v)Z £

Euclidean distance.

In order to process a given functié? 2 H (V) the
construction of graphs can also take into account this func-
tion within the distance measure Once the graph has o ) u: def. P f f - 8(uV)2 E: (4
been constructed, its weights are computed according to a (@)(uiv) Wav (F(V) T (W) 8(uiv) @
measure of similaritg : V.~ V! R*, which satis es:

where

and
def.

W= GV @) 2E @f (u) €' (d)(u;v) (5)
0 otherwise
is thediscrete (partial) derivativef f , with respect to the
This measure can simply be de ned as the inverse of theedge(u; v), at a vertexu. One can observe that this deriva-
distance measurgy = 1. Distances between vertices tive share the same properties as the continuous derivative
are estimated by comparing their features. To this aim, of a function de ned in the Euclidean space, i@f (v) =
every datau 2 V is assigned with a feature vector de-  @f (u), and@f (u) = 0, and iff (u) = f(v) then

noted byF (f °;u) 2 RY. Several choices can be consid- @f (u) =0.

ered for the expression &f, depending on the nature of We de ne also the vector:
the features to be preserved. In the simplest case, one can
considerF (f %;u) = f %(u). The weight functionv, asso- iofj % (o YU )] w2 ©6)

ciated to a given graph, can naturally incorporate local or

nonlocal features according to the topology of the graph. wherej(df )(u; V)] = p Wavif (V) f(u)j. This one is
For instance, one can consider the following weight func- \,sed in the de nition of the anisotropieLaplacian (see

tions: Section 2.5).
(F(f % v); F(f % u))? The adjoint operatord : H(E) ! H (V), of the
g1(u; v)=exp 3 ; difference operatad is de ned by:

)= 0.1 0. 1. . .
G(uV)=( (FE%UFESVF ) 5 >0 1 0 hH e = Hd Hiy:
where > 0 controls the feature similarity and: V ]

VI R* is adistance measure to be de ned next. forallf 2 H(V) andH 2 H(E). By using the ex-
Whenf© 2 H (V) is an image, an important feature Pressions (2) and (3), it is easy to deduce the following
vector is provided by image patches, ife(f %;u) is the ~ €xpressionofl ateach vertex of the graph (see [13, 22]):

values off © in a square window of siz@k+1) (2k+1), X p
centered at the vertax, which we noteFy (f %; u). This (d F)(u)= % Wu (F(v;u) Fuv): (7)
feature vector has been proposed in the context of texture vou

synthesis [31], and then used in the context of image pro- _ .
cessing (see [11, 7, 32, 6, 5] and references therein). The Wg introduce glso two other d|ﬁerence operators that
distance function associated with this feature vector is Cconstitute the basis of the morphological operators de ned

given by: in Section 5. They are based on the difference operthtor
and on the classical maximum (respectively minimum)
(Fi(f % u); Fu(f % v) = operator as:
X
K ((y)kfO(u+(x;y)) fOov+(x;y))k3, (d* )(u;v) Emax (0; (dF )(u;v)) ; and @)
x= ky= k def.

(d f)(u;v) ='min (0 ; (df )(u;v)) :
whereK is a Gaussian kernel of a given standard devi-
ation. This latter can be replaced by the Chebyshev dis-As before, the corresponding partial derivatives are re-
tance between the position of pixels. spectively given by@ f (u) and@ f (u).



2.4. Gradients and their norms

As in the Euclidean space, one can de ne the gradient

of a functionf 2 H (V) at each vertexs 2 V as the
vector of all partial derivatives, with respect to the set of
edgequ;v) 2 E:

def.

(r £)(u) = (@f (U) (uv)2e: 9)
In the sequel, we use the’-norm of this vector:
Y
B o F
k(r f)(u)kp = wgjf (v) fi® ; (10)

vV u

as well as its in nite norm:

K(r f)(uks = max (" Wi () f (U)):

As before, one can de ne two other gradients (and
their associated norms) based on the partial deriva@és
and@ f , which we note respectively* andr . Forin-

stance, we have the following norms for" :

[
P

Wi (max(Q;f (v)  F(u))P

k(r *f)(uk; = max (IO wyy max(0;f (v) f(u):

K(r *f)(u)kp =

2.5. Second order operators

It is a nonlinear operator fqu62. An interesting case is
provided byp=1, which corresponds to tteombinatorial
(mean) curvaturef the functionf over the graph (see for
instance [18] for a similar de nition on unweighted graphs
in the context of image restoration).

We now de ne anothep-Laplacian, which is based
on the vectojdf j. The (anisotropic)p-Laplacian § :
H(V)!H (V) isdenedby:

af = d (jdFjP °dF):

Then, from (7) and (4), we obtain tlo®mbinatorialver-
sion of theanisotropic p-Laplacianwhich is expressed at
each vertexs 2 V by (see [33] for more details):

wijt ) f WP () f(v):

(13)
As 'p this operator is nonlinear g&2. If p=2, bothp-
Laplacians corresponds to the Laplacian. It can be shown
that they can be linked within a same operator de ned by
d (jFjP 2kr fk5 *df). In the same spirit, one can also
de ne higher order operators.

X
( pP)(u)=

vV u

3. REGULARIZATION MODELS AND
DIFFUSION PROCESSES

In this section, we propose a variational model to regu-
larize functions de ned on the vertices of graphs, and the
discrete diffusion processes associated with it.

One of the most important second order operator on graphs

is the Laplacian, which has several well-established ex-

pressions (see [12, 13] for a complete study). All the ex-
pressions can be derived from the following de nition.
ThelLaplacian : H(V)!H (V) isthe linear oper-
ator de ned by:
f def

d d:

By using expressions (7) and (4), we retrieve tloenbi-
natorial Laplacian(or unnormalized Laplacianwhich is
expressed at each vertex2 V by:

( f)u)= wyy (f (u)  f(V));
v X X (11)
= f (u) Wyy wyy T (V):

An extension of the Laplacian is ti{gsotropic) p-La-
placian |, : H(V) 'H (V) denedforp 2 (0;+1)
by:
def.

fEhd (kr TKE 2d):

Again by using (7) and (4), we get ttembinatorialver-
sion of thep-Laplacian which is expressed at each ver-
texu 2 V by (see [22] for more detalils):

. X
( pf)u)= b (F(u) (V)
with  BF = Lwy Kk(r f)(u)kS %+ k(r f)(v)k§ 2

(12)

3.1. Problem formulation and equations on graphs

Letf© 2 H (V) be a given function de ned on the vertices
of a weighted grapi = (V; E;w). In a given context,
this function represents an observation of a clean function
h 2 H (V) corrupted by an additive noise2 H (V) such
thatf ©= h+ n.

To recover the uncorrupted functibn the processing
task is to remove the noisefrom f °. A commonly used
method is to seek for a functidn2 H (V), which is reg-
ular enough orG, and also close enoughtd. This can
be formalized by the minimization of an energy functional
which involves a regularization term (or penalty term) plus
an approximation one (or tting term). In this paper, we
consider the following model:

h f Ok3;

argmin J(f )+ Skf (14)

f:VI R
def.

where J(f) (k(r f)(u)kp) (15)

u2Vv

is a gradient-based functional, an® R is a regulariza-
tion parameter, called Lagrange multiplier, that controls
the trade-off between the penalty term and the tting term.
The function () is a kernel that penalizes large variations
of f in the neighborhood of each vertex. Several penalty
kernels have been proposed in literature, in different sit-
uations. Among them, we can quotés) = s? (known

in the context of Tikhonov regularization [34])(s) = s



(total variation [16, 17]), (s) = P 2+ 2 (regular-
ized total variation [16, 17]), and(s) = r? log(1+s?=r?)
(nonlinear diffusion [35]).

To get the solution of (14), we consider the following
system of equations (Euler-Lagrange equation):

@if)
+ (f(u
where the rst term denotes the variation of (15) with re-

specttd atavertew. Itis easy to show that this variation
is equal to:

@If) uw @ (k(r H)(Wwkp) , X @ (k(r f)(Vkp)

fO)=0; 8u2V; (16)

@1u) - @fu) vV ou @fu)
= O(k(rfxu)kp)%
f k
o i) HG e
)\2 u
TR W P AW W)
v u (17)
where

P
2
uv

O(k(r )(ukp) . _°(k(r f)(v)kp)
k(r f)(u)kh * k(r f)(v)kh *

pif
uv

wheref ( ;t) is the parametrization df by an arti cial
timet > 0.

3.3. Neighborhood lters

This section describes a second approach to get the solu-

tion of (16), that is rewritten as:
|

+ &t P2 f)

\

+ &t ) fWP = f 0w

vV u

Since this is a nonlinear system, an interesting approxi-
mate solution is provided by the linearized Gauss-Jacobi
iterative algorithm, an iteration of which is decomposed
in the following two steps:

8
3 & = B (vt (Ui 2 8(u;v) 2 E;
vV u P
0 pif .
_§f(u;t+1): F W+ Pt f(v’t);8u2v:
+ oy W
(20)

This describes a family of neighborhood lters. Indeed, at
each iteration, the new value bfat a vertexu depends
on two quantities: the initial valug®(u), and a weighted

One can observe that this expression has the form of anaverage of the lItered values df in the neighborhood

def.

operator cHV) ' H (V), (17) closely

of u. As in Section 3.2, the choice of the regularization

related to the second order operators introduced in Sec-Parameters and the choice of the graph allow to retrieve

tion 2.5. Indeed, therLaplacian operator ; is equal
to (17)ifp=2 and (s) = s9, and theg-Laplacian § is
equalto (17)ifp= gand (s) = sO.

In most cases (values ¢j, the system (16) is nonlin-
ear, and thusiitis dif cultto nd a close solution. Approx-
imated solutions are given in the following sections. Also,
the regularization functional must be convex to ensure
that the solution of (16) is also the solution of (14), which
depends on andp.

3.2. Diffusion processes

The rst method, that is considered to get the solution
of (16), is based on the gradient descent of (16):

@ (ut)= ( f)ut+ (Fou) f(ut); 8u2v;
(18)
with the initial condition@of=f9. This describes a
family of tted diffusion ows on weighted graphs. This
family includes and extends several well-known ows in-

and to extend several well-known Iters proposed in the
context of image smoothing and denoising.

In particular, forp=2 and (s)= %52, iteration (20) is
rewritten as:

P
oW+ 5,

+

o Wy f(v; 1)

f(uit+1)= ™
uv

(21)

v u

Without being exhaustive, when= 0 (no tting term),
one iteration of (21) corresponds to the following lters:
- Gaussian lter if the weight function is

W = ex ku vk3
w = exp ~H5 2
- -lter[8, 9]if
kfO(u)  fO(v)k3
oy mep KD 10

tensively used in image processing and computer graph-

ics. Most of them are formulated without the tting term
( =0), and has been analyzed by [2] in the context of im-
age processing. In particular, for the regularization kern

(s)= s? andp=2, we obtain Laplacian-based diffusion,
and if (s) = s it corresponds to mean curvature-based
diffusion.

A classical iterative algorithm to get the solution of (18),

atatimet + 1, is the Euler one. An iteration of this algo-
rithm is given by:

f(uit+1)= f(ut)+ t@f (u;t); 8u2V; (19)

- SUSAN [36] or bilateral [10] lters if

ku vk3 kf O(u)

22

fO(v)k2
2 H

(22)

Wyy = exp

- Nonlocal means lIter [11] ifw= gp.
While iterated versions of these three latter Iters are re-
lated to nonlinear diffusion (since the weights depend on
the Itered functionf , they need to be updated at each it-
eration), several iterations of (21) describe a linearr Ite
that is related to Laplacian smoothing (Section 3.2).



(d) Go, unweighted (eBs,w =(22) , () Gs,w = gp,Fs(f?; )

@f°:v1I R

(b) Go, unweighted

q=0

0
©Go,w= g, F§ =f°

q!

Figure 1. Local and nonlocal image smoothing. (a) The ihitimgef © is regularized until convergence of the Iter (20),
with p=1, (s)=s,p=2,and = 0:0L (b) Discrete TV regularization. (c) Discrete weighted-Tagularization. Col-
umns (d), (e) and (f): Behavior of the regularization w0 iterations of (20), =0, (s) = s9, p=2. OnGy, it
corresponds to the unweighted Laplacian smoothingfo2 and to the digital TV lter forq= 1. OnGg with w=(22),

it is the iterative bilateral Iter (without updating the vghts) forqg = 2. OnGg with w = @, it is the iterative nonlocal
means lter (without updating the weights). The other casas be considered as extensions of these Iters by vanying

Another particular case of the proposed neighborhoodgiven in [21, 22] in the context of image and mesh smooth-

Iters is the TV digital Iter [18], which is obtained for ing/denoising.

(s)=s, p=2, andwy, =1 for all (u;v) 2 E. We have In the sequel, the family of Iters presented in this sec-
extended this Iter to weighted graphs and t¢s) = s tion are the one that is used in the applications. More gen-
in [20, 21, 22]. Figures 1(a) to 1(c) illustrate the diffecen  erally, to process vector-valued functiohs V ! R",
of image smoothing on the graf@y. We can observe that the gradient, in the coef cient ;2 , is replaced by its
for the same value of, using a weight function helps to  n-dimensional version:
preserve image discontinuities. 0 1.

The behavior of the regularization fpr= 2, (s) = K(r f)(u)kp def. @ X K(r fi)(u)kPA

s9,q2 (0; 2], is illustrated in Figures 1(d) to 1(f) for sev- . P

eral values ofy, several graph structures and= 0. The

number of iterations is the same in all the casg30).

Wg can do twq principal observations. As _the size of the 4 REGULARIZATION-BASED INTERPOLATION
neighborhood increases, sharp edges and image redundan-

cies are better preserved. This is also the case for the usénimage processing, several problems such image inpaint-
of nonlocal weights based on patches. Wiger 1 and ing, super-resolution, image colorization or semi-superv
particularly wheng ! 0, the regularization behaves like sed segmentation can be interpreted as interpolation prob-
a simpli cation procedure. This last observation is de- lems. Given a data set where some data are missing, inter-
picted in the rst row of Figure 2, where we can see the polation consists in predicting missing data from existing
effect of the structure of the graph. More examples are ones.

i=1;::n



q=0:7

(a) Gray level image (b) Color scribbles

q!

Figure 2. Results presented in Figure 1dox 1 and ren-

dered here in false colors (each color corresponds to a gray

value). First line represents part®t row of Figure 1 and

second line represents Part&df row of Figure 1. We can

observe the relation between the size of the neighborhood (c) Local (d) Nonlocal

and the leveling of the image. Figure 3. Local versus nonlocal colorization witks) =
s,p=2and , =0:01
Formally, given a knowing functioh® 2 H (V°) de-
ned on V% V, interpolation problem consists in pre- Nance.
dicting a functionf 2 H (V) according tof °. These ( £ 5(u)=Ff'(u)
problems can be formulated by considering the discrete fO(u) = '
regularization model (14):

i=RGB ifu2 Vo
(0;0;0) otherwise.

_ X ) 0/ w2 The colorization process is performed according to Equa-
argmin J(f)+ —-(F@) f7u)%  (23)  tion (23), where , = 0:01ensures that the original color
o uzv scribbles can change during the process. At convergence
of the process, the nal functionisdenedés. V! R3
and nal colors are obtained by

def. u |fU2V0 fl fi(ut! 1 )
W= 0" otherwise. (24) W (fi(ust! +1))i-res

where :V ! Risa function of the form:

Figures 3(c) and 3(d) show the obtained colorization, re-
In this section, we focus on two categories of interpo- spectively in local and nonlocal schemes. The graph asso-
lation problems: the semi-supervised image colorization ciated with the local processing is the graphassociated
and segmentation. with the weight functiorw = g; whereF (f';u) = f'(u)

for a vertexu. For the nonlocal colorization, the asso-
Image colorization. Colorization is the process of adding ciated graph is the grapBs associated with the weight
colors to monochrome images and is usually made by handunctionw = g; whereF,(f '; u) is used as a feature vec-
by an expert. Recently, several methods have been pro+or.
posed for colorization [37, 38] that less require intensive One can view the bene ts of nonlocal processing as
manual efforts. These technigques colorize the image basedompared to local one: the eyes and several areas of the
on the user's input color scribbles and are mainly based onbib are not properly colored and have diffused over straight
a diffusion process. However, most of these diffusion pro- edges. On the opposite, nonlocal colorization has success-
cesses only use local pixel interactions that cannot prop-fully colored these areas thanks to its ability to discover
erly describe complex structures expressed by nonlocal in-similar textures and ne details.
teractions. We propose to address this problem within our
framework and we propose to introduce nonlocal con g- Semi-supervised image segmentatiorNumerous auto-
urations in colorization processes [39]. matic segmentation schemes have been proposed in litera-

Figure 3 shows a comparison between local and non-ture and they have shown their ef ciency. But sometimes,

local colorization. Figure 3(a) shows a grayscale image automatic segmentation results are not accurate when im-
f!:V I R, onwhich a user provides an image of color ages are much more complex. Meanwhile, recent interac-
scribblesfs : Vo, V| R® (Figure 3(b)). The image tive image segmentation approaches have been proposed.
color scribbles de nes a mapping from the vertices to a They reformulate image segmentation into semi-supervi-
vector ofRGB color channelst S(u) = (ff(u))i-rcB - sed classi cation by label propagation strategies [40, 41]
From these functions, one compufes: V | RS that Other applications of these label diffusion methods can be
de nes a mapping from the vertices to a vector of chromi- found in [19, 42]. We propose to address this learning



components labeling can be performed on classi ed ele-
ments.

Figure 4 shows the behavior of our semi-supervised
image segmentation method for local and nonlocal con-
gurations, graph structures ammvalues.

Figure 4(b) shows original image with initial labels
superimposed. Figures 4(c) and 4(e) show the nal seg-
mentation performed on the gragy with the weight
functionw = g;. Figure 4(c) is obtained witp = 2
and Figure 4(e) wittp = 1. In the latter case, we use
the anisotropic version of our regularization. Both result
show a suitable segmentation. When we use nonlocal con-
guration (Figure 4(d)), the segmentation captures more
ne image structures and details. The associated graph for
(© Local p = 2, (s) = s? and(d) Nonlocal patch-based(= 2. this nonlocal processing is a gra@h with aoweig_ht func-

G1) (s) = s andGa) tionw = g; where the feature vectdt,(f °; u) is used.
In these three latter segmentations, one can note that the
boundaries are not smooth. By using a modi ed nonlocal
con guration graph, Figure 4(f) shows a better segmen-
tation where the boundaries are more smoother. In this
case, we use a graph de nedE&NNG|[ G;. The near-
est neighbors are selected with a patch distance where the
feature vector i&s(f %; u) within al5 15 neighborhood

(a) Original (b) Original+initial strokes

(e) Local p = 1, (s) = s and(f) Nonlocal patch-basedp(= 2, search window. Finally, the weight function associated
G1) (s) = s? and16-NNG [ G; with this graphisv = 1.
graph)

5. MATHEMATICAL MORPHOLOGY

Figure 4. Local versus nonlocal patch-based image semi- ) )
supervised segmentation. All the result images were | he two fundamental operators in Mathematical Morphol-

whitened in order to accentuate the user labels and the®Y are dilation and erosion. They form the basis of many
segmented boundary, other morphological processes such as opening, closing,

reconstruction, leveling, etc [26].
_ . o These two operations are commonly de ned in terms
problem as an interpolation problem within our regular- of algebraic set operators but alternative formulations, b

ization framework. sed on PDEs was also proposed by [23, 24] and references
The semi-supervised clustering of the Setonsists  therein. For a unitdis8 = z 2 R? : kzk, 1,

in grouping the se¥ into k classes where the number PDEs-based methods generate at dilation and erosion of

k of classes is given. For this, the 3étis composed of 3 scalar functiori © : R2 1 R byB with the fol-

labeled data sets and unlabeled ones. The objective is thefowing diffusion equations: ((f) = @f = + jr fj and

to estimate the unlabeled data from labeled onesc;Lig ((f)= @f = jr fj,wherer =(@x; @Y is the spa-

the set of vertices which belong to tith class. The set tial gradient operator anfd is the transformed version of

VO=fcigi= .k is the initial set of labeled data, and the {0 |f one assumes that the evolution at tits® is ini-
initial unlabeled data is the setnV°. This is equivalent  tjalized with f (x;y; 0) = fO(x;y), solution off (x;y;t)

to considek label functions %:V! R such as at timet> 0 provides dilation (with the plus sign) or ero-
] o 0 sion (with the minus sign) within a disc of raditisThese
£O(u) = 1 ifu2 c. withi=1;:::7k,8c2V PDEs produce continuous scale morphology and have the
0 otherwise; advantages of offering excellent results for non-digytall
scalable structuring elements whose shapes cannot be cor-
where eacli?, withi = 1;:::;k, corresponds to a given rectly represented on a discrete grid; allowing sub-pixel

class. Starting from the labeled data (ftfés), the vertex  accuracy and can be adaptive by introducing a local speed
clustering is accomplished tyregularizations de ned in  ayglution term [43].
(23) where , = + 1 . At convergence of the processes, In this section, we present our morphological frame-
one can estimate the class membership probabilities andygrk pased on discrete derivatives and PdEs. The pro-
assign to a verten the most plausible one. For all2 posed formulation extends local PDEs-based approaches
1;:::k, we have to nonlocal con guration in context of image processing.
n X 0 In the sequel, we introduce our dilation and erosion pro-
argimax fiutt +1)= _ it +1) - (25 cesses based on previously de ned discrete operators., Then
: links with well-known MM morphology methods are dis-

To obtain a nal image segmentation, a connected image cussed and we show that formulations are special cases of



our methodology. Finally experiments in image process- Dilation and erosion processes A simple variational
ing show the bene ts of weighted and nonlocal operations de nition of dilation applied tof ¥ can be interpreted as
for image morphological processing that better preservemaximizing a surface gain proportional to the gradient
edges, ne and repetitive image structures. norm+ (r f*¥)(u) . Similarly, erosion is a surface gain

5.1. Dilatation and erosion processes minimization proportionalto  (r f ¥)(u) o’

_ , , Dilation of f K on A¥ can be expressed by the follow-
In this section, we de ne the discrete analogue of the con- ing evolution equation:

tinuous PDEs-based dilation and erosion formulations. One

wants to obtained the two following dilation and erosion @fu=@t+ (r *fX(u) o
processes over graphs:
where (r f¥)(u) , isreducedto (r * f K)(u) ,foru2
pt(F) = Qf: + r*f and @ AK by using Equations (27) and (28). Similarly erosion
gft P (26) process can be expressed by:
)= g™ T @fw=@t (r f*u)
wherek:k, corresponds to thieP-norm. Finally, by extending these two processes for all the

To establish these two morphological processes, welevels off , we can obtain the two processes expressed
use on the one hand, the decomposition of a fundtion by Equations (26) and parametrizedfpgndw, over any
V ! Rintoits level setd * = H(f k) whereH is weighted graplG = (V; E;w):
the Heaviside function and, on the other hand, the graph af

boundaries notion de ned in (1). Then, one can interpret pi(f)= ==+ r*f and
dilation process ovehk as a growth process that adds ver- @t P
tices from@ A to A. By duality, erosion process can be pt ()= @f = :
interpreted oveA as a contraction process that removes @t P
vertices from@ A. 5.2. Dilation algorithm

One can demonstrate, the relation between the grap
boundary and the gradient norm of the level set function
at vertexu 2 V:

hTo solve the partial difference equations of dilation and
erosion processes, on the contrary to the PDEs case, no
spatial discretization is needed thanks to derivatives di-
rfk) ; and r fk(u) - rectly ex_pres§ed in a discrete _for_m. Ther_1, one obtains the
general iterative scheme for dilation, at time 1, for all

by studying cases whete2 AX oru 2 AX and similarly Y2 V.

forv u(see [44] fo_r more details). Then, fpr any level FUL )= flu)+ t(rTEYU) L (29)
setf K, theLP-norm (with0 < p < + 1 ) of the directional P
gradients r *f¥(u) o and r fKk(u) o at a vertexu 2 With the correspondinp values, the iterative scheme be-
V are comesfoO<p< +1,
o . 1asp 2 (u) = FHu)+
s (") 0= @ wh A @ ax(u) and X » b
. Uy 2 Ak . t wg max 0;f'(v) ftw) ©
1=p vV u
=@ N we2A . (30)
rof (u) p~ Wiy @ Ak(u) » and forp: 1
v uyv2AKkK
(27) frd(u) = fi(u)+
where :V !f 0;1gis the indicator function andk p_ et ¢ _
V is the set such thdt = L. tmax = Wy max 0;f°(v) fi(u)
Directly from (27) and by using the inner and outer (31)
boundaries® Ak and@ A (see [44] for the proof), one ~ Wheref 0 2 H(V) is the initial function de ned on the
obtains the following relation or any level deft with 0 < graph verticest © (u) = f °(u) is the initial conditiont
p<+1: the iteration step, andt is the time discretization. The
extension to erosion process case can be established by
(r f)(u) o= (r £ 5 (u) ot (r ) o using the corresponding gradient f .
(28)

. . 5.3. Related sch ini i
Equations (27) and (28) only consider th&-norm elated schemes In Image processing

when0 < p < +1 . Forthe case wherg= 1 one can With an adapted graph structure and an appropriated wei-

demonstrate and obtain same results by ukihgnorms ght function, our propose morphological framework re-

expressions. covers well-known morphological methods in image pro-
cessing. For clarity, we only consider dilation but same



(a) Original (b) Localw =1 (c) Local weighted  (d) Nonlocal (e) Localw =1  (f) Local weighted  (g) Nonlocal

Figure 5. Image morphological processing with differeramr topologies and weight functions. First row: dilation.
Second row: erosion.

remarks can be obtained for erosion. ing. The examples illustrate the exibility and the abil-
ity of our method to perform different morphological pro-

Osher-Sethian discretization schemeWhenp = 2 and cessing within a same formulation.

the weight function is constantv(= 1), Equation (30)

recovers the exact Osher-Sethian rst order upwind dis- Image morphological processingFigure 5 shows a com-

cretization scheme [45] for a grayscale image de ned as parison between local unweighted, local weighted and non-

fO:V R?! R. Ifthe associated graph &, then, local patch-based dilation and erosion. The graph associ-
with Equation (30) and the following propertynax(0; a ated with local processing is theadjacency grid graph
B = min(0;b a) ° we have: Go, where for the weighted case, the weight function is
" t w = g with F(f % u) = f°u). For the nonlocal case,
o qy) = 11(xy) the graph isGs associated with the weight function =
0.
+ ot omin 0:fi(x: ft 1: 2, o1 where the feature vector B;1(f °;u). These results
! (:y) (x y) show that by using non constant weights, the proposed di-
max O;f'(x+1;y) fi(xy) 2, lation and erosion better preserve edges as compared to
) et - 2 classical approaches. When a nonlocal con guration is
min O;f(xy) fi(xy 1) + used ne structures and repetitive elements are better pre-
1
2 35 served.

max O;f'(x;y +1) f'(x;y) ;

(32) Morphological processing for textured images Fig-
where vertexu 2 V and its neighborhood v are re- ure 6 illustrates one of the novelties of our framework, the
placed by their spatial image coordinafgsy). application of nonlocal approach for morphological pro-

It corresponds exactly to the Osher and Sethian dis-cessing. Figure 6 shows a comparison between local and
cretization scheme [45] of the PDEs-based dilation pro- nonlocal closing. Closing can be de ned as a serial com-
cess. Using this expression, the proposed morphologicalposition of dilation () and erosion"() operations. The
framework can perform a sub-pixel approximation and re- closing of a functiorf is" ( (f)). Figure 6 shows clos-
covers the notion of structuring elements [23]. For a unit ing of an corrupted image (Figure 6(b)) from the initial

ballB = z2R?:kzk, 1 ,ifwe considerthe three Figure 6(a) with a Gaussian noise of= 20. The local
special cases gf = 1;2;1 , one obtains an approxima- closing is performed with the grajiy and the associated
tion of a square, circle and diamond. weight functionw = 1. For the nonlocal morphological

closing, the associated grapHli8@NNG|[ G; (same con-
Algebraic formulation . If we consider the neighborhood  struction is de ned in Figure 4(f)) where the feature vec-
of a vertexu 2 V with the vertex itself and by studying tor isF3(f %; u) and the patch distance is computed within
the sign of the quantity '(v) f'(u); whenp = 1, a 21 21 search window. This example clearly demon-
with a constant time discretization (i.e.t = 1) and a strates the ef ciency of nonlocal patch-based methods to
constant weight functioni{ = 1), Equation (31) recovers  better preserve frequent features during the morpholbgica
the algebraic formulation of dilation over graphs. process. Contrary to local ones that destroy ne structures
F1(u) = max fi(v) : (33) and repetitive elements.
v u
In this case, the structuring element is provided by the 6. DATA PROCESSING ON ARBITRARY GRAPH
graph structure and the neighborhood of the vertices. ForOur regularization and MM frameworks work on graphs
instance, if we consider&adjacency image grid graph, it  of arbitrary topology. One of the advantages is that we
is equivalent to a dilation by a square structuring element can use our methodology on any discrete data that can be
of size3 3. represented by a weighted graph. As a result, our formula-
tion provides a natural extension of PDEs-based methods
to process any discrete data even if they are de ned in a
The following experimentations show the potentialities of high dimensional domain.
the proposed morphological framework forimage process-  In the sequel, through different experimentations and

5.4. Experimentations in image processing



(a) Original  (b) Corrupted (c) Local (d) Nonlocal (a) Original (b) Partition 8% of (c) Reconstructed im-
reduction) age
Figure 6. Local versus nonlocal patch-based texture im-
age closing. First row: original and corrupted image with
Gaussian noise (= 20). Second row: local and nonlocal
closing results (See text for more details).

(d) Original +(e)t = 50 (11 (f) Original +(g)t =5 (< 1
L. . . . Labels sec.) Labels sec.)
applications in regularization and morphological proeess

ing, we show the potentialities of our approaches to pro-
cess unorganized high dimensional data set. Moreover,
we also show that another graph-based image representa-
tion can be used instead of usual pixel-based grid graph

leading to fast image processing. (h) Original +(i) t = 2 (< 1() Original +K)t = 2 (< 1
The regularization process used in this section is the Labels sec.) Labels sec.)
neighborhood Iter of Section 3.3 with=2 and (s)=s?,
i.e. Laplacian smoothing. Figure 7. Semi-supervised image segmentation p#th,
=1, t iterations for different graph structures and user
6.1. Fastimage processing on partitions input strokes. (a), (b) and (c): original%2 181 pix-

If we consider that image pixels are not the only rele- els), partition, reconstructed images. ~ (d), (f), (h) and

| h b b j): user input labels. (e), (g), (i) and (k): original im-
vante e“.“e”ts’ t €n more a stracF structures can be use ge with the obtained segmented regions superimposed:
such as image regions or superpixels [46]. We suggest

i K directly with reduced : fi S cytoplasm (red), nuclei (green) and regions boundaries
0 work directly with reduced versions of images. image (black); the segmentation is performed with the speci ed
partm(_)ns. Co_nstrgctmg Image partitions can be viewed iteration steps and the corresponding computation time.
as an |mage_3|mpl| catpp or a data reduction process. To The images (e), (g), (i) and (K) are respectively obtained
obtain such image partitions, any well known image pre-

. from label images (d), (f), (h) and (j). Graph structures

i(iaqgun;gntatmn can be performed such as watershed tec ised to obtain results (eB1,(g): RAG, (i) and (K)G1 .
In this paper, we use generalized Voronoi diagrams
(for more details see [47]). One of the advantages of this Fast semi-supervised image segmentatiofmage semi-
method is the low computing time to obtain a complete Supervised segmentation are usually based on label diffu-
image partition. Indeed, the amortized time complexity of Sion strategies on grid graphs [40, 41], such as the one
a such method i®(E + VlogV) with Dikjstra algorithm presented in Section 4. The drawback of this method is
and Fibonacci heap structure. Then, the obtained parti-that when the considered image is large, the label propa-
tion can be associated with any graph topology such asgation method is inef cient due to the great mass of data
Region Adjacency Graph (RAG), proximity graphs or a t0 analyze. To avoid this computational problem, we pro-
fully connected graph®, ) where vertices represent im-  POse to use image partitions [48].
age regions. The function to be processed on such graphs Figure 7 shows the proposed semi-supervised cluster-
are de ned at each vertex of as the mean value of its ing method applying to segment cytological images into
associated region. 3 classes (nuclei, cytoplasm and background). This ex-
In the sequel, we show that with this image representa-periment also show how partitions in addition of nonlo-
tion, one obtains similar processing behaviors than pixel- cal scheme can provide an ef cient image segmentation
based processing, but with a drastically decreasing com-method. To this aim, the following experiment compares
putation complexity. Due to the low computing time to on the one hand, computation time and the segmentation
create an image partition, it can be neglected in the fol- results between a pixel-based grid graph, and two region-
lowing experiments (e.g. to obtain partitions of an image based proximity graphs (RAG and fully connected graph);
of size256 256take less tharl sec. on a modern com- and one the other hand, it shows the robustness of our ap-
puter?). proach regarding to initial user input labels. Figure 7¢e) i
the semi-supervised segmentation result obtained from la-

bels of Figure 7(d) and a®+adjacency grid graph3;) as-
1All the results are obtained with a standard Linux computer g ( ) ) yonag plﬁ()

equipped with quadrR:4 GHz Intel Xeon processors aridh GB of sociated with the initial image (Flgure 7(a.))' In thl.s case,
RAM, and the mentioned computing times include the grapstan- one can observe the number and the precise location of the

tion itself. initial labels, in particular, the necessary labels betwee




the two cells. Figure 7(b) is a partition of Figure 7(a). One

can observe the important rate of reducti®8%g in term

of graph vertices. Figure7(c) is a reconstructed image

from the partition where the pixel values of each region

of the partition are replaced by the mean pixel value of

its regions. With this simpli ed version, we construct two

proximity graphs: the RAG and the fully connected graph.

Figure 7(g) shows the segmentation result obtain from the (a) Original (b) Partition  (c) Reconstructed im-
RAG with the same initial labels (Figure 7(f)) as in the age

grid graph case. We can observe that the two results (Fig-
ures 7(g) and 7(e)) are similar but in the RAG-based seg-
mentation case, the computation time is signi cantly re-
duced. Figures 7(i) and 7(k) show the segmentation result
obtained from the fully connected graph. Using this graph
topology has several advantages. First, the graph contains
all the image information within the edge weights. Sec-
ond, a minimal number of labels is needed to obtain cor-
rect results as compared to the case of the grid-graph or
of the RAG. Third, this nonlocal approach has the impor-
tant property to quickly label objects in the same class,
even if they are not spatially adjacent or close. In Fig-
ures 7(i) and 7(k), the two main nuclei and cytoplasm are
segmented even if they have no initially been labeled, and
the two pieces of cytoplasm on the left and the piece of
cells on the top-left corner of the image are also found.
Finally, the robustness of our approach is shown by two Figure 8. Fast morphological image processing. (d): im-
similar results (Figures 7(i) and 7(k)) with two different age pixel based grid graph processing. (e): image parti-
user input labels (Figures 7(h) and 7(j)). tions based RAG processing.

(d) dilation, erosion, closing 08¢ with w=g; andF (f 9; )=f 0

(e) dilation, erosion, closing on the RAG wiil= g; andF (f ©; )=1f0

Fast image morphological processing Figure8 com- A S A k.
pares the behavior of ourimage morphological processing#44 - 2
between pixel-based and partitions-based graphs. (@) Original USPS digit 1 data set
. . . . 7

Figure 8(b) shows an image patrtition obtained from A7
the initial image of Figure 8(a), and Figure 8(b) is a recon- S
structed image from the partition. The initial image has . (b) Regularization wit
size _256 256, and the_parfutlon is a S|gn|_cant reduced %2 ;7;5;;;22;;;;;;;;;;;;;;;;;;;;;;;255;;;;;%
version 82% of reduction in term of vertices) as com- '

pared to the original one. Figures 8(d) and 8(e) show di- () Regularization with = 0:01

lation, erosion and closing respectively performed on the
4-adjacency grid graph associated to the original image SRR

and on the RAG associated to the partition. Both cases (d) Regularization with =0

exhibit similar behaviors while the case of RAG reduces Figure 9. USPS data set regularization. (b), (c) and (d):

drastically the computation complexity. This is due to the results obtained with the correspondingarameter.
reduced number of vertices to consider.

hand the UCI Wine database. USPS database contains
grayscale handwritten digit images scanned from digit

In this section, we show one of the advantages of our for-to 9 where each image is of size56 16 pixels. Wine
mulation, the application of regularization and mathemat- database contairgclasses of samples itd-dimensions

ical morphology on high dimensional unorganized sets of and for each class9, 71, and48 samples. Coming from
data. In the sequel, different experiments show the poten-the real-world, the data sets naturally contain noise, and
tialities of our methodology to smooth discrete data with one wants to recover a denoised sub-data sets. To perform
regularization or mathematical morphology, or to classify this task, we use the proposed regularization process. Fig-

6.2. Processing of high dimensional unorganized data

data set by semi-supervised clustering. ures 9 and 10 show the regularization results obtain re-
spectively for the USPS and Wine data sets.
Unorganized data set regularization In the following To perform regularization of USPS data set shown in

experiments, we consider two real-world high dimensional Figure 9, we use a randomly subsampled se&Gffsam-
data set. On the one hand, the United States Postal Serples from the original 1 digit set. Figure 9(a) shows the
vice (USPS) handwritten digits database and, on the othertest data set. The fully connected gragh is built with















