
 
 

 

  

Abstract— The process of segmenting images is one of the 
most critical ones in automatic image analysis whose goal can 
be regarded as to find what objects are presented in images. 
Artificial neural networks have been well developed. First two 
generations of neural networks have a lot of successful 
applications. Spiking Neuron Networks (SNNs) are often 
referred to as the 3rd generation of neural networks which have 
potential to solve problems related to biological stimuli. They 
derive their strength and interest from an accurate modeling of 
synaptic interactions between neurons, taking into account the 
time of spike emission. SNNs overcome the computational 
power of neural networks made of threshold or sigmoidal units. 
Moreover, SNNs add a new dimension, the temporal axis, to the 
representation capacity and the processing abilities of neural 
networks. In this paper, we present how SNN can be applied 
with efficacy in image segmentation.  

I. INTRODUCTION 
mage segmentation consists of subdividing an image 

into its constituent parts and extracting these parts of 
interest. A large number of segmentation algorithms have 
been developed since the middle of 1960's [1], and this 
number continually increases at a fast rate. 

Simple and popular methods are threshold-based and 
process histogram characteristics of the pixel intensities of 
the image. Of course, thresholding has many limitations: the 
transition between objects and background has to be distinct 
and the result does not guarantee closed object contours, 
often requiring substantial post-processing. Region-based 
methods have also been developed; they exploit similarity in 
intensity, gradient, or variance of neighboring pixels. 
Watersheds methods can be included in this category. The 
problem with these methods is that they do not employ any 
shape information of the image, which can be useful in the 
presence of noise. 

Meanwhile, Artificial neural networks are already 
becoming a fairly renowned technique within computer 
science. Since 1997, [2,3] has quoted that computation and 
learning has to proceed quite differently in SNNs. He 
proposes to classify neural networks as follows: 
• 1st generation: Networks based on McCulloch  and Pitts' 

neurons as computational units, i.e. threshold gates, 
with only digital outputs (e.g.perceptrons, Hopfield 
network,  Boltzmann machine, multilayer perceptrons 
with threshold units)... 
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• 2nd generation: Networks based on computational units 
that apply an activation function with a continuous set 
of possible output values, such as sigmoid or 
polynomial or exponential functions (e.g. MLP, RBF 
networks). The real-valued outputs of such networks 
can be interpreted as firing rates of natural neurons. 

• 3rd generation of neural network models: Networks 
which employ spiking neurons as computational units, 
taking into account the precise firing times of neurons 
for information coding. 

Based on dynamic event-driven processing, spiking 
neuron networks open up new horizons for developing 
models with an exponential capacity of memorizing and a 
strong ability to fast adaptation [4]. 

The use of spiking neurons promises high relevance for 
biological systems and, furthermore, might be more flexible 
for computer vision applications [5]. Many of the existing 
segmentation techniques, such as supervised clustering use a 
lot of parameters which are difficult to tune to obtain 
segmentation where the image has been partitioned into 
homogeneously colored regions. In this paper, a spiking 
neural network approach is used to segment images with 
unsupervised learning. 
The paper is organized as follows: in first Section, related 
works in literature of spiking neural Networks are presented. 
The second Section is the central part of the paper and is 
devoted to the description of the SNN segmentation method 
and its main features. Results and discussions of the 
experimental activity are reported in the third Section. Last 
Section concludes. 

II. SPIKING NEURAL NETWORK  

A.  Biological background 
    Neurons are remarkable among the cells of the body in 
their ability to propagate signals rapidly over large distances. 
They do this by generating characteristic electrical pulses 
called action potentials, or more simply spikes that can 
travel down nerve fibers. Neurons are highly specialized for 
generating electrical signals in response to chemical and 
other inputs, and transmitting them to other cells. Some 
important morphological specializations are the dendrites 
that receive inputs from other neurons and the axon that 
carries the neuronal output to other cells. The elaborate 
branching structure of the dendritic tree allows a neuron to 
receive inputs from many other neurons through synaptic 
connections [6][7]. 
    The membrane potential   of a postsynaptic neuron 

 varies continuously through time (cf. Figure 1). Each 
action potential, or spike, emitted by a presynaptic neuron 
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connected to generates a weighted PostSynaptic Potential 
(PSP) which is function of time. 
    If the  synaptic weight is excitatory, the EPSP is 
positive: sharp increasing of the potential  and then 
smoothly decreasing back to null influence. If  is 
inhibitory then the IPSP is negative: sharp decreasing  
and then smoothly increasing. At each time, the value of 

 results from the addition of the still active PSPs 
variations. Whenever the potential  reaches the 
threshold value  of , the neuron fires or emits a spike, 
that corresponds to a sudden and very high increase of , 
followed by a strong depreciation and a smooth return to the 
resting  potential 0 [4]. 
 

  
Fig. 1.  Emission of spike 

 

B. Models of spiking neurons  
    Since the works of Santiago Ramon y Cajal and Camillo 
Golgi, a vast number of theoretical neuron models have been 
created, with a modern phase beginning with the work of 
Hodgkin and Huxley [8]. 
    We divide the spiking neuron models into three main 
classes, namely threshold-fire, conductance based and 
compartmental models. Because of the nature of this paper 
we will only cover the class of threshold-fire and specially 
spike response model (SRM). 
    The SRM as defined by Gerstner [9] is simple to 
understand and to implement. The model expresses the 
membrane potential u at time t as an integral over the past, 
including a model of refractoriness.  
Let ; 1  denote the set of all firing times of 
neuron  and Γ ;        denote 
the set of all presynaptic neuron to .  
The state  of neuron  at time t is given by: 
 

 

 
 
 
  (1) 

  models the potential reset after a spike emission,  
describes the response to presynaptic spikes. For the kernel 
functions, a choice of usual expressions is given by:  exp     (2) 

Where H is the Heaviside function,  is the threshold and   
a time constant defining the decay of the PSP. The function 

 is an  -function as: 
 exp 1 0 0      (3) 

III. SEGMENTATION USING SPIKING NEURAL NETWORK 
    However, before building a SNN, we have to explore 
three important issues: network architecture, information 
encoding and learning method. After that we will use the 
SNN to segment images. 

A.  Network architecture  
   The network architecture consists of a fully connected 
feedforward network of spiking neurons with connections 
implemented as multiple delayed synaptic terminals (cf. 
Figure 2). 
    The network consists of an input layer, a hidden layer, and 
an output layer. The first layer is composed of three inputs 
neurons (RGB values) of pixel. Each node in the hidden 
layer has a localized activation Φ Φ X Cn , σn   
where Φ . is a radial basis function (RBF) localized 
around Cnwith the degree of localization parameterized by 
σn. 

    Choosing Φ Z, σ e  Z
σ   gives the Gaussian RBF. This 

layer transforms real values to temporal values. The 
activations of all hidden nodes are weighted and sent to the 
output layer. Instead of a single synapse, with its specific 
delay and weight, this synapse model consists of many sub-
synapses, each one with its own weight and delay . 

 
Fig. 2.  Network architecture 

 

B. Information encoding 
     The first question that arises when dealing with spiking 
neurons is how neurons encode information in their spike 
trains, since we are especially interested in a method to 
translate an analog value into spikes. We distinguish 
essentially three different approaches [9] in a very rough 
categorization:  



 
 

 

• Rate coding: the information is encoded in the 
firing rate of the neurons. 

• Temporal coding: the information is encoded by the 
timing of the spikes. 

• Population coding: information is encoded by the 
activity of different pools (populations) of neurons, 
where a neuron may participate of several pools. 

 
    We have used the temporal encoding proposed by Bohte 
et al.  in [10]. By this method, the input variables are 
encoded with graded and overlapping activation functions, 
modeled as local receptive fields. Each neuron of entry is 
modeled by a local receiving field. A receiving field is a 
Gaussian function. Each receiving field i have a center Ci given by the equation (4) and a width σi given by the 
equation (5) such as: m is number of receptive fields in each 
population and 1.5. 
 1.52  
 

 (4) 

1 2  
 (5) 

 

C. Learning method  
    The approach presented here implements the Hebbian 
reinforcement learning method through a winner-takes-all 
algorithm [11], [12]. For unsupervised learning, a Winner-
Take-All learning rule modifies the weights between the 
input neurons and the neuron first to fire in the output layer 
using a time-variant of Hebbian learning: if the start of a 
PSP at a synapse slightly precedes a spike in the output 
neuron, the weight of this synapse is increased, as it had 
significant influence on the spike-time via a relatively large 
contribution to the membrane potential. Earlier and later 
synapses are decreased in weight, reflecting their lesser 
impact on the output neuron's spike time. For a weight with 
delay  from neuron i to neuron j we use: 
 ∆ ∆                                                                  (6) 
And ∆ 1 exp ∆ -                                         (7) 

with  1         

 
Fig. 3.  Gaussian learning function 

 The learning window is defined by the following 
parameters: 
• v :this parameter, determines the width of the learning 

window where it crosses the zero line and affects the 
range of ∆ , inside which the weights are increased. 

• Inside the neighborhood the weights are increased, 
otherwise they are decreased. 

• : this parameter determines the amount by which the 
weights will be reduced and corresponds to the part of 
the curve laying outside the neighborhood and bellow 
the zero line. 

• : because of the time constant  of the EPSP, a neuron 
i firing exactly with j does not contribute to the firing of 
j, so the learning window must be shifted slightly to 
consider this time interval and to avoid reinforcing 
synapses that do not stimulate j. 

IV.  EXPERIMENTAL RESULTS AND DISCUSSION 
    The proposed technique has been applied to a parrot 
image and to microscopic cell images [13]. First we have 
chosen an image of parrot defined in pixel grid of 200x200 
pixels (cf. Figure 4) and we have applied a lot of experiences 
to show the influence of number of sub-synapses, the step of 
training, the parameters of learning  and  in the process of 
segmentation. 
 

 
Fig. 4. Original image 

 
    To show the influence of the number of neurons at exit on 
the number of areas of the segmented image, we had fixed 
the number of sub-synapses at 14 between two neurons, the 
step of training to 0.35, the choice of the base of training is 
starting at random from 5% of the image source and 
numbers of receiving fields is 18 (6 for each value of 
intensity) and we varied the number of classes at exit. 
Obtained images are shown in Figure 5: 

     
Fig. 5. Segmented images with 5 and 10 classes at exit 



 
 

 

    To show the influence of the number of sub-synapses on 
the number of areas of the segmented image we had fixed 
the number of area at exit at 10, the step of training to 0.35, 
the choice of the base of training  is starting at random from 
5% of the image source and numbers of receiving fields is 
18 (6 for each value of intensity) and we varied the number 
of sub-synapses. Obtained images are shown in Figure 6. 
 

    
Fig. 6. Segmented images with 4 and 14 sub-synapses 

 
    To show the influence of the number of receptive fields 
on the number of classes of the segmented image we had 
fixed the number of area at exit at 10, the step of training to 
0.35, the choice of the base of training is starting at random 
from 5% of the image source, the number of sub-synapses at 
14 and we varied numbers of receiving fields. Obtained 
images are shown in Figure 7. 
 

    
Fig. 7. Segmentation image with 4 and 6 receptive fields for each value of 

intensity 
 
    To show the influence of the percentage of simple training 
on the number of classes of the segmented image we had 
fixed the number of area at exit at 10, the step of training to 
0.35, the number of sub-synapses at 14 and numbers of 
receiving fields is 18 (6 for each value of intensity) and we 
varied the number of percentage of simple training. Obtained 
images are shown in Figure 8. 
 

    
Fig. 8. Segmented images with 5 and 20 % of simple training 

 

To show the influence of the parameters of learning  and 
 on the number of classes of the segmented image we had 

fixed the number of area at exit at 10, the step of training to 
0.35, the number of sub-synapses at 14 and numbers of 
receiving fields is 18 (6 for each value of intensity) and we 
varied  and . Obtained images are shown in Figure 9 (for 0.2  and Figure 10 (for 2.3 . 
 

 

 
Fig. 9. Segmented images with α 2.3, α =0, α =2.3 and α =3 

 

  

 
Fig. 10. Segmented images with  β 0.05, β =0.5, β =0.9 

 and β =0.5 for  α=2.3 
 

In the second experience, we have chosen an image of a 
microscopic cell defined in pixel grid of 200x200 pixels 
[12]. The task of cell segmentation consists in finding a 
closed curve that follows the boundary of a selected nucleus, 
in the best case for all the nuclei present in the image, with 
an adequate accuracy. 
 



 
 

 

 
Fig. 11. Original image 

     
     To compare the result of segmentation with others 
models, we had used the neural network SOM. 
     For segmentation with spiking neural network, we have 
fixe the number of area at exit at 5, the step of training to 
0.35, the choice of the base of training is random starting 
from the image source of 5% and numbers of receiving 
fields is 18 (6 for each value of intensity) and the number of 
sub-synapses at 14. The image obtained is shown in Figure 
12.a. The segmentation image with SOM neural network is 
shown below in Figure 12.b. 
 

    
                           (a)             (b) 
Fig. 12.a.Segmented image with spiking neuron, b. Segmented image with 
SOM 
 
    To see if segmentation is close to the original image, an 
error metric is needed. The error between the original image 
and the quantized image is generally used. For this 
evaluation we had used the Peak Signal Noise Ratio 
(PSNR), the Mean Square Error (MSE), the Mean Absolute 
Error (MAE) and Normalized Color Difference (NCD) are 
therefore considered to evaluate the segmentation. 
Table 1 summarizes the evaluation obtained for both images. 
 

TABLE I 
 SEGMENTATION EVALUATION 

 Segmentation with 
spiking neurons Segmentation with SOM 

MSE       115.596          250.842 
PSNR 
MAE 
NCD 

        91.357 
         7.712 
         0.038 

          80.180 
          10.513 
            0.050 

V. CONCLUSION 
    In this paper we applied spiking neural networks to image 
segmentation. At first, the network is build, a subset of the 
image pixel is taken to be learned by the network and finally 
the SNN processes the rest of the image to have as a result 
an important number of classes quantized the image. 
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