Robust Variational Estimation of PDF functions from Diffusion MR Signal

Abstract : We address the problem of robust estimation of tissue microstructure from Diffusion Magnetic Resonance Imaging (dMRI). On one hand, recent hardware improvements enable the acquisition of more detailed images, on the other hand, this comes along with a low Signal to Noise (SNR) ratio. In such a context, the approximation of the Rician acquisition noise as Gaussian is not accurate. We propose to estimate the volume of PDF-based characteristics from data samples by minimizing a nonlinear energy functional which considers Rician MR acquisition noise as well as additional spatial regularity constraints. This approach relies on the approximation of the MR signal by a series expansion based on Spherical Harmonics and Laguerre-Gaussian functions. Results are presented to depict the performance of this PDE-based approach on synthetic data and human brain data sets respectively.
Type de document :
Communication dans un congrès
Computational Diffusion Medical Resonance Imaging, Sep 2008, New-York, United States. pp.73-84, 2008
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00329263
Contributeur : Haz-Edine Assemlal <>
Soumis le : vendredi 10 octobre 2008 - 15:06:45
Dernière modification le : jeudi 7 février 2019 - 14:20:05
Document(s) archivé(s) le : mardi 9 octobre 2012 - 12:01:19

Fichier

cdmri08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00329263, version 1

Citation

Haz-Edine Assemlal, David Tschumperlé, Luc Brun. Robust Variational Estimation of PDF functions from Diffusion MR Signal. Computational Diffusion Medical Resonance Imaging, Sep 2008, New-York, United States. pp.73-84, 2008. 〈hal-00329263〉

Partager

Métriques

Consultations de la notice

136

Téléchargements de fichiers

88