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Abstract. We demonstrate the usefulness of some signal-
processing tools for the EISCAT data analysis. These
tools are somewhat less classical than the familiar peri-
odogram, squared modulus of the Fourier transform, and
therefore not as commonly used in our community. The
first is a stationary analysis, “Thomson’s estimate” of the
power spectrum. The other two belong to time-frequency
analysis: the short-time Fourier transform with the spec-
trogram, and the wavelet analysis via the scalogram.
Because of the highly non-stationary character of our
geophysical signals, the latter two tools are better suited
for this analysis. Their results are compared with both
a synthetic signal and EISCAT ion-velocity measure-
ments. We show that they help to discriminate patterns
such as gravity waves from noise.

1 Motivation

In 1992, we had the opportunity to analyse several nights
of coordinated EISCAT-MICADO experiments (Lilen-
sten et al., 1992). MICADO (Michelson interferometer for
coordinated auroral Doppler observations) is a Michelson
interferometer (Thuillier and Hersé, 1988; 1991) thermally
stabilized and field compensated, that allowed to get
a measurement of horizontal as well as vertical winds.
This interferometer was located at the Sodankyla site for
two consecutive winters, and then moved to Tromsg. Over
the three winter campaigns, only six nights met the condi-
tions for coordination with EISCAT. We compared the
F-region meridional wind measured by MICADO from
the Doppler shift of the oxygen O' D emission line, with
the meridional wind induced from EISCAT measure-
ments. The latter included the optical vertical measured
wind.

Correspondence to: J. Lilensten

The experimental modes were the following: in Sodan-
kyla, MICADO was used with an operating mode of
15 min, looking first in the Tromse direction at 250-km
altitude (Azimuth 305.5°, elevation 32.2°), and then point-
ing to the zenith, west and zenith again. In Tromsg, its
measurement cycle was: geographic north, zenith, geo-
graphic west, zenith, geographic south, zenith, geographic
east and zenith again, on a 22-min cycle. EISCAT was
operated in a mode similar to CP1I with the Tromsg
beam parallel to the local magnetic field line. This operat-
ing mode provides height profiles of electron density, ion
velocity and electron and ion temperatures between
roughly 80 and 450 km. The long pulse provides a height
resolution of 22 km in the F region from the single pulse.
The power profile provides measurements of electron
densities with a height resolution of 4.5 km in the F re-
gion. The integration time ranged from 1 to 5 min.

The results were both encouraging and surprising: the
overall agreement was very good. However, the radar
estimate oscillated permanently around the interferometer
measurement. These oscillations clearly showed up also in
the ion velocity, but not (or to a very small extent) in the
diffusion velocity. A typical period of oscillation was
about 25 min. The amplitude of the oscillations was bigger
than the uncertainties of the interferometer wind measure-
ment (about 10ms~1) as well as the uncertainties in the
radar estimates. We concluded that when the radar esti-
mate is averaged over about 2 h, the two meridional winds
fit quite nicely.

Unfortunately, from this study, it was impossible to
determine:

1. whether the oscillations were coherent or should be
considered as noise,
2. and if real, whether they were a phenomenon in the
atmosphere or of the ionosphere.
Indeed, MICADO possibly did not see them because
its integration volume and integration time were too
large.
Should the 25-min oscillations be real, they could be
gravity waves. But gravity waves with such small periods
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usually last for less than a couple of hours, and our
observations showed permanent oscillations.

Our first step was to check the validity of our computa-
tion on more nights. We then compared our computation
with two models currently used: the horizontal wind
model (HWM) (Hedin et al., 1991), built after a data base
that includes several instruments, including incoherent-
scatter radars. It is very well suited for low-/middle-lati-
tude ionospheric studies, and its improvement for the
high-latitude ionosphere is in progress. The second, based
on the MICADO experiments (Fauliot et al., 1993, refer-
red to as FTH), was of course very well designed for our
EISCAT comparisons. We selected two long compaigns of
experiments: the first, a 2-day experiment, took place
during active magnetic conditions, and the second, a 5-
day experiment, during a 10-day international MLTCS
campaign (Forbes, 1990) met quiet conditions. EISCAT
was operating in a CP2 mode: at each site, the pointing
cycle is 360 s and consists of four antenna positions, 90 s
each. Position 1 is vertical, position 2 southmost, position
3 eastmost and position 4 (used in this study) is
field aligned. This operating mode provides height profiles
of electron density, ion velocity and electron and ion
temperatures between roughly 80 and 450 km, with
a height resolution of 22 km in the F region from the
single pulse.

In order to compare our results with the models, we
averaged the radar wind over 2 h, and on the two altitudes
234.5 and 256.5 km. The agreement turned out to be very
good with the FTH model. Any discrepancy could be
related to an electric-field event. The fact that this agree-
ment was good despite our setting the vertical wind
to O indicated that during the two long periods of ex-
periment, the 2-h-averaged vertical wind never took big
amplitudes. The HWM model exhibited a systematic
underestimation of the northward wind, and its south-
ward behaviour did not always follow the experimental
one. But again, this was expected, when considering that
at the moment, this model is better suited to low and
middle latitudes. This study gave us confidence that the
real meridional winds may be derived from EISCAT data.

We also tried to answer question 1 above, by perform-
ing Fourier analysis of the short-period oscillations. It
revealed that the 25-min oscillations are a clear pattern
during the active experiment, but that during the quiet
experiment, there are several small excitations of 30-20-
min oscillations, with much smaller amplitudes. However,
this was simple but incorrect: the Fourier analysis is based
on the assumption that the signal is stationary, while our
signal was undoubtedly not. Therefore, the correct ap-
proach is to use time-frequency signal-analysis tools. This
is the aim of this paper.

The second question has started to receive an answer
through the comparison of EISCAT meridional winds
with the instantaneous measurement of the WINDII in-
terferometer onboard the spacecraft UARS. The first re-
sults seem to show that the oscillations are indeed an
atmosphere phenomenon (Lathuillére et al., 1996).

In the next section, we present different tools of signal
processing. Some are well suited to stationary signals,
others can analyse non-stationary signals. We then show

J. Lilensten, P. O. Amblard: Time-frequency tools of signal processing

the results of these analyses for synthetic signals, and use
them for the ion velocity of some EISCAT experiments.

2 Signal-processing tools

The aim of this section is to describe the tools we use to
analyse the oscillations in the EISCAT signals.

Two points of view are presented. The first considers
the signals as stationary. This approach implicitly as-
sumes that the oscillations are present during the whole
observation. Obviously, some of the oscillations die out
after some time and appear again later. This suggests that
the signals are indeed non-stationary: this fact leads to the
second family of tools.

To explain the different methods, we will apply them to
a synthetic signal typical of our real signals. This signal
has been created using a sampling period of 1 min and
consists of 1024 samples. It thus represents an observation
of about 17 h. It reads

V(1) =cos (2n1/6) + sin (22¢) +  cos (2n(dt + 0.182)) 710..51(1)
+%COS(2TC(10[ —O.ltz))X[3.3’g.3](I), (1)

where y,.5(t) is the indicator function of the interval

[a,b],1.e.is 1 within this interval and 0 outside. Hence, y(t)

contains four features:

1. A constant frequency at 1/6 h™?, i.e. an oscillation with
a period of 6 h.

2. A constant frequency at 2 h™?, i.e. an oscillation with
a period of 30 min. This oscillation has a 90° phase shift
with respect to the first frequency.

3. A so-called “chirp”, whose instantaneous frequency is
a linear function of time, is present only during the first
5h of the “observation”. The frequency of this chirp
begins at 25 min and grows with a rate of 0.1.

4. A second chirp begins after about 3 h and ends after
about 8 h. The frequency of this chirp begins at 6 min
and decreases with a rate of 0.1.

Note that the frequency supports of the four items are
disjoint, whereas the time supports of the two chirps
intersect for about 1h. Such a synthetic signal is not
meant to represent a full real EISCAT experiment, but
could resemble some special ionospheric features (short-
frequency tides, high-frequency TIDS).

The content of y(t) will be clearly shown in the coming
sections, where this signal will be analysed with or without
additive noise.

2.1 Spectral analysis: Thomson’s method

We are looking for oscillations. A Fourier analysis of the
signals therefore seems appropriate. A closer look at the
signal shows that they are corrupted by noise. Hence, we
have to take average in the analysis. The adequate tool is
therefore the power spectral density (or spectrum) of the
signals. It is defined as the Fourier transform of the cor-
relation function of the signal.

Spectral analysis tells us how to estimate the spectrum
of a signal. Several methods exist, such as the smooth
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periodogram or the WOSA (Welch’s overlapped-segment
averaging). These methods are efficient when one can
average a lot, and hence when a lot of data are available.
They can of course be applied to data of short length, but
in general at the expense of a loss in resolution.

For this reason, we have adopted here a different ap-
proach due to Thomson (1982) called multitaper s-1pectral
analysis. We present here the philosophy of that method.
The general theory of this method is described in Thom-
son (1982) or Percival et al. (1993).

Let x(t) be a random signal whose power spectrum is
denoted by S,(v), v being the frequency. Let x;(t) be an
observation of x(t) on the interval [ —T/2, T/2], and let
X r(v) be its Fourier transform (FT'). Then it can be shown
that (this equation is sometimes considered the definition
of the spectrum)

5.0 = lim B[ X0 @)
T-+

where E[ -] stands for the mathematical expectation or

the average on an ensemble of functions.

Equation 2 suggests a classical method to estimate S, (v):
observe x(t) for te[0,NT], evaluate | X;(v)|* = |FT{x(t)
xur.i+1,r(0)} |* and obtain an estimate of the spectrum via
1/NY Yo X;(v)|>. Furthermore, before Fourier trans-
forming, one usually “tapers” the data to smooth out the
finite size effect. For example, the signal is multiplied by
a taper window such as the Hamming window.

The philosophy behind this method is to consider each
X;(v) as a sample of X (v), independent of other X ;(v). This
is correct if the correlation time is much lower than T.
But, as mentioned earlier, this method requires a lot of
data to be efficient. Nevertheless, it can be used for short
data length, at the expense of a loss in resolution. Typi-
cally, the resolution is here of 1/T. For a signal composed
of 1024 time samples, with a sampling frequency of 1 Hz,
we get a resolution of 1/128 Hz if we average eight seg-
ments (by overlapping segments, we can achieve a resolu-
tion of 1/256 Hz for the same number of segments).

Thomson’s method is quite similar to this approach,
but uses the observation xyr(t) to create other “indepen-
dent” samples of the same length. These samples are
obtained by tapering the original observation by several
orthogonal taper windows h;(t). The orthogonality is ex-
pressed by | hy(t) hj(t) dt = E,d;;, where E, is the energy of
the window and 9;; stands for the Kronecker symbol.
Thus, Thomson’s estimate S, (v) is given by

n,,

800 = 3 IFT foyrOh ) o)

where n,, is the number of “independent” time-series cre-
ated by using n,, orthogonal windows.

The choice of the orthogonal windows is not an easy
problem. Thomson proposes to use the so-called prolate
spheroidal functions (PSFs). For a given interval [0, T ]
and a given frequency band [—W, W], PSFs are the
functions that lie in [0, T] (i.e. they are zero outside)
which concentrate most of their energy in the band con-
sidered. They are orthogonal because they are the eigen-
functions of an Hermitian operator.
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When working with discrete time and frequency sig-
nals, the best frequency resolution one can achieve is
1/NT, where NT is the number of time samples of the
observed signal. PSFs are in the discrete case defined as
follows: they are defined on {0,....,NT — 1} and con-
centrate most of their energy in the band [ —W, W],
where W =k/NT, k being an integer. Then, the eigen-
value problem mentioned earlier is a discrete problem,
and the number of PSFs (solutions of this problem) is 2k.

Therefore, Thomson’s method is described by the fol-
lowing steps:

1. select a resolution W = k/NT;

2. evaluate the 2k PSFs hy(t), i =0,...,2k — 1;

3. estimate the spectrum using Eq. 3.

Algorithms to obtain the PSFs may be found in Thomson
(1982) or Percival et al. (1993).

Usually, the 2k PSFs are not used in the average
because the last windows introduce too much bias into the
estimation. For example, for k = 4, one (in general) uses
six windows out of the eight possible (Percival et al., 1993).

This method is now applied to the synthetic signal y(t)
already described. We examine both the noise-free and
noisy cases.

2.1.1 Noise-free case

Even if y(¢) is noise free, we perform a spectral analysis
using Thomson’s estimate to show the behaviour of this
method. The top of Fig. 1 shows the estimated power
spectrum of y(t) in decibels (dB). The frequency resolution

20+ Noisefree case

Spectrum (dB)

20 Noisy'case

Spectrum (dB)

Y T T

20 Noisyl case

Periodogram (dB)
=)

0 5 10 15 20 25 30
Frequency
Fig. 1. Thomson’s estimate of the power spectrum of the synthetic

signal in the noise-free case (top) and in the noisy case (middle); the
bottom panel is the periodogram; frequencies are in h™?
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is about 0.23 h~!. Therefore, we clearly see two pure
tones, one in the first frequency bin and the second around
2h~ ! The two other important features are two wide
peaks of power, the first around 5h~! and the second
around 9 h™'. These wide peaks cannot be interpreted as
pure frequencies in view of the frequency resolution. Fur-
ther, without the knowledge of the model, nothing can be
inferred concerning these features.

2.1.2 Noisy case

We have added to y(t) a random white Gaussian noise of
variance 0.5. The non-stationarity of the signal makes it
difficult to give a clear definition of a signal-to-noise ratio.
The middle panel of Fig. 1 shows the estimated power
spectrum of the noisy y(t) in decibels. The two pure tones
are sufficiently powerful to be clearly seen. The two wide
peaks are still visible (this is not so clear in the case of the
square modulus of the Fourier transform of the data, or
periodogram, as seen in the bottom panel of Fig. 1). How-
ever, the average induced by Thomson’s method causes
a smoothing of these features.

2.2 Non-stationary signal analysis:
spectrogram and scalogram

We now turn to time-frequency analysis. Since some of the
oscillations seem to vanish after some time, it is useful to
analyse EISCAT signals using non-stationary tools. The
first we describe is the spectrogram which consists in
a time-dependent Fourier analysis; although the spectro-
gram is now well known, we think it worthwhile to recall
some basics. The second is based on the wavelet transform

Spectrogram (dB)

255

- N
[&)] o

Frequency

—_
o
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and is called the scalogram (Cohen, 1995; Flandrin, 1993;
Grossman et al., 1989).

2.2.1 Spectrogram

A natural approach to generalize the spectral analysis of
stationary signals to non-stationary signals is to make
time dependent the Fourier transform. Hence, the short-
time Fourier transform is defined as

X (t,v) = [ h(t — 7)x(1)e” *™"dr, (4)

where h(t) is some window. To obtain an energy inter-
pretation, we take the square modulus of the short-time
Fourier transform to obtain the spectrogram

SP.(t,v) = | [ h(t — T)x(x)e ™2™ dx |, (5)

The spectrogram may thus be interpreted as a time-depen-
dent spectrum. Its application on the synthetic signal is
presented in Fig. 2 for the noise-free case, and in Fig. 3 for
the noisy case. These spectrograms have been obtained
with a Hamming window of length 100 samples (100 min).

Figure 2 clearly depicts the real structure of the syn-
thetic signal by showing the two pure frequencies and the
two chirps. The time-limited character of the chirps is
demonstrated by this analysis, a fact which was neglected
by the classical spectral analysis. In the noisy case, things
are less evident. The two pure frequencies are clearly
visible, but the two chirps are greatly altered by the noise.
However, they are still apparent.

The length of window h(t) defines the frequency resolu-
tion. The larger the length, the greater the frequency
resolution, but the poorer the time localization. It is to be
noted that this resolution is constant over all frequencies.
For rapid phenomenon, this can be a drawback of the

50

-100

-150

Signal
o

Fig. 2. Spectrogram of the
synthetic signal in the noise-free
case; frequencies are in h™1
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Fig. 3. Spectrogram of the synthetic
signal in the noisy case; frequencies
are in h™*

spectrogram, since rapid events will appear “delocalized”
in time. A solution to this problem is to use the scalogram.

2.2.2 Scalogram

To overcome the constant resolution of the spectrogram,

one wants a tool which gives a good time localization of

rapid phenomena and a good frequency resolution for

low-frequency events (which are delocalized in time).
The wavelet transform achieves these wishes. For a sig-

nal x(t) the wavelet transform reads

Wla,b) = —— [ x() ¥* <Q> . ©)
\/5 a
In this definition, ¥ is called the wavelet, b is the time-
location parameter, a is called the scale and * denotes
a complex conjugate; ¥ is typically an oscillating function
whose mean is zero.
To obtain an energy representation, we consider the

square modulus of W (a, b), which is called the scalogram
(Grossman et al., 1989; Flandrin, 1993) and reads

W(a,b) = ‘ja [x() W(j”) i

In this paper, we use the so-called Morlet wavelet
which reads

P(t) = e {e "/ — \/Ee_“z/“e_‘z}, ®)

where c is a parameter we will discuss later. We plot at the
top of Fig. 4 the waveform of ¥ (t/a) for some values of the
scale: a = 1, 1/8 and 1/32, whereas at the bottom appears
the modulus of the corresponding Fourier transforms.
This figure highlights the behaviour of the wavelet trans-

2

™

form: the greater the scale, the greater the frequency res-
olution, but the poorer the time localization. Note that
large scales correspond to low frequencies, whereas small
scales correspond to high frequencies. The behaviour of
the Fourier transform of ¥ (t/a) explains why the fre-
quency resolution decreases when the scale decreases: the
wavelet acts as a filter with a constant surtension factor.
Indeed, the wavelet is in general a band pass function
whose centre frequency is denoted by v,, see Fig. 4. The
scale may be associated to the notion of frequency via
a = vy /v. Hence, it is not universal, since it depends on the
wavelet. All the scalograms are represented here in terms
of frequency v = vqy/a.

Parameter ¢ in Eq. 8 is related to the centre frequency
vo of the Fourier transform of the wavelet via vy = ¢/2x. It
therefore defines the band analysis of the scale a = 1.
Furthermore, ¢ rules the intersection between the band
analysis of two different scales: when ¢ is small, about 2,
the wavelets at two different scales share a lot of their
band (two events which are close in frequency will not be
separated). When c is greater, the wavelets at two different
scales are more separated in terms of their frequency
bands, and therefore two events close in frequency will be
more clearly separated. Taking ¢ higher is possible, but
Shannon’s Theorem of sampling then forbids the use of
very small scales (since the Fourier transform of the
dilated wavelet will have its maximum frequency higher
than half Shannon frequency). As recommended in Flan-
drin (1993), we choose ¢ = 5.34, a value which gives
a good compromise between the two extreme behaviours
explained above.

Finally, parameter a is taken in this paper to be
a power of two (octaves). But in order to get a better
resolution in scale, we evaluate between two octaves
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several “sub-octaves”, called tracks. In this paper we
evaluate 15 tracks per octave.

The application of the scalogram to the synthetic sig-
nals is shown in Figs. 5 and 6 for the noise-free case and
the noisy case, respectively.

The features of the synthetic signal clearly appear in the
noise-free case. The chirps appear on overlapping inter-
vals of scales: this is due to the nature of the wavelet
transform as explained in Fig. 4. Moreover, strong side-

J. Lilensten, P. O. Amblard: Time-frequency tools of signal processing

effects appear at the edges of the chirp because the wavelet
transform has the ability to point discontinuities.

In the noisy case, the overlapping makes the readability
of the scalogram poorer than that of the spectrogram.
However, comparing the spectrogram and the scalogram
allows to confirm the presence of the four features.

The conclusion to this is that several different time-
frequency (or scale) analyses should be performed in order
to understand the structure of a non-stationary signal.
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K
2 ol
o<
=
_5 1 1 i 1 1 1 1 ] 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
Time
T T T T T T T T T T
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2150 B
o
3100 4
3 Fig. 4. Some dilated versions of the wavelet
% 50 4 (top, from left to right: a = 1/4,1,1/8) and
their Fourier transform in modulus (bottom,
! L . ! ! . L | from left to right: a = 1,1/4,1/8)
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Fig. 6. Scalogram of the synthetic
signal in the noisy case; frequencies
arein h™!
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The two methods described allow to have two different
representations of the same information. Therefore, they
allow to confirm or disconfirm some inferences made on
the structure of the signal. We now turn to the application
of these three analyses on EISCAT signals.

3 Application to EISCAT data
3.1 Detailed analyses of the 24 March 1995 experiment

In order to demonstrate the use of the time-frequency
tools of signal processing for EISCAT data, we first select
the experiment held on 24 March 1995. It consists in
a CP1 experiment that we processed at an integration
time of 1 min. The plot of the overall experiment is shown
in Fig. 7. It starts at 1300 UT and lasts for about 11 h. The
F-region ionosphere starts to become empty at about
1700 UT when the sun sets, until about 1930 UT. Shortly
after, soft precipitations occur that last for more than 1 h.
They harden around 2030 UT. The effect is clearly seen
both on the electron density and temperature. The north-
ward electric field exhibits two maxima above 50 mV m ™ *
at 1940 and 2010 UT while the westward electric field
peaks at more than 30 mVm™' at 2205 UT. Except for
these two events, the electric field remains low. The effects
of these events are obvious in the ion-temperature plot,
with enhancements up to 1600 K at 350 km. In a paper in
the same issue (Blelly et al., 1996) some of these events are
described in great detail and modelled using a coupled
fluid/kinetic transport code.

The ion velocity shows different patterns. From the
beginning of the experiment until about 1600 UT, a clear

14

0 2 4 6 8 10 12 14 16
2 T T ¥ T T . T T |
o A AW py t
-2 : 1 1 t 1 l 1 1 1 1 |
0 2 4 6 8 10 12 16

oscillating pattern occurs from 178 up to 258 km, Fig. 7.
This is the pattern we are looking for in order to illustrate
the power of time-frequency analysis. From 1730 UT to
about 2000 UT, the ion velocity is enhanced at all alti-
tudes. Then, no clear structure may be seen from the plots
of the ion velocity.

In order to eliminate the noise from our data, we could
average the ion velocity at different altitudes. However,
the phase of the oscillation moves from one altitude to the
other, and the results would not be as explicit. This is why
we process the analysis at separate altitudes. The details
will be shown at 190.5km. At this altitude, the time-
sequence is shown in Fig. 8.

The first approach is the “usual” one based on the
Fourier transform. It has been shown in Sect. 2.1 that such
an analysis, based on the assumption of stationarity, is not
well suited for sporadic events. This is illustrated in Fig. 9,
which represents the periodogram (square modulus of the
Fourier transform of the whole data set) in dB. It shows
a slight increase at about 1/3 h with an amplitude of about
30 dB. There is no clear other feature. A way to improve
this analysis is to filter the signal in order to substract the
low-frequency part of the spectrum (typically the 12-h
tide). Such a filtering improves the dynamics of the peri-
odogram, but does not help in its analysis. Therefore, it is
not shown here. Furthermore, this analysis is done with-
out any average, and therefore the effect of the noise is
strong.

Thomson’s method may be understood as a tricky
average of the periodogram. Indeed, the tapering of the
data using orthogonal windows greatly reduces the noise.
That becomes obvious when one compares the periodo-
gram with Fig. 10. The increase at 1/3 h is better extracted,
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Fig. 8. Ton velocity (ms™') at 190.5km for the 24 March 1995
experiment
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with probably some additional pattern at 1/4 to 1/5 h.
Again, this method, being based on the stationarity as-
sumption cannot give further information.

The first time-frequency tool demonstrated here is the
spectrogram. We used the same Hamming window of
length 60 min. In Fig. 11,we show the spectrogram and the
time-series of the ion velocity at the same scale in the
bottom panel. This analysis is able to extract different
patterns. The first, from the beginning of the experiment
to about 1600 UT, is a wave with a period of 18 min (or
frequency of 3.3h™1!). Then, from about 1700 UT to
about 2000 UT, there is a broadband excitation. The time
localization of this pattern is however difficult to deter-
mine on this analysis: the length of the analysing window
is 60 points, corresponding to 1 h. This means that at both
the beginning and the end of each event, there is an
uncertainty of half an hour. However, this broadband
oscillation occurs before both precipitations and electric-
field enhancement. These two perturbations have an effect
on the amplitudes of the physical parameters (electron
density, temperatures and ion velocity), but do not seem
to affect the frequency of the velocity oscillations. Finally,
from about 2230 UT to the end of the experiment, a wave
at 30 min is excited. This last feature confirms the two
stationary analyses, since the spectrum can be roughly
seen as a projection of the spectrogram on the frequency
axis. The new thing here is that we are now able approxi-
mately to locate in time these features.

These observations are confirmed by the scalogram,
Fig. 12. The excitation of all frequencies shows up at the
same time as on the spectrogram. The low-frequency tides
are extracted, and as explained in Sect. 2.2.2, the scalo-
gram points on the discontinuities, so that one sees strong
side-effects.

Note that on both the spectrogram and the scalogram,
the noise induces some quite powerful patterns. A “thresh-
olded” image would help to extract the signal patterns
from the noise patterns. But we deliberately chose not to
present such a thresholded image in order to show the full
dynamics.

In Fig. 13, we show the spectrograms of the parallel ion
velocity at different altitudes in the F region. We plotted
the spectrograms in terms of the solar zenith angle instead
of UT, to make it easy to locate the different patterns
versus sunset. The 18-min oscillation slowly vanishes
when one looks at higher altitudes; it is hardly visible at
256.5 km. The same happens to the broad-band pattern: it
is centred at 90° of solar zenith angle, i.e. during the
sunset. It is of much less amplitude at 212 km and hardly
visible above.

3.2 Overview of some other experiments

We performed our analyses for different experiments. Our
first choices were two long experiments held in October
1992 and January 1993. The reason for these choices is
that these experiments have been compared to different
models (Lilensten and Lathuillére, 1995). However, during
these two experiments (respectively, 2 and 5 days), the
solar zenith angle hardly reaches 90°, so that it has not
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Fig. 11. Spectrogram of the ion
velocity; frequencies are in h™!
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been possible to observe the sunset broad-band excitation
already described. No structured oscillation (faster than
1 h) shows up during these 7 days of experiment. The same
observation applies to a summer experiment (5 August
1992), when the sun is always above the horizon: we could
not see evidence for a structured fast pattern. These anal-

23 24

yses tend to show that the oscillations of the ion velocity
(and therefore of the meridional wind) may be compared
to geophysical noise.

We now focus on the 36-h experiment held 30-31
March 1992. It is an active experiment, with an Ap index
of 12 to 13. The solar index is 192 the first day and 182 the
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second, with a 3-month average of 202. It consists in a CP1
with characteristics similar to the 24 March 1995 experi-
ment described. The data have been processed with a 1.5-
min integration time. The experiment starts at 1600 UT; 2 h
later, a strong electric field appears with peaks above
50mVm~! during most of the night. It disappears at
500 UT the second day, until 1500 UT, with a strong elec-
tric field of 50 mV m ™! lasting 1 h. A 3D plot of the parallel
ion velocity is given in Fig. 14. The effect of the first electric-
field event appears around 2600 UT, with southward wind
of several hundreds of meters per second at any F-region
altitudes. The enhancement of the northward velocity at
high altitude around 3200 UT cannot be attributed to any
electric field. At that date, the sun sets at 1750 UT (i.e. at
4150 UT in the plot for the second day). The result of the
Thompson method is shown in Fig. 15 at the altitude of
190.5 km. It shows two waves at, respectively, 85 and
50 min. From this analysis, it is not possible however to
locate these features in time. Figure 16 shows the spectro-
gram of the experiment. The two oscillations occur from
the beginning of the experiment to about 2600 UT, with an
enhancement at about 2300 UT for the fastest (50 min).
This is during the first electric-field event, but there is no
clear structured fast oscillation during the second.

4 Discussion and conclusion

In this paper we examined the use of some time-frequency
tools for analysing EISCAT data. The spectrogram is easily
coded and easily used. However, it requires some experi-
ence to choose correctly the length of the analysing window.
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Fig. 14. Overview of the 30 March 1992 parallel ion velocity; alti-
tudes are in km and the velocity in ms™*

The scalogram has proved to be delicate, but should
nevertheless not be forgotten. Its main quality is clearly to
extract scale effects in a data set. It is therefore very well
suited for fractal behaviour, although that has not been
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shown here. Its use has proved to be very powerful in
other domains of geophysics (see for example Fong Chao
and Naito, 1995).

From the few experiments we processed, preliminary
conclusions may be drawn: some of the oscillations that
seemed to occur at any time when comparing EISCAT
meridional winds with interferometer measurements or
models could well be coherent and sporadic. In our se-
lected data sets, two waves occur during about 2 h in the
1995 experiment, and more than 6 h during the 1992
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Fig. 15. Thompson analysis of the 30 March 1992 experiment (alti-
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experiment, suggesting that we face “classical” gravity
waves, as described in Crowley et al. (1987); these authors
compared the morphologies of short-period TIDs for
magnetically quiet and active intervals, explaining the
differences in terms of perturbed neutral-wind patterns
and different wave sources during active times. However,
most of the time, the oscillations may be attributed to
geophysical noise: we could only extract these few struc-
tured oscillations from 15 days of experiments.

It is also interesting to see that all the ion-velocity
frequencies seem excited from 1700 to 1930 UT during the
1995 experiment. A stationary analysis only extracts
noise, but the spectrogram and scalogram show that this
“noise” is a broadband excitation which specifically oc-
curs during the sunset.

This study is a first approach, and before useable tools
may be given to the EISCAT community, more studies are
needed. We also performed our analyses on different para-
meters (ion and electron temperatures and electron den-
sity). The results are not shown here, since they do not
carry any additional information concerning the purpose
of this paper, which is to show that the use of non-station-
ary tools of signal processing for analysing EISCAT data
permits to extract the sporadic behaviour of different
patterns in a given data set.
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