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Mechanical experimental characterisation and numerical modelling of 
an unfilled silicone rubber

In this paper, the mechanical behaviour of an unfilled silicone rubber is analysed. Firstly,

silicone samples were subjected to five homogeneous tests: tensile, pure shear, compres-

sion, plane strain compression and bulge tests. During the tests, full-field measurements of

the strain on the surface of deformed samples were obtained using a Digital Image Corre-

lation technique. Results show that the Mullins effects and hysteresis, as well as strain rate

sensitivity, can be considered as negligible. Results also emphasise the influence of the

loading path. Then, five well-known hyperelastic models (neo-hookean, Mooney, Gent,

Haines and Wilson and Ogden models) were fitted to the experimental data. Finally, a het-

erogeneous test was realised by stretching a silicone plate sample containing holes. Finite

element simulations of this experiment have been performed with the hyperelastic

models. The comparison of experimental and numerical results emphasises the impor-

tance of the choice of the hyperelastic modelling in the simulation of strain fields.

1. Introduction

Owing to their good bio-compatibility, silicone rubbers

are being increasingly used in bio-medical applications.

Unfortunately, experimental studies aimed at analysing

and modelling the mechanical behaviour of such materials

are quite scarce and limited to filledmaterials. For example,

the article in Ref. [1] presents a uniaxial loading–unloading

test performed on electro-active silicone rubbers. Results

illustrate a non-linear reversible behaviour with weak

hysteresis. More comprehensive experimental studies are

described in Refs. [2,3] on a silica filled silicone. Authors

highlight the Mullins effect [4] and cyclic relaxation during

cyclic tensile tests. In order to improve the modelling of

bio-implants, the study in Ref. [5] used pure shear, uniaxial

and biaxial tests to evaluate the behaviour of another filled

silicone rubber. This material presented a large Mullins ef-

fect. Furthermore, tensile and compression tests performed

on a filled silicone rubber are presented in Ref. [6]. This

article emphasises the strain rate dependency of silicone

behaviour. A wide range of strain rates were tested during

a compression test from 10�3 to 103 s�1 showing a strain

rate dependency only when strain rate exceeds 40 s�1:

multiplying the strain rate by 100 can multiply stress levels

by 4 in this domain.

Thus, only a few articles develop experimental studies

and comparative modelling of filled silicone rubbers and

none of them study unfilled silicone rubber. Hence, there

is a lack of information for the development of structural

applications involving silicone rubber parts. Within that

context, the purposes of this article are (i) to characterise

and understand the mechanical behaviour of an unfilled

silicone rubber under various mechanical loading, (ii) to

fit its behaviour with commonly used constitutive models

and (iii) to assess the capability of these models to repre-

sent the behaviour of the silicone not only under homoge-

neous, but also under heterogeneous, loading conditions.

Hence, material preparation procedures are described in

Section 2. Details of specimens as well as testing apparatus
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which have been used for simple tensile, pure shear, bulge,

simple compression and plane strain compression tests

are described in Section 3. Section 4 presents experimental

results. In particular, the lack of different irreversible

phenomena is underlined. This permits modelling of the

mechanical behaviour of the studied silicone within the

scope of hyperelasticity as presented in Section 5. Five

well-known hyperelastic models are chosen to fit experi-

mental data: neo-hookean [7], Mooney [8], Ogden [9],

Haines and Wilson [10] and Gent [11] models. Lastly, in

order to test the ability of the above constitutive schemes

to model the deformation of complex structures, a silicone

plate containing holes is deformed in tension (Section 6).

Finite element simulations of this experiment are per-

formed with the fitted hyperelastic models, and a compar-

ison of experimental and numerical local strain fields is

achieved.

2. Materials – preparation procedures

The chosen silicone rubber is an unfilled formulation

produced by Rhodia (RTV 141). Specimens were produced

using the following processing route: (i) mixing the two

liquid components, i.e., the uncured silicone and the curing

agent, with a 10/1 ratio, (ii) putting the uncured mixture

under vacuum for 30 min in order to eliminate undesirable

entrapped bubbles, (iii) injecting the liquid mixture in

moulds with a medical syringe, (iv) putting moulds inside

an oven at 70 �C for 150 min to cure the silicone. Thereafter,

some of the external surfaces of the moulded samples were

coated with a random pattern made of small speckles in

order to allow digital image correlation (DIC) for the

measurement of the local strain field (see next Section).

Note that the quality of the coated pattern is critical to

gain a good estimation of the strain field.

Different procedures were used to obtain the desired

test piece geometries. Compression, plane strain compres-

sion and bulge specimens were directly moulded in

specially designed moulds. Tensile, pure shear and plate

with holes were cut from large sheets using hollow

punches. Particular attention was paid during preparation

in order to obtain specimens with reproducible mechanical

properties.

3. Mechanical testing procedure

3.1. Strain field measurements

During the tensile, pure shear, bulge and heterogeneous

tests, the deformation of samples and their superimposed

speckles pattern were recorded using a CCD camera. Using

the Digital Image Correlation Software 7D [12,13], it was

then possible to determine the local strain field on the

surface of the deformed samples. The DIC technique

already used to characterise rubbers (see for example Ref.

[14]) also permits demonstrating the homogeneity of the

strain field during ‘‘homogeneous’’ tests. Tensile and pure

shear tests pictures were recorded with a JAI CCD camera

(1280�1024 pixels, 25 Hz, (see Fig. 1)). In the case of the

plate with holes, a different camera with a 10 megapixel

sensor (3872� 2592 pixels) was used to improve the reso-

lution of the images, so that the estimation of the local

Fig. 1. Experimental devices (a) testing machine with tensile test specimen and CCD camera, (b) rheometer used for compression tests, (c) inflating device with

pressure sensor and piston.
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strain field was more accurate. For the bulge test, 3D

measurements were needed, therefore two identical

commercial CCD cameras were used (3872� 2592 pixels).

The obtained pictures were also processed by 7D software.

This is also able to perform 3D stereo-correlation which

gave: (i) the local strain field of samples and (ii) the geom-

etry of the surface of the deformed sample as well as the

displacements. As an example, Fig. 2 shows a 3D image

reconstructed by 7D during a bulge test performed at

a bulge pressure of 150 mbar.

3.2. Investigated mechanical loadings

All the tested samples were deformed using a universal

mechanical testing machine (MTS 4M). In order to analyse

the mechanical behaviour of the silicone, samples were

subjected to five different homogeneous loadings and one

heterogeneous. Note that in order to analyse tests the

silicone was assumed to be incompressible.

- Simple tensile tests were performed on dumbbell

shaped samples having an initial gauge length l0 of

60 mm, a gauge width b0¼12 mm and a gauge thick-

ness e0¼ 2 mm. The specimen was held in self-

tightening grips as presented in Fig. 3(a), with the

upper one connected to a load cell (Entran ELPM

250 N). During the test, the nominal stress tensor (First

Piola–Kirchhoff stress tensor)
Q

¼ Pxx e
!

x5 e
!

x is

assumed to be homogeneous within the gauge region

as well as the deformation gradient tensor:

F[ lxx e
!

x5 e
!

xD
�

e
!

y5 e
!

yD e
!

z5 e
!

z

��

ffiffiffiffiffiffi

lxx
p

The axial stressPxx¼ fx/(b0e0) and the axial elongation

lxx¼ l/l0 were obtained from the measurements of

axial force fx and DIC results, respectively.

- Pure shear strain state was approached by performing

plane strain tensile tests (see Fig. 3(b)). The initial

height l0, the constant width b0 and the thickness e0
of samples were 6 mm, 70 mm and 2 mm, respectively.

The same equipment as for the tensile test was used. As

in the previous test, the load cell gives the axial force fx
which leads to estimate the component Pxx¼ fx/(b0e0)

of the stress tensor:

P[Pxx e
!

x5 e
!

xDPyy e
!

y5 e
!

y

Also, the strain state during the test was supposed to

be homogeneous and the deformation gradient tensor

was expressed as:

F[ lxx e
!

x5 e
!

xD e
!

y5 e
!

yD1=lxx e
!

z5 e
!

z

Once again, lxx¼ l/l0 is obtained from DIC.

- A simple compression test was made on a cylindrical

specimen with initial diameter D0 and height h0 equal

to 37 mm and 20mm, respectively (see Fig. 3(c)). Tests

were carriedout using a rheometerwhichwasoriginally

developed to analyse the rheology of concentrated fibre

suspensions [15]. The compression platens were coated

with silicone grease in order to limit friction between

them and the samples. The sample height h is measured

by themachine and allows the calculation of the degree

of compression lxx¼ h/h0. Symmetry and incompressi-

bility lead to the deformation gradient tensor:

F[ lxx e
!

x5 e
!

xD
�

e
!

y5 e
!

yD e
!

z5 e
!

z

��

ffiffiffiffiffiffi

lxx
p

The stress state is P ¼ Pxx e
!

x5 e
!

x where Pxx ¼

4fx=ðpD2
0Þ is known from the measurement of the

compression force fx, here measured with a 5000 N

load cell.

- A planar compression test was conducted on rectangu-

lar blocks. The initial length l0, width b0 and height h0

Fig. 2. DIC reconstruction of the 3D deformed surface of a silicone disk subjected to a bulge test at P¼ 150 mbar.
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of the blocks were 60 mm and 11 mm, respectively (see

Fig. 3(d)). Tests were performed in the same rheometer

for the compression tests but the platens were modi-

fied to ensure a planar strain state as illustrated in

Fig. 1(b). Furthermore, one of the lateral restraints

was connected to a load cell (Entran 2500 N) so as to

measure the lateral force fz. The sample width b0 was

kept constant during the test by preventing the normal

Fig. 3. Specimens used for: (a) tensile tests, (b) pure shear, (c) simple compression tests, (d) plane strain compression tests, (e) bulge tests, (f) heterogeneous tests

and specimen dimensions.
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displacement on two opposite sides of the channel (see

Fig. 1(b)). Thus, the deformation gradient tensor is:

F[ lxx e
!

x5 e
!

xD1=lxx e
!

y5 e
!

yD e
!

z5 e
!

z

where lxx¼ h/h0. In this case, the stress tensor is:

P[Pxx e
!

x5 e
!

xDPzz e
!

z5 e
!

z

where Pxx¼ fx/(b0h0) and the axial force fx as well as

the lateral force fz were measured by load cells [15].

- A bulge test was also conducted. Tested specimens

were disks of initial diameter D0¼ 200 mm and thick-

ness e0¼ 2 mm. An undeformed specimen which is

held in the bulge test machine can be seen in

Fig. 3(e). The bulge test machine is an independent

inflating device shown in Fig. 1(c). This equipment

consists of a piston connected to a device that holds

the specimen. The piston is driven by the MTS testing

machine to inflate the specimen with air. The

pressure is measured with a pressure sensor (Foxboro

0–500 mbar). Due to the symmetry of the machine,

the mechanical loading and the assumed isotropy of

the material, the curvature of the inflated sample

was presumed to be the same along all directions at

the disk centre. The deformation gradient tensor in

a local coordinate system ( e!x, e
!

y, e
!

z, see Fig. 2) is:

F[ lxx
�

e
!

x5 e
!

xD e
!

y5 e
!

y

�

D1=l
2
xx e
!

z5 e
!

z

where lxx is the elongation in the tangential direction

of the specimen and is measured by DIC. As D0[ e0,

the stress is also assumed to be constant along the

thickness. With these hypotheses, the stress tensor is:

P[Pxx

�

e
!

x5 e
!

xD e
!

y5 e
!

y

�

DPzz e
!

z5 e
!

z

where the component Pxx can be calculated from

knowledge of both the curvature radius R and the tan-

gential elongation lxx measured during the test from

DIC. Indeed,Pxx ¼ PRlxx=ð2e0Þwhere P is the pressure

which is recorded during the test.

- A tensile test was also performed on a sheet (initial

height l0¼ 80 mm, width b0¼ 60 mm, thickness

e0¼1.75 mm) containing five holes of diameter

20 mm, as shown in Fig. 3(f). The position of the cen-

tres of the holes and the corners are given in the table

of Fig. 3. A cut was made between the upper left and

the centre holes as shown in Fig. 3. The test was con-

ducted using the same equipment (grips, load cell) as

for tensile and pure shear tests. The axial load cell mea-

sured the global force fx and the DIC gave the in-plane

strain field.

4. Homogeneous tests

4.1. Cyclic behaviour

A first cyclic tensile test was achieved in order to detect

possible Mullins effect or hysteresis. For that purpose, load/

unload sequences were made at six increasing stress levels

with an elongation rate _lxx ¼ _l=l0 ¼ 8� 10�3 s�1. Results

have been sketched in the graph in Fig. 4. Stress–elongation

curves show a perfect non-linear and reversible behaviour

with no Mullins effect nor hysteretic loop: all loading and

unloading curves are superimposed.

4.2. Influence of the rate of deformation

The influence of the rate of deformation on the behav-

iour of the silicone has been first studied by subjecting

a tensile specimen to a load/unload sequence at different

elongation rates j _lxxj ¼ 2� 10�4 s�1 and 10�1 s�1. Corre-

sponding axial stress–elongation curves have been plotted

in Fig. 5: there is no noticeable difference between the two

cycles so that the silicone behaviour can be assumed

independent of the rate of deformation, at least within

the considered strain rate range.

In order to reinforce the last observation, a relaxation

tensile test was performed. After stretching a tensile spec-

imen at lx¼ 2 the elongation was kept constant and the

global force fx was measured for 2 h. As shown in Fig. 6,

the nominal stress Pxx diminished by less than 2% during

such a relaxation sequence. Consequently, it is concluded

from the results gained in these two subsections that the

RTV 141 exhibits a non-linear elastic behaviour with very

little time and rate of deformation dependency and

without Mullins effect and hysteresis.

4.3. Influence of the mechanical loading

In the graphs of Fig. 7, the evolution of the first principal

stress is reported (Pxx for tensile, pure shear and compres-

sion and bulge tests) as a function of the principal elonga-

tion (lxx for tensile, pure shear and compression and bulge

tests), for the five investigated homogeneous tests. For the

two compression tests, the axial stress exhibits amonotonic

strain hardening with constant curvature. Such a strain

hardening is stiffer during plane strain compression. For

the other loadings, the strain hardening is also emphasised,

Fig. 4. Cyclic loading–unloading tensile test with increasing maximum

stress: 0.1, 0.14, 0.2, 0.28, 0.4, 0.56 MPa.
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but systematically exhibits an inflection point, similar to

that observed in many other elastomers. As for the

compression loadings, stress levels recorded for the plane

strain tension (pure shear) test are higher than those

obtained in simple tension, but lower than those recorded

during the bulge test.

These results highlight the strong influence of the type

of mechanical loading on stress–elongation curves.

5. Discussion and constitutive modelling

It has been shown in the previous part that the materi-

al’s behaviour does not present irreversible effects and does

not depend on its history; it only depends on its current

strain state. Thus, it has a non-linear elastic behaviour

that could be represented by hyperelastic constitutive

equations. This kind of modelling describes the strain

energy density W of the material, which is the elastic

energy stored by the material during the loading.

5.1. Elastic energies during homogeneous tests

Using the experimental data, strain energy densities per

unit volume could be calculated for the five homogeneous

tests through the equation:

W[

Z

F

P : dF

Most hyperelastic constitutive equations for isotropic

material are written as functions of the two first invariants

I1 and I2 of the dilatation tensor C¼ FTF, with I1¼ Tr(C) and

Fig. 5. Tensile test: two load/unload cycles performed at two elongation

rates: (d) 2 10�4 s�1 and (- $) 10�1 s�1.

Fig. 6. Time evolution of the normalised stress Pxx=Pxxðt ¼ t0Þ, for a stress

relaxation test recorded after a monotonic tensile test performed at l¼2.

Fig. 7. Principal stress–elongation curves obtained in: (a) (B) simple compression, (>) plane strain compression; (b) (,) uniaxial tensile, (6) pure shear and (8)

bulge tests.
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I2 ¼ 0:5� ½I21 � TrðC2Þ�. This is the case of the Rivlin series

[16], Haines and Wilson [10], neo-hookean [7], Mooney

[8], etc. In this way, the energy density of each test has

been sketched in Fig. 8 as function of I1 and I2 to give indi-

cations for the choice of a constitutive equation. In a first

approach, the different strain energies evaluated for each

test can be considered as a function of the first strain invari-

ant. It even seems linear according to the first invariant.

This corresponds to the neo-hookean model [17]

W¼ C1(I1�3) with C1¼0.175 MPa. Fig. 9 presents a compar-

ison between model simulations and experimental data.

Compression tests are relatively well depicted by this

model (see Fig. 9(a)) but it cannot predict tensile, pure

shear and bulge tests when the elongation exceeds 1.6

(see Fig. 9(b)). It also predicts too high stress levels for

the tensile test and too low stress levels for bulge test.

Moreover, this kind of constitutive equation cannot repre-

sent the strain hardening, as can be seen in Fig. 9(b) for

high elongations. Nevertheless, it is efficient for a only

one parameter model. To have more precise predictions

of the material’s behaviour, more complex constitutive

equations are needed.

5.2. Hyperelastic energy density parameter fit

Four hyperelastic constitutive equations have been

chosen: Mooney [8], Haines and Wilson [10], Gent [11]

and Ogden [9]. The first three depend on the invariants of

the right Cauchy–Green tensor C, whereas the last one is

written in terms of principal elongations. Hyperelastic

constitutive equations are presented in Table 1. These

models have been chosen because they are representative,

but not exhaustive, of widely used hyperelastic constitutive

equations. The Mooney model is the most used in rubber

industrial development because of its simplicity and its

good representation of moderate deformations. Haines

and Wilson is a high order Rivlin series [16], whereas the

Gent model represents the non-Gaussian hyperelastic

laws [17] due to its equivalence with the eight-chain model

[18]. Moreover, it is equivalent to the Hart–Smith [19]

model [20]. Lastly, the Ogden model has been chosen for

its high versatility which allows it to fit almost any experi-

mental data. Mooney and Gent models have only two pa-

rameters whereas Haines and Wilson, and Ogden models

(in its classical form) use six parameters.

The strain energy density parameters have been fitted

on experimental data from tensile, pure shear, compres-

sion, plane strain compression and bulge tests. The optimi-

zation process used a conjugate gradient algorithm of

Scilab software to minimise the error Errormodel with

respect to the model’s parameters. The error of a constitu-

tive equationwas defined as follows for each kind of homo-

geneous loading:

Errorloading[
1

N

X

N

j[1

�

PexpðljÞLPsimðljÞ
�2

where N is the number of experimental points, lj the

elongations of the experimental data, Pexp(lj) is the exper-

imental stress and Psim(lj) is the simulated stress for the

evaluated model. The global error of a model Errormodel

was then defined as themean of the five Errorloading figures.

The values of the fitted parameters are presented in Table 2.

Fig. 10 presents a comparison between experimental data

for the homogeneous loadings and the predictions of the

four fitted models. Compression and plane strain compres-

sion tests data (Fig. 10(c) and (d)) are well depicted by all

constitutive equations, but this is not so for the other three

tests. Indeed, results given here show that the Mooney

model can only describe the silicone rubber at low strains

because it is unable to represent the strain hardening of

the material. On the contrary, Gent, Ogden and Haines

and Wilson models have good predictions for the whole

curves. However, the Gent model seems less accurate: the

curves show a difference with experimental slope at high

elongations in bulge, tensile and shear tests. The consid-

ered silicone presents a weak strain hardening because it

is unfilled; as a consequence the Gent model is not the

Fig. 8. Evolution of the elastic energy density as a function of (a) I1 and (b) I2 for the five homogeneous tests performed for fit: (,) uniaxial tensile, (6) pure

shear, (B) simple compression, (>) plane strain compression and (8) bulge test. The fitted neo-hookean model is also represented (d).
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best adapted model since it presents a strong strain

hardening.

Fig. 11 presents the lateral stress measured during the

plane strain compression test. These data were not used

to fit the models but are given to make a comparison of

the predictions of the constitutive equations. Note that

the experimental curve indicates a horizontal tangent at the

origin. This can be explained by the layer of grease and by

a possible clearance between the lateral restraint and the

specimen. The curves indicate that Mooney, Haines and

Wilson and Ogden give about the same results, while

only Gent provides a better approximation of the experi-

mental data. Thus, there are still some limits to the model-

ling for this silicone rubber at large elongations since the

lateral stress could not bewell depicted. It can also be noted

that experimental and model slopes at high elongation for

the bulge test are very different. In that case, the silicone is

much stiffer than the prediction of any of the models. This

could also be due to the fact that these points are at the

limit of the fit domain.

In conclusion, except for the Mooney constitutive

equation, the models seem adequate to represent this

silicone rubber. Nevertheless, Haines and Wilson and

Ogden model parameters are more difficult to fit because

of the number of parameters, whereas Gent needs only

two parameters with a physical meaning. Note that the

Haines and Wilson constitutive equation requires six

parameters that allow it to fit to almost any hyperelastic

experimental curve but it can also introduce numerical

problems during calculation [21].

6. Heterogeneous test

To evaluate the ability of the models to describe a com-

plete structure, a specimen generating heterogeneous

strain fields has been used (as described in Section 3.2).

6.1. Experimental results

The specimen has been submitted to a force of 20 N and

the strain field was measured. Fig. 12 shows the photogra-

phy used for DIC and the associated representation of the

major principal elongation field at a force of 20 N. Some

voids are visible in Fig. 12(b) owing to local correlation

problems related to too large speckles in the pattern. The

elongation field shows great heterogeneity: most of the

plate has an in-plane maximal elongation lower than 1.5,

whereas the most stretched parts have a maximal elonga-

tion higher than 2.5: the areas between the exterior edges

and the holes or between two holes are very stretched due

to section reduction in these areas. Furthermore, the cut

induced even higher elongations.

6.2. Numerical model

The numerical simulations of the above experiments

were performed with the finite element code ABAQUS,

the model parameters are those given in Table 2. The

Gent model required the development of a UHYPER

subroutine, while Mooney, Haines and Wilson and Ogden

Table 1

Hyperelastic energy density constitutive equations

Mooney WM¼ C10 (I1� 3)þ (I2� 3)

Gent WG ¼ �E
6Jmln½1� I1�3

Jm
�

Haines and Wilson WHW ¼
C10ðI3�3ÞþC20ðI1�3Þ2þC30ðI1�3Þ3

C01ðI2�3ÞþC20ðI2�3Þ2þC11ðI2�3ÞðI1�3Þ

Ogden WO ¼
Pn

i¼1
mi

ai
ðl

ai

1 þ l
ai

2 þ l
ai

3 � 3Þ

Table 2

Values of the hyperelastic energy parameters fitted on experimental data

from all homogeneous tests

Mooney C10¼ 0.14 C01¼0.023

Gent E¼ 0.97 Jm¼ 13

Haines and Wilson C10¼ 0.14 C20¼� 0.0026 C10¼ 0.0038

C01¼0.033 C02¼ 0.00095 C11¼� 0.0049

Ogden m1¼0.46 m2¼ 0.00027 m1¼� 0.0074

a1¼1.4 a2¼10 a3¼� 3.3

Fig. 9. Nominal stress measured and predicted by the neo-hookean model for the five tests: (,) uniaxial tensile, (6) pure shear, (B) simple compression, (>)

plane strain compression and (8) bulge test for (a) compression tests and (b) traction tests.
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Fig. 10. Experimental data (B) and simulations of the four hyperelastic constitutive equations, ($–$) Mooney, (- -) Gent, (/) Haines andWilson and (d) Ogden for

(a) tensile, (b) pure shear, (c) compression, (d) plane strain compression and (e) bulge test. The principal elongation used for the horizontal axis is in the loading

direction (a,b,c,d) and in a tangential direction of the plate (e).
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models were already implemented in ABAQUS. The mate-

rial models were defined as incompressible: quadratic

(CPS8) elements were used, the corresponding mesh is

presented in Fig. 13. The finite element model geometry

was designed using the dimensions given in the table of

Fig. 3. A 2D plane stress model was designed since (i) the

thickness is fairly homogeneous (1.75 mm� 0.02 mm) (ii)

the lateral surfaces of the plates are free of load. The lower

side of the model is fixed and the upper face is subjected to

(i) rigid body vertical displacement and (ii) the global force

fx is applied on this face.

6.3. Comparison at imposed load

The simulations are performed with an imposed load

fx of 20 N. Fig. 14 shows a comparison between the photo-

graph of the deformed specimen and the shape predicted

by the simulations (black outlines). As evident from this

figure, the model simulations involving the Mooney

model greatly overestimates the deformed shape of the

specimen, while predictions given by the Gent model

are much better, but slightly stiffer than experiment,

and those given by Haines and Wilson and Ogden models

are fairly good. These results confirm what could be seen

on tensile curves: the Mooney model cannot represent

the strain hardening (see Fig. 10(a)), even moderate, of

this material, hence it predicts too large displacements

for the imposed load. The Gent model does not fully

represent the material for all the homogeneous tests,

especially the tensile test. It predicts too high a stiffness

at moderate strain (for elongation between 1.4 and 2 in

Fig. 10(a)), which could explain the smaller displacements

predicted by the simulation.

The comparison of the shapes made above only gives

a global point of view, therefore, another comparison

tool has been used: the maximal elongation along

a path was studied to compare the local simulated

elongation to the experimental elongation. The chosen

path passes through the upper holes, as shown in

Fig. 13, in order to study the most stretched parts of

the plate. The curves describing the experimental and

simulated major elongation along the path are presented

Fig. 11. Experimental data (B) and model predictions (($–$) Mooney, (- -)

Gent, (/) Haines and Wilson and (d) Ogden) for the lateral stress during

the plane strain compression test.

Fig. 12. Photograph of the deformed plate for an applied force of 20 N: (a) deformation of the pattern, (b) colour map: major principal elongation (result of 7D).
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in Fig. 15 for a loading of 20 N. Predictions of the Mooney

model are good only for moderate deformation. Indeed,

the Mooney predictions become too soft for large defor-

mations, thus introducing important errors (60% of

elongation on the right side of the path). Conversely,

predictions given by Gent, Ogden and Haines and Wilson

models still fit to the experimental data well even for

large elongations.

6.4. Comparison at imposed displacement

Another comparison was made here: it was shown that

the Mooney constitutive equation cannot represent the

experiment at the imposed load but how its capacity to pre-

dict the displacements and the strain fields when using an

imposed displacement of boundaries was considered.

Thereby, the imposed displacement on the upper side of

Fig. 13. FE mesh and path from which the strain data are extracted.

Fig. 14. Photograph and shape predicted by simulation of the plate with holes submitted to 20 N for the models: (a) Mooney, (b) Gent, (c) Haines and Wilson and

(d) Ogden.
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the model is 57.3 mm, which is the experimental displace-

ment of the upper side of the plate at 20 N. As theother three

models already gave results in good agreement with the

experiment, they are not presented in this part. The shape

of the model is superimposed on the photo of the plate in

Fig. 16(a), and the major elongation is given along the path

in Fig. 16(b). The shape predicted here by the model using

Mooney constitutive equations differs once again from the

photograph. The local error also remains high for large strain

(40% approximately). Consequently, even when the global

kinematics is imposed, the strain field is not well evaluated.

Because of the strain heterogeneity, some areas of the

specimen are very badly described, resulting in an inaccu-

rate global prediction. The elongation in the most stretched

part of the specimen is overestimated.

7. Conclusions

In order to make an experimental and numerical

study of an unfilled silicone rubber, different aspects

M
a
x
im

u
m

 p
ri

n
c
ip

a
l 

e
lo

n
g

a
ti

o
n

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

Position along the path (mm)

Fig. 15. Experimental and simulated elongations along the path defined in Fig. 14 at 20 N: (B) experimental data, ($–$) Mooney, (- -) Gent, (/) Haines andWilson

and (d) Ogden; the blank in the curves are due to the holes.

Fig. 16. Comparison of the experiment and Mooney model at an imposed displacement of 57.3 mm: (a) shapes, (b) major principal elongation along the path for

experimental data (o) and Mooney ($–$).
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have been addressed. First, the experimental procedures

were detailed. Then several tests were developed to

evaluate the mechanical behaviour of the silicone rubber.

The results highlight the lack of Mullins effect, hysteresis

and strain rate dependency, but different stress state

could be measured for different homogeneous load cases

(tensile, pure shear, compression, plane strain compres-

sion, bulge test). Thus, the considered silicone rubber

has a non-linear elastic behaviour, i.e., its mechanical

behaviour is entirely defined by its elastic energy. Hence,

different hyperelastic constitutive equations were used

to model its behaviour since these models express the

energy density of the material. These models were fitted

to the experimental data and evaluated. Finally, the

chosen silicone rubber could be used as a model material

to test the capability of models to predict material

behaviour. This takes advantage of the uncommon

characteristic of this silicone to be perfectly elastic in

finite strain.

To develop further comparisons, a plate with holes

was stretched while measuring the strain field. Finite

element analysis using Gent, Haines and Wilson and

Ogden constitutive equations provided results in good

agreement with experimental data. However, caution is

necessary because Haines and Wilson and Ogden need

six parameters that are tricky to fit, especially if few

experimental data are available. Gent is a little bit less

accurate but makes coherent predictions for any load

case. Contrary to the previous cited models, Mooney

largely overestimated the strain levels in the most

stretched parts of the plate. This conclusion was logical

with regard to the capacity of this constitutive equation

to represent the strain hardening. So, at an imposed

load, the model’s predictions were too large. However,

to further investigate this model’s predictions, the condi-

tions of the numerical model were changed to impose

displacement, but once again large overestimations of

the elongation remained.

These results highlight the need to be very cautious

when fitting hyperelastic constitutive equations and using

them for numerical simulations. In particular, using the

Mooneymodel to run analysis can lead to large overestima-

tions in all very stressed parts, in particular in the case of

crack tip analysis where the considered area is the most

highly stretched.
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