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Abstract

We briefly present in this short paper a new SIze REsolved Aerosol Model (SIREAM)

which simulates the evolution of atmospheric aerosol by solving the General Dynamic

Equation (GDE). SIREAM segregates the aerosol size distribution into sections and

solves the GDE by splitting coagulation and condensation/evaporation. A moving sec-5

tional approach is used to describe the size distribution change due to condensa-

tion/evaporation and a hybrid method has been developed to lower the computational

burden. SIREAM uses the same physical parameterizations as those used in the

Modal Aerosol Model, MAM (Sartelet et al., 2005). It is hosted in the modeling system

POLYPHEMUS (Mallet et al., 2006
1
) but can be linked to any other three-dimensional10

Chemistry-Transport Model.

1 Introduction

Atmospheric particulate matter (PM) has been negatively linked to a number of un-

desirable phenomena ranging from visibility reduction to adverse health effects. It also

has a strong influence on the earth’s energy balance (Seinfeld and Pandis, 1998). As a15

result, many governing bodies, especially in North America and Europe, have imposed

increasingly stringent standards for PM.

Atmospheric aerosol is a complex mixture of inorganic and organic components,

with composition varying over the size range of a few nanometers to several microme-

ters. These particles can be emitted directly from various anthropogenic and biogenic20

sources or can be formed in the atmosphere by organic or inorganic precursor gases.

Given the complexity of PM, its negative effects, and the desire to control atmo-

spheric PM concentrations, models that accurately describe the important processes

1
Mallet, V., Quélo, D., Sportisse, B., Debry, E., Korsakissok, I., Roustan, I., Sartelet, K., Wu,

L., Tombette, M., and Foudhil, H.: A new air quality modeling system: POLYPHEMUS, Atmos.

Chem. Phys. Discuss., in preparation, 2006.
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that affect the aerosol size/composition distribution are therefore crucial. Three-

dimensional Chemistry-Transport Models (CTMs) provide the necessary tools to de-

velop not only a better understanding of the formation and the distribution of PM but

also sound strategies to control it. Historically, CTMs focused on ozone formation or

acid deposition and did not include a detailed treatment of aerosols. A number of5

these models have been updated to include aerosols, but there are still many limita-

tions (Seigneur, 2001).

In rigorous models that seek to describe the time and spatial evolution of atmospheric

PM, it is necessary to include those processes described in the General Dynamic

Equation for aerosols (condensation/evaporation, coagulation, nucleation, inorganic10

and organic thermodynamics). These and additional processes like heterogeneous

reactions at the aerosol surface, mass transfer between aerosol and cloud droplets,

and aqueous-phase chemistry inside cloud droplets represent some of the most im-

portant mechanisms for altering the aerosol size/composition distribution.

Among the aerosol models, one usually distinguishes between “modal” models15

(Whitby and McMurry, 1997) and “size resolved” or “sectional” models (Gelbard et al.,

1980). We refer for instance to the modal model of Binkowski and Roselle (2003)

and the sectional model of Zhang et al. (2004) for a description of state-of-the-science

aerosol models, hosted by the Chemistry-Transport Model, CMAQ (Byun and Schere,

2004).20

Here we present the development of a new SIze REsolved Aerosol Model

(SIREAM). SIREAM is strongly coupled to a “companion” modal model, MAM (Modal

Aerosol Model, Sartelet et al., 2005). Both models utilize the same physical parameter-

izations through the library for atmospheric physics and chemistry ATMODATA (Mallet

and Sportisse, 2005). Both have a modular approach and rely on different model con-25

figurations. They are hosted in the modeling system POLYPHEMUS (Mallet et al., 2006
1
)

and used in many applications. A detailed description of SIREAM and MAM can

be found in Sportisse et al. (2006) (available at http://www.enpc.fr/cerea/polyphemus).

A key feature of SIREAM is its modular design, as opposed to an all-in-one model.
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SIREAM can be used in many configurations and is intended for ensemble modeling

(similar to Mallet and Sportisse, 2006).

This paper is structured as follows. The model formulation and main parameteriza-

tions included in SIREAM are described in Sect. 2. The numerical algorithms used

for solving the GDE are given in Sect. 3. A specific focus is devoted to condensa-5

tion/evaporation, which is by far the most challenging issue.

2 Model formulation

In this section we focus on aerosol dynamics, i.e. on the nucleation, condensa-

tion/evaporation, and coagulation processes. In addition, we briefly describe some pro-

cesses that are strongly related to aerosols (heterogeneous reactions at the aerosol10

surface, mass transfer between the aerosols and the cloud droplets and aqueous-

phase chemistry in cloud droplets). We also include the parameterizations for Semi-

Volatile Organic Compounds (SVOCs).

In order to deal with different parameterizations and to avoid the development of an

“all-in-one” model, the parameterizations have been implemented as functions of the15

library ATMODATA (Mallet and Sportisse, 2005), a package for atmospheric physics.

As such, they can be used by other models.

2.1 Composition

The particles are assumed to be “internally mixed”, i.e., that there is a unique chemical

composition for a given size. Each aerosol may be composed of the following compo-20

nents:

– liquid water;

– inert species: mineral dust, elemental carbon and, in some applications, heavy

trace metals (lead, cadmium) or radionuclides bound to aerosols;
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– inorganic species: Na
+

, SO4
2−

, NH4+, NO3− and Cl−;

– organic species: one species for “Primary Organic Aerosol” (POA), 8 species for

Secondary Organic Aerosol (see below for more details).

A typical version of the model (trace metals or radionuclides are not included) tracks

the evolution of 17 chemical species for a given size bin (1+2+5+1+8). These species5

(“external species”) should be distinguished from the species that are actually inside

one aerosol in different forms (ionic, dissolved, solid). Let ne be the number of external

species.

The internal composition for inorganic species is determined by thermodynamic equi-

librium, solved by ISORROPIA V.1.7 (Nenes et al., 1998). Water is assumed to10

quickly reach equilibrium between the gas and aerosol phases. Its concentration is

given by the thermodynamic model (through the Zdanovskii-Stokes-Robinson relation).

Hereafter, the particle mass m refers to the dry mass. In order to reduce the wide

range of magnitude over the particle size distribution and to better represent small

particles, the particle distribution is described with respect to the logarithmic mass15

x= lnm (Wexler et al., 1994; Meng et al., 1998; Gaydos et al., 2003).

The particles are described by a number distribution, n(x, t) (in m
−3

), and by the

mass distributions for species Xi, {qi (x, t)}i=1,ne
(in µg m

−3
). The mass distributions

satisfy
∑i=ne

i=1
qi=mn. We also define the mass mi (x, t)=

qi (x,t)

n(x,t)
of species Xi in the

particle of logarithmic mass x. It satisfies
∑i=ne

i=1
mi (x, t)=e

x
.20

2.2 Processes and parameterizations for the GDE

2.2.1 Nucleation

The formation of the smallest particles is given by the aggregation of gaseous

molecules leading to thermodynamically stable “clusters”. The mechanism is poorly

known and most models assume homogeneous binary nucleation of sulfate and water25
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to be the major mechanism in the formation of new particles. Binary schemes tend

to underpredict nucleation rates in comparison with observed values. Korhonen et al.

(2003) has indicated that for the conditions typical in the lower troposphere ternary

nucleation of sulfate, ammonium and water may be the only relevant mechanism.

SIREAM offers two options for nucleation: the H2O-H2SO4 binary nucleation5

scheme of Vehkamki et al. (2002) and the H2O-H2SO4-NH3 ternary nucleation

scheme of Napari et al. (2002).

The output is a nucleation rate, J0, a nucleation diameter, and chemical composition

for the nucleated particles. The new particles are added to the smallest bin.

2.2.2 Coagulation10

Atmospheric particles may collide with one another due to their Brownian motion or

due to other forces (e.g., hydrodynamic, electrical or gravitational). SIREAM includes

a description of Brownian coagulation, the dominant mechanism in the atmosphere.

There may be a limited effect on the particle mass distribution and this process is

usually neglected (Zhang et al., 2004). However coagulation may have substantial15

impact on the number size distribution for ultrafine particles.

The coagulation kernel K (x, y) (in unit of volume per unit of time) describes the rate

of coagulation between two particles of dry logarithmic masses x and y . K has different

expressions depending on the relevant regime (Seinfeld and Pandis, 1998).

2.2.3 Condensation/evaporation20

Some gas-phase species with a low saturation vapor pressure may condense on ex-

isting particles while some species in the particle phase may evaporate. The mass

transfer is governed by the gradient between the gas-phase concentration and the con-

centration at the surface of the particle. The mass flux for volatile species Xi between
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the gas phase and one particle of logarithmic mass x is computed by:

dmi

dt
= Ii = 2πD

g

i
dpfF S (Kni

, αi )
(

c
g

i
− cs

i
(x, t)

)

(1)

dp is the particle wet diameter. (see Sect. 2.2.6 for the relation to mass). D
g

i
and c

g

i
are the molecular diffusivity in the air and the gas-phase concentration of species Xi,

respectively. The concentration cs
i at the particle surface is assumed to be at local5

thermodynamic equilibrium with the particle composition:

cs
i
(x, t) = η(dp) c

eq

i
(q1(x, t), . . . , qne

(x, t),RH, T ) (2)

T is the temperature and RH is the relative humidity. η(dp)=exp
(

4σvp
RTdp

)

is a correction

for the Kelvin effect, with σ the surface tension, R the gas constant and vp the particle

molar volume. In practice, c
eq

i
is computed by the reverse mode of a thermodynamics10

package like ISORROPIA in the case of kinetic mass transfer.

The Fuchs-Sutugin function, fF S , describes the non-continuous effects (Dahneke,

1983). It depends on the Knudsen number of species Xi, Kni
=

2λi
dp

(with λi the air mean

free path), and on the accommodation coefficient αi (default value is 0.5):

fF S (Kni
, αi ) =

1 + Kni

1 + 2Kni
(1 + Kni

)/αi

(3)15

When particles are in a liquid state, the condensation of an acidic component may free

hydrogen ions and the condensation of a basic component may consume hydrogen

ions. Thus the condensation/evaporation (c/e hereafter) process may have an effect

on the particle pH. The hydrogen ion flux induced by mass transfer is:

JH+ = 2JH2SO4 + JHCl + JHNO3 − JNH3 (4)20

with Ji the molar flux in species Xi. The pH evolution due to c/e can be very stiff

and cause instabilities, due to the very small quantity nH+ of hydrogen ions inside the
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particle. The hydrogen ion flux is then limited to a given fraction A of the hydrogen

ion concentration (following Pilinis et al., 2000): |JH+ |≤AnH+ , where A is usually cho-

sen arbitrarily between 0.01 and 0.1. A is a numerical parameter that has no physical

meaning and does not influence the final state of mass transfer. It just modifies the

numerical path to reach this state. We refer to Pilinis et al. (2000) for a deeper under-5

standing.

2.2.4 Inorganic thermodynamics

There are a range of packages available to solve thermodynamics for inorganic species

(Zhang et al., 2000). ISORROPIA was shown to be a computationally efficient model

that is also numerically accurate and stable and provides both a closed mode (for global10

equilibrium, a.k.a. forward mode) and open mode (for local equilibrium and kinetic mass

transfer, a.k.a. reverse mode). Particles can be solid, liquid, both or in a metastable

state, where particles are always in aqueous solution.

Moreover, the inclusion of sea salt (NaCl) in the computation of thermodynamics is

also an option in SIREAM.15

When the particles are solid, fluxes of inorganic species are governed by gas/solid

reactions at the particle surface. In this case, thermodynamic models are not able to

compute gas equilibrium concentrations. For solid particle, SIREAM calculations are

based on the solutions proposed in Pilinis et al. (2000).

2.2.5 Secondary Organic Aerosols20

The oxidation of VOCs leads to species (SVOCs) that have increasingly complicated

chemical functions, high polarizations, and lower saturation vapor pressure.

There are many uncertainties surrounding the formation of secondary organic

aerosol. Due to the lack of knowledge and the sheer number and complexity of or-

ganic species, most chemical reaction schemes for organics are very crude represen-25

tations of the “true” mechanism. These typically include the lumping of “representative”
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organic species and highly simplified reaction mechanisms.

The default gas-phase chemical mechanism for SIREAM is RACM (Stockwell et al.,

1997). Notice that the gas-phase mechanism and the related SVOCs are parameter-

ized and can be easily modified.

The low volatility SOA precursors and the partitioning between the gas and particle5

phases are based on the empirical SORGAM model (Schell et al., 2001; Schell, 2000).

Eight SOA classes are taken into account (4 anthropogenic and 4 biogenic). Anthro-

pogenic species include two from aromatic precursors (ARO1 and ARO2), one from

higher alkanes (OLE1) and one from higher alkenes (ALK1). The biogenic species

represent two classes from α-pinene (API1 and API2) and two from limonene (LIM110

and LIM2) degradation. Some oxidation reactions of the form VOC+Ox→P where Ox

is OH, O3, or NO3 have been modified to VOC+Ox→P+α1 P1+α2 P2 with P1 and P2

representing SVOCs among the eight classes. Updated values of these parameters

have also been defined in other versions of the mechanism (not reported here).

The partitioning between the gas phase and the particle phase is performed in the15

following way. Let nOM be the number of organic species in the particle mixture (this

includes primary and secondary species) which are assumed to constitute an “ideal

mixture”:

(qi )g = γi (xi )a q
sat
i

(5)

For species Xi, qsat
i is the saturation mass concentration in a pure mixture, (xi )a is20

the molar fraction in the organic mixture and γi is the activity coefficient in the organic

mixture (a default value of 1 is assumed). (xi )a is computed through:

(xi )a =

(qi )a

Mi

qOM

MOM

=

(qi )a

Mi

j=nOM∑

j=1

(qj )a

Mj

+
(qPOA)a

MPOA

(6)
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qOM is the total concentration of organic matter (primary and secondary) in the particle

phase. The molar mass Mi of component i is expressed in µg/mol (in the same unit

as the mass concentrations qi ); MOM is the average molar mass for organic matter in

µg/mol. POA stands for the primary organic matter, assumed not to evaporate.

qsat
i is computed from the saturation vapor pressure with qsat

i =
Mi

RT
psat
i . A similar5

way to proceed is to define the partitioning coefficient Ki=
(qi )a

qOM (qi )g
(in m

3/µg). Ki can

be computed from the thermodynamic conditions and the saturation vapor pressure

through:

Ki =
RT

psat
i

γi (MOM )
(7)

The saturation vapor pressure psat
i (T ) is given by the Clausius-Clapeyron law:10

psat
i

(T ) = psat
i

(298 K) exp

(

−
∆Hvap

R
(
1

T
− 1

298
)

)

(8)

with ∆Hvap the vaporization enthalpy (in the default version, a constant value

156 kJ/mol).

The mass concentration of a gas at local equilibrium with the particle mixture is given

by Eq. (5). The global equilibrium between a gas and the particle mixture is given by15

Eq. (5) and mass conservation for species Xi :

(qi )a + (qi )g = (qi )tot (9)

with (qj )tot representing the total mass concentration (for both phases) to be parti-

tioned. This with Eq. (6) leads to a system of nOM algebraic equations of second

degree:20

− ai ((qi )a)2
+ bi (qi )a + ci = 0 (10)
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where the coefficients depend on concentrations {(qj )a}j 6=i through

ai=
1
Mi
, bi=

qsat
i

Mi
−Σi , ci=q

sat
i Σi and Σi=

j=nOM∑

j=1,j 6=i

(qj )a

Mj

+
(qPOA)a

MPOA

.

The resulting system is solved by an iterative approach with a fixed point algorithm.

Each second degree equation is solved in an exact way: the only positive root is com-

puted for each equation of type (10).5

2.2.6 Wet diameter

Parameterizations of coagulation, condensation/evaporation, dry deposition and wet

scavenging depend on the particle “wet” diameter dp. Two methods have been im-

plemented in SIREAM to compute it, one based on thermodynamics, another on the

Gerber’s Formula.10

The thermodynamic method consists in using the particle internal composition {mi}
provided by the thermodynamic model ISORROPIA. Many of aerosol models use a

constant specific particle mass ρp (Wexler et al., 1994; Pilinis and Seinfeld, 1988) sup-

posed to satisfy ρp
πd3

p

6
=
∑ne

i=1
mi . In SIREAM, following Jacobson (2002), the particle

volume is split into a solid part and a liquid part:
πd3

p

6
=Vliq+Vsol. As each solid repre-15

sents one single phase, the total solid particle volume is the sum of each solid volume:

Vsol=
∑

is

mis

ρ∗
is

, with ρ∗
is

the specific mass of pure component Xis
. The liquid particle

phase is a concentrated mixing of inorganic species, whose volume is a non linear

function of its inorganic internal composition: Vliq=
∑

il
Vilnil

where Vil is the partial mo-

lar volume of ionic or dissolved species Xil
and nil

is the molar quantity in Xil
. Due to20

some molecular processes within the mixture (e.g. volume exclusion), the partial mo-

lar volume is a function of the internal composition. However, we assume that Vil≃
Mil

ρ∗
il

where Mil
and ρ∗

il
are the molar mass of Xi and the specific mass of a pure liquid so-

lution of Xi, respectively. This method is well suited for condensation/evaporation for
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which thermodynamic computation cannot be avoided.

For other processes (coagulation, dry deposition and scavenging) the particle “wet”

diameter is computed through a faster method, the Gerber’s Formula (Gerber, 1985).

This one is a parameterization of the “wet” radius as a function of the dry one:

rw =

[

C1(rd )
C2

C3(rd )C4 − log RH
+ (rd )3

] 1
3

(11)5

where rw and rd are respectively the wet and dry particle radius in centimeters, RH

is the atmospheric relative humidity within [0,1]. Coefficients (Ci )i=1,4 depend on the

particle type (urban, rural or marine). The C3 coefficient is temperature dependent (T )

through the Kelvin effect:

C3(T ) = C3[1 + C5(298 − T )] (12)10

We have actually modified the coefficients given by Gerber through a minimization

method so that the Gerber’s Formula give results as close as possible to the “wet”

diameters given by the thermodynamic method (Sportisse et al., 2006):

C1 = 0.4989 , C2 = 3.0262 , C3 = 0.5372 10−12

C4 = −1.3711 , C5 = 0.3942 10−02 (13)15

The choice of which method to use (thermodynamics or Gerber’s Formula) is up to the

user.

2.2.7 Logarithmic formulation for the GDE

On the basis of the parameterizations described above, the evolution of the number

and mass distributions is governed by the GDE:20

∂n

∂t
(x, t) =

∫ x̃

x0

K (y, z)n(y, t)n(z, t)dy
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−n(x, t)

∫ ∞

x0

K (x, y)n(y, t)dy −
∂(H0n)

∂x
(14)

∂qi

∂t
(x, t) =

∫ x̃

x0

K (y, z)[qi (y, t)n(z, t) + n(y, t)qi (z, t)]dy

−qi (x, t)

∫ ∞

x0

K (x, y)n(y, t)dy

−
∂(H0qi )

∂x
+ (Iin)(x, t) (15)5

H0=
I0
m (in s−1

) is the logarithmic growth rate. The nucleation threshold is x0= lnm0.

Moreover, x̃= ln(ex−ex0) and z= ln(ex−ey
) in the above formula.

At the nucleation threshold, the nucleation rate determines the boundary condition:

(H0n)(x0, t) = J0(t), (H0qi )(x0, t) = mi (x0, t)J0(t) (16)

The evolution of the gaseous concentration for the semi-volatile species Xi is given by:10

dc
g

i

dt
(t) = −mi (x0, t)J0(t) −

∫ ∞

x0

(Iin)(x, t)dx (17)

or by mass conservation: c
g

i
(t)+

∫∞
x0
qi (x, t)dx=Ki .

2.3 Other processes related to aerosols

The following processes are not directly related to the GDE. As such, the kernel of

SIREAM (the parameterizations and the algorithms for the GDE) is independent. As15

for SOA, other parameterizations can be used. For the sake of completeness, we have

chosen to include a brief description of the default current parameterizations.
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2.3.1 Mass transfer and aqueous-phase chemistry for cloud droplets

For cells with a liquid water content exceeding a critical value (the default value is

0.05 g/m
3
), the grid cell is assumed to contain a cloud and the aqueous-phase module

is called instead of the GDE model. A part of the particle distribution is activated for

particles that exceed a critical diameter (the default value is dactiv=0.7µm). The micro-5

physical processes that govern the evolution of cloud droplets are parameterized and

not explicitly described. Cloud droplets form on activated particles and evaporate in-

stantaneously (during one numerical timestep) in order to take into account the impact

of aqueous-phase chemistry for the activated part of the particle distribution (Fahey,

2003; Fahey and Pandis, 2001).10

In order to lower the computational burden, the activated distribution is a monomodal

distribution of median diameter 0.4µm and of variance 1.8µm. The activated particle

distribution is mapped onto this distribution. The tests in Fahey (2003) illustrate the low

impact of the choice made for this distribution. The chemical composition of the cloud

droplet is then given by the activated particle fraction.15

Aqueous-phase chemistry and mass transfer between the gaseous phase and the

cloud droplets are then solved. Part of the mass transfer is solved dynamically, part

is assumed to have reached Henry’s equilibrium. The aqueous-phase model is based

on the chemical mechanism developed at Carnegie Mellon University (Strader et al.,

1998). It contains 18 gas-phase species and 28 aqueous-phase species. Aqueous-20

phase chemistry is modeled by a chemical mechanism of 99 chemical reactions

and 17 equilibria (for ionic dissociation). The radical chemistry is not taken into ac-

count. The computation of H+ is made with the electroneutrality relation written as

felectroneutrality(H
+

)=0. This nonlinear algebraic equation is solved with the bisection

method. If no convergence occurs, we take a default value pH=4.16.25

After one timestep, the cloud droplet distribution is then mapped to the initial particle

distribution.

We use a splitting method, the gas-phase chemistry being solved elsewhere (in the
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gas-phase module of the Chemistry-Transport Model). Aqueous-phase chemistry and

mass transfer are solved with DVODE (Brown et al., 1989).

2.3.2 Heterogeneous reactions

The heterogeneous reactions at the surface of condensed matter (particles and cloud

or fog droplets) may significantly impact gas-phase photochemistry and particles. Fol-5

lowing Jacob (2000), these processes are described by the first-order reactions:

HO2
PM→ 0.5 H2O2

NO2
PM→ 0.5 HONO + 0.5 HNO3

NO3
PM→ HNO310

N2O5
PM, clouds−→ 2 HNO3

The heterogeneous reactions for HO2, NO2 and NO3 at the surface of cloud droplets

are assumed to be taken into account in the aqueous-phase model and are considered

separately.

The first-order kinetic rate is computed for gas-phase species Xi with15

ki=

(

a

D
g

i

+
4

c̄
g

i
γ

)−1

Sa where a is the particle radius, c̄
g

i
the thermal velocity in the air,

γ the reaction probability and Sa the available surface for condensed matter per air

volume.

γ strongly depends on the chemical composition and on the particle size. We

have decided to keep the variation ranges (from Jacob, 2000) for these parameters20

in order to evaluate the resulting uncertainties: γHO2 ∈ [0.1–1], γNO2 ∈ [10
−6

–10
−3

],

γNO3 ∈ [2.10
−4

–10
−2

] and γN2O5 ∈ [0.01–1]. The default values are the lowest values.

For numerical stability requirements, these reactions are coupled to the gas-phase

mechanism.
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3 Numerical simulation

3.1 Numerical strategy

On the basis of a comprehensive benchmark of algorithms (Debry, 2004), the numer-

ical strategy relies on methods that ensure stability with a low CPU cost. First, we

use a splitting approach for coagulation and condensation/evaporation. Second, the5

discretization is performed with sectional methods which remain stable even with a few

discretization points, contrary to spectral methods (Sandu and Borden, 2003; Debry

and Sportisse, 2006b). Third, condensation/evaporation is solved with a Lagrangian

method (moving sectional method) in order to avoid the numerical diffusion associated

with Eulerian schemes in the case of a small number of discretization points (typically10

the case in 3-D models).

The splitting sequence goes from the slowest process to the fastest one (first coag-

ulation and then condensation/evaporation-nucleation). The nucleation process is not

a numerical issue and is solved simultaneously with condensation/evaporation. In the

following, we present the numerical algorithm used for each process.15

The particle mass distribution is discretized into nb bins [xj , xj+1
]. We define the in-

tegrated quantities over the bin j for the number distribution and the mass distributions

for species Xi:

Nj (t) =

∫ xj+1

xj

n(x, t)dx, Q
j

i
=

∫ xj+1

xj

qi (x, t)dx (18)

m̃
j

i
=

Q
j

i

Nj is the average mass per particle inside bin j for species Xi.20

We use a Method of Lines by first performing size discretization and then time in-

tegration. After discretization, the resulting system of Ordinary Differential Equations

(ODEs) has the generic form:

dc

dt
= f (c, t) (19)
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where the state vector c is specific for each process. cn is the numerical approximation

of c(tn) at time tn, with a timestep ∆tn=tn+1−tn. A second-order solver is specified for

each case with a first-order approximation c̃n+1. The variable timestep ∆tn is adjusted

by:

∆tn+1 = ∆tn

√

εr‖cn+1‖2

‖c̃n+1 − cn+1‖2

(20)5

where εr is a user parameter, usually between 0.01 and 0.5. The higher εr is, the

faster ∆tn increases. ‖.‖2 is the Euclidean norm.

3.2 Size discretization

3.2.1 Coagulation

Coagulation is solved by the so-called “size binning” method. Equations (14) and (15)10

are integrated over each bin, which gives:

dNk

dt
(t) =

1

2

k∑

j1=1

k∑

j2=1

f k
j1j2

Kj1j2
Nj1Nj2 − Nk

nb∑

j=1

KkjN
j

dQk
i

dt
(t) =

k∑

j1=1

k∑

j2=1

f k
j1j2

Kj1j2
Q

j1
i
Nj2 −Qk

i

nb∑

j=1

KkjN
j (21)

Kj1j2
is an approximation of the coagulation kernel between bins j1 and j2.

The key point is to compute the partition coefficients f kj1j2
that represent the fraction15

of particle combinations between bins j1 and j2 falling into bin k. As these coefficients

only depend on the chosen discretization, they can be computed in a preprocessed

step. The computation depends on the assumed shape of continuous densities inside

each bin (for the closure scheme, see Debry and Sportisse, 2006a). In SIREAM, we

use a closure scheme similar to Fernàndez-Dı̀az et al. (2000).20
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3.2.2 Condensation/evaporation-nucleation

Lagrangian formulation Let x̄j
(t) be the logarithmic mass of one particle at time t

whose initial value corresponds to point xj
of the fixed discretization. The time evolution

of x̄j
(t) is given by the equation of the characteristic curve:

dx̄j

dt
(t) = H0(x̄j , t), x̄j (0) = xj (22)5

One crucial issue is to ensure that the characteristic curves do not cross themselves.

If this happens the Lagrangian formulation is no longer valid. In real cases we have no

proof that this does not happen, even though we have not seen such a situation up to

now.

Provided that the characteristic curves do not cross, we can define integrated10

quantities Nj
and Q

j

i
for each Lagrangian bin [x̄j , x̄j+1

]: Nj
(t)=

∫x̄j+1

x̄j n(x, t)dx and

Q
j

i
=
∫x̄j+1

x̄j qi (x, t)dx.

Mass conservation can be easily written in the form: c
g

i
(t)+

∑nb
j=1

Q
j

i
(t)=Ki .

The time derivation of integrated quantities leads to the equations:

dNj

dt
= 0,

dQ
j

i

dt
= Nj Ĩ

j

i
(23)15

Ĩ
j

i
is an approximation of the mass transfer rate for species Xi in bin j :

Ĩ
j

i
= 2πDid

j
pf (K

j
ni
, αi )

︸ ︷︷ ︸

a
j

i

(

Ki −
nb∑

k=1

Qk
i
− ηj (c

eq

i
)j
)

(24)

with ηj
=e

4σvp

RTd
j
p . (c

eq

i
)
j

is computed at m̃
j

i
.
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For the nucleation process, the first bound x1
is assumed to correspond to the nu-

cleation threshold, so that the Lagrangian bound x̄1
does not satisfy Eq. (22) but:

dx̄1

dt
= j (t) , x̄1(0) = x1 (25)

where j (t) is the growth law of the first bound due to nucleation and given by the

nucleation parameterization. The equations for the first Lagrangian bin therefore are5

written as:

dN1

dt
= J0(t) ,

dQ1
i

dt
= N1 Ĩ1

i
+mi (x

1, t)J0(t) (26)

where [m1(x1, t), . . . ,mne
(x1, t)] is the chemical composition of the nucleated particles,

also given by the nucleation process.

The Lagrangian formulation consists in solving Eqs. (22), (23) and (26). In the next10

section we detail the various numerical strategies to perform the time integration,

which is by far the most challenging point in particle simulation.

Interpolation of Lagrangian boundaries One has to solve the equations for the char-

acteristic curves in order to know the boundaries of each bin. Notice that the c/e15

equations for boundaries are similar to those for integrated quantities. Indeed, for

j=1, . . . , nb and x̃j
= ln(m̃j

), one gets from Eq. (23):

dx̃j

dt
= H̃

j

0
, H̃

j

0
=

Ĩ
j

0

m̃j
, (27)

In practice, in order to reduce the computational burden, one tries to avoid solving

boundary equations. An alternative is to interpolate the bin boundaries from integrated20

quantities.
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One first method (Koo and Pandis, 2003) consists of utilizing the geometric mean of

two adjacent bin:

for j = 2, . . . , nb , m̄j (t) =

√

m̃j−1(t)m̃j (t) (28)

This algorithm would have a physical meaning if Eqs. (22) and (27) were conserving

formula (28), which is not the case. We have therefore developed another algorithm.5

Equations (22) and (27) are similar and therefore x̃j
and x̄j

evolve in the same

proportion given by λj (t) (j≥2):

λj (t) =
x̄j

(t) − x̃j−1
(t)

x̃j (t) − x̃j−1(t)
(29)

λj (0) is known because x̄j
(0)=xj

. The time integration over [0, t] of Eqs. (22) and (27)

gives for j ≥ 1:10

x̄j (t) = xj
+ ∆x̄j , ∆x̄j

=

∫ t

0

H
j

0
(t′)dt′

x̃j (t) = x̃j (0) + ∆x̃j , ∆x̃j
=

∫ t

0

H̃
j

0
(t′)dt′ (30)

The variation of each boundary x̄j
is then computed from that of its two adjacent bins

x̃j−1
and x̃j

:

∆x̄j ≃ (1 − λj (0))∆x̃j−1
+ λj (0)∆x̃j (31)15

where one assumes that λj remains constant.

Redistribution on a fixed size grid Using a Lagrangian approach for condensa-

tion/evaporation requires the redistribution or projection of number and mass concen-

trations onto the fixed size grid required by a 3-D model or for coagulation.20
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Let N and (Qi )
ne
i=1

be the integrated quantities of one Lagrangian bin after condensa-

tion/evaporation. We assume that this Lagrangian bin is covered by two adjacent fixed

bins labelled j and j+1.

The redistribution algorithm must be conservative for the mass distribution of species

Xi:5

Qi = Q
j

i
+Q

j+1

i
(32)

Two algorithms have been developed: the first algorithm ensures that the number is

conserved (N=Nj
+Nj+1

) while the second one ensures that the average mass is con-

served.

1. If x̄lo and x̄hi are the boundaries of the Lagrangian bin after condensa-10

tion/evaporation, the redistribution is performed as follows for the number dis-

tribution and the mass distribution of species Xi:

Nj
=

x̄
j

hi
− x̄lo

x̄hi − x̄lo
N , Q

j

i
=

x̄
j

hi
− x̄lo

x̄hi − x̄lo
Q

Nj+1
=

x̄hi − x̄
j+1

lo

x̄hi − x̄lo
N , Q

j+1

i
=

x̄hi − x̄
j+1

lo

x̄hi − x̄lo
Q (33)

Nevertheless the average mass of particles in each section (Q/N) may not be15

conserved by this algorithm.

2. Another approach consists in conserving the average mass. Let m̃=Q/N,

m̃j
=Qj/Nj

and m̃j+1
=Qj+1/Nj+1

be the averaged mass of the Lagrangian bin

and of bins j and j+1, respectively.

The algorithm for the number distribution and the mass distribution of species Xi20
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is given by:

Nj
=

1 − m̃
m̃j+1

1 − m̃j

m̃j+1

N , Q
j

i
=

m̃j+1

m̃
− 1

m̃j+1

m̃j − 1
Qi

Nj+1
=

1 − m̃
m̃j

1 − m̃j+1

m̃j

N , Q
j+1

i
=

1 − m̃j

m̃

1 − m̃j

m̃j+1

Qi (34)

Both schemes are available in SIREAM.

3.3 Time integration5

3.3.1 Coagulation

As coagulation is not a stiff process, we solve it by the second order explicit scheme

ETR (Explicit Trapezoidal Rule) with the sequence:

c̃n+1 = cn + ∆tf (cn, tn)

cn+1 = cn +
∆t

2

(

f (cn, tn) + f (c̃n+1, tn+1)

)

(35)10

with c=(N1, . . ., Nnb , Q1
1, . . ., Q

nb
1
, . . . , Q1

ne
, . . ., Q

nb
ne

).

3.3.2 Condensation/evaporation

Here, c=(Q1
1, . . ., Q

1
ne
, . . ., Q

nb
1
, . . ., Q

nb
ne

)
T
. nc=ne×nb is the dimension of c.

SIREAM offers three methods for solving condensation/evaporation: a fully dynamic

method that treats dynamic mass transfer for each bin, a bulk equilibrium approach,15

and a hybrid approach that combines the two previous approaches.
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Fully dynamic method Due to the wide range of timescales related to mass transfer,

the system is stiff and implicit algorithms have to be used. The second-order Rosen-

brock scheme (Verwer et al., 1999; Djouad et al., 2002), ROS2, is applied for the time

integration:

cn+1 = cn +
∆tn
2

(3k1 + k2)5

[I − γ∆tnJ(f )]k1 = f (cn, tn)

[I − γ∆tnJ(f )]k2 = f (c̃n+1, tn+1) − 2k1 (36)

where c̃n+1=cn+∆tnk1 and γ=1+ 1√
2
.

This scheme requires the computation of the Jacobian matrix of f (a matrix nc×nc)

defined by [J(f )]kl=
∂f k

∂cl . f k is the k-th component of function f and cl
is the l -th com-10

ponent of c.

Let us write k=(i−1)nb+j and l=(i ′−1)nb+j
′

where i and i ′ label the semi-volatile

species while j and j ′ label the bins. The (kl )-th element of the Jacobian matrix may

then be written as

∂f k

∂cl
=

∂I
j

i

∂Q
j ′

i ′

(37)15

The derivation of f k may be split into one linear part, due to mass conservation, and

one non-linear part related to the coefficient a
j

i
, to the Kelvin effect ηj

, and to the gas

equilibrium concentration (c
eq

i
)
j
. The linear part is analytically derived:

(
∂f k

∂cl

)

lin

= −aj
i
Nj ′ (38)

The non-linear part has to be differentiated by numerical methods, like the finite differ-20
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ence method:

(
∂f k

∂cl

)

non−lin

=

f k(. . . , cl
(1 + εjac), . . .) − f k(. . . , cl , . . .)

clεjac

(39)

where εjac is generally close to 10
−8

. During the numerical computation, the linear part

is arbitrarily kept constant to avoid deriving it twice.

A default option, advocated for 3-D applications, is to approximate the Jacobian5

matrix by its diagonal. The motivation here is to reduce the CPU time.

Hybrid resolution Solving the c/e system, even with an implicit scheme, can be com-

putationally inefficient. In order to lower the stiffness, hybrid methods for condensa-

tion/evaporation have been developed (Capaldo et al., 2000). The method consists in10

partitioning the state vector c into its fast components (cf
) and its slow components

(cs
) respectively:

dcs

dt
= f s(cs, cf , t) , f f (cs, cf , t) = 0 (40)

The algebraic equation states that the fast part is a function of the slow part,

cf
(t)=g(cs

(t), t). The time evolution of the slow part is now governed by:15

dcs

dt
= f s

(

cs, g(cs(t), t), t

)

(41)

As cs
gathers particle species and sizes which have a slow c/e characteristic time,

stiffness is substantially reduced.

The issue is now to determine whether particle sizes and species are “slow” or “fast”.

The spectral study of the c/e system (Debry and Sportisse, 2006c) indicates how to20

compute a cutting diameter dc between “slow” and “fast” species/sizes, such that the

partitioning consists of cutting the particle distribution as follows: the smallest bins
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are at equilibrium while the coarsest ones are governed by kinetic mass transfer. The

cutting diameter can be computed by QSSA criteria, defined by:

QSSA
j

i
=

c
g

i
− η

j

i
(c

eq

i
)
j

c
g

i
+ η

j

i
(c

eq

i
)j

(42)

for a given chemical species Xi and one particle size j . The closer this ratio to zero,

the closer the species and the size are to equilibrium.5

In practice all bins j for which (QSSA
j

i
)
ne
i=1

is greater than one, the user parameter

εQSSA (close to unity) will be considered fast and solved by an equilibrium equation. In

the following we write jc as the bin corresponding to the cutting diameter. Bin jc is the

largest fast bin and bin jc+1 is the smallest slow bin.

In SIREAM (to be used in 3D modeling), the default option is a fixed cutting diameter10

(1.25 or 2.5µm).

The thermodynamic equilibrium between the gas phase and the fast particle bins is

now written for species Xi as:

K f
i
−

jc∑

j=1

Q
j

i
− ηk

i
c
eq

i
(Qk

1
, . . . , Qk

ne
) = 0 (43)15

with K f
i =Ki−

∑nb
j=jc+1

Q
j

i
the total mass of species Xi for fast bins.

There are two approaches for solving this equilibrium: the bulk equilibrium approach

and the size-resolved particle approach. For the size-resolved approach, we refer to

Jacobson et al. (1996) (with the use of the fixed point algorithm) and to Debry and

Sportisse (2006c) (with a minimization procedure).20

In SIREAM, the bulk equilibrium has been implemented (Pandis et al., 1993). It
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consists in merging all fast bins j≤jc into one bin, referred as the “bulk” aerosol phase:

1 ≤ i ≤ ne , Bi =

jc∑

j=1

Q
j

i
(44)

The thermodynamic model ISORROPIA is then applied to the “bulk” aerosol phase

(Bi )
ne
i=1

and one gets equilibrium “bulk” concentrations (B
eq

i
)
ne
i=1

with the forward mode

of the thermodynamics solver (global equilibrium).5

The variation from initial to final “bulk” concentrations is then redistributed among

fast bins 1≤k≤jc for species Xi (Pandis et al., 1993):

(Qk
i
)eq = Qk

i
+ bk

i
(B

eq

i
− Bi ) , bk

i
=

aki N
k

∑jc
j=1

a
j

i
Nj

(45)

This redistribution scheme is exact provided that the particle composition is uniform

over fast bins and that the variation of the particle diameter can be neglected for fast10

bins (Debry and Sportisse, 2006c).

Bulk approach It is a special case of the hybrid approach with the cutting diameter

jc=1 (all bins are at equilibrium).

4 Conclusions15

We have summarized the main features of the aerosol model SIREAM (SIze REsolved

Aerosol Model). SIREAM simulates the GDE for atmospheric particles and can be

easily linked to a three-dimensional Chemistry-Transport-Model. Moreover, the phys-

ical parameterizations used by SIREAM can be easily modified. They are currently

hosted by the library ATMODATA and shared by another aerosol model (MAM, Sartelet20

et al., 2005).
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The next development steps are related to the improvement of the modeling of Sec-

ondary Organic Aerosol. The current parameterization of SOA is limited because it

does not take into account the hydrophilic behavior of organic species (Griffin et al.,

2002b,a; Pun et al., 2002). Furthermore new gas precursors such as isoprene and

sesquiterpene should be added.5

The modularity of SIREAM will be also strengthened by adding new alternative pa-

rameterizations (such as other thermodynamics models or simplified aqueous-phase

chemical mechanisms) and new numerical algorithms (especially for time integration

of condensation/evaporation).

A further step is also the extension to “externally mixed aerosol”.10
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