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Abstract

Four trihalomethane (THM; CHCI;, CHBrCl,, CHBr,Cl and CHBr3) and two di-
halomethane (DHM; CH,BrCl and CH,Br,) trace gases have been measured in air
extracted from polar firn collected at the North Greenland Icecore Project (NGRIP)
site. CHCIl; was also measured in firn air from Devon Island (DI), Canada, Dronning
Maud Land (DML), Antarctica and Dome Concordia (Dome C), Antarctica. All of these
species are believed to be almost entirely of natural origin except for CHCl; where an-
thropogenic sources have been reported to contribute ~10% to the global burden. A
2-D atmospheric model was run for CHCI5 using reported emission estimates to pro-
duce historical atmospheric trends at the three firn sites, which were then input into a
firn diffusion model to produce concentration depth profiles that were compared against
the measurements. The anthropogenic emissions were modified in order to give the
best model fit to the firn data at NGRIP, Dome C and DML. As a result, the contribution
of CHCI, from anthropogenic sources, mainly from pulp and paper manufacture, to the
total chloroform budget appears to have been considerably underestimated and was
likely to have been close to ~40% at the maximum in atmospheric CHCI; concentra-
tions around 1990, declining to ~19% at the beginning of the 21st Century. We also
show that the atmospheric burden of the brominated THM’s in the northern hemisphere
have increased over the 20th Century while CH,Br, has remained constant over time
implying that it is entirely of natural origin.

1. Introduction

Halogens play an important role in the chemistry of both the troposphere and the strato-
sphere. In the polar troposphere, bromine chemistry has been implicated as the major
cause of surface polar ozone depletion (Barrie et al., 1988; Berg et al., 1984; Cicerone
et al., 1988) and bromine monoxide (BrO) as the major atmospheric oxidant driving
mercury deposition (Ariya et al., 2004; Ebinghaus et al., 2002; Lindberg et al., 2002;
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Schroeder et al., 1998). The bromine resulting from the degradation of short lived
bromocarbons has been implicated as a possible initiator for the autocatalytic activa-
tion and recycling of inorganic halogens from sea salt aerosols causing the observed
“bromine explosion” events (Foster et al., 2001; Platt and Honninger, 2003; Sander et
al., 2003; Vogt et al., 1999). It has been suggested that BrO may not be constrained
to polar regions but could be widespread throughout the troposphere where it could
influence the HO, and NO, cycles as well as providing a significant sink for dimethyl
sulphide (von Glasow et al., 2004). If so, the short lived bromocarbons, in particular
bromoform (CHBr3), could constitute an important source of tropopsheric BrO espe-
cially in certain oceanic regions (e.g. tropics), where the acidity of sea salt aerosol
is too low to maintain the autocatalytic cycles that release inorganic bromine species
(Quack and Wallace, 2003).

In the stratosphere, bromine can deplete ozone with higher efficiency than chlorine,
~45 times (Daniel et al., 1999), and the dominant sources are understood to be from
the photochemical degradation of methyl bromide (CH3Br) and the long lived halon
(bromoflurocarbon) compounds. However, recently there is increasing evidence to sug-
gest that other short lived bromocarbon species (CHBr5, CH,Br,, CH,BrCl, CHBr,Cl,
CHBrCl,, C,HsBr and C,H,Br,) could be important source gases of stratospheric
bromine. Simultaneous observations of several of these bromocarbons and BrO in
the upper troposphere have been reported (Pfeilsticker et al., 2000), along with sev-
eral aircraft (Schauffler et al., 1993, 1998, 1999) and balloon (Kourtidis et al., 1996;
Pfeilsticker et al., 2000; Sturges et al., 2000) studies that have shown that these bro-
mocarbons are present at concentrations in the part per trillion by volume (pptv) range
and together are reported to contribute ~10-15% to the total organic bromine mea-
sured in the upper troposphere lower stratosphere (UTLS) region (Pfeilsticker et al.,
2000; Sturges et al., 2000). It has further been suggested that a fraction of the in-
organic bromine originating from the tropospheric breakdown of the same short lived
precursors can reach the stratosphere at concentrations that can affect ozone levels
(Dvortsov et al., 1999; Nielsen and Douglass, 2001; Pfeilsticker et al., 2000; Salawitch

703

ACPD
6, 701-754, 2006

Trends of THM and
DHM trace gases
from NGRIP firn air

D. R. Worton et al.

Title Page

Abstract | Introduction

Conclusions| References

Full Screen / Esc

Tables | Figures
| e
I

Back | Close |

Print Version |

Interactive Discussion |

EGU


http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/6/701/acpd-6-701_p.pdf
http://www.atmos-chem-phys.org/acpd/6/701/comments.php
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

et al., 2005).

Chloroform (CHCI,) is the second most abundant organic source of natural chlorine
to the atmosphere after methyl chloride and is an important source of tropospheric
chlorine. As such it has been one of the subjects of the Reactive Chlorine Emissions
Inventory (RCEI). CHCI; is only estimated to contribute ~2 Gg CHCls/yr or <10 pptv
(Keene et al., 1999; McCulloch, 2003) to stratospheric chlorine as a result of its short
tropospheric lifetime of 0.41 years (Ko et al., 2003) relative to other more persistent
chlorine containing source gases. CHCI, is degraded in the troposphere, through ox-
idation by OH, to phosgene (COCIl,) a small percentage of which reaches the strato-
sphere where it can participate in ozone destruction (Kindler et al., 1995). Chlorine
radicals derived from the atmospheric degradation of CHCI; can react with other or-
ganic gases, e.g., hydrocarbons and alkyl nitrates, in the troposphere similar to the
OH radical. This can affect the tropospheric lifetimes of these species as well as in-
fluencing the local atmospheric composition, especially in the polar regions. In the
case of hydrocarbons and alkyl nitrates the rates of reaction with chlorine radicals are
greatly enhanced over those of OH oxidation (IUPAC, 2002; Muthuramu et al., 1994,
and references therein).

The global tropospheric bromine loading has been reported to have peaked in 1998
and to have since declined by approximately 5% or ~0.8 ppt (Montzka et al., 2003).
However, this decrease is based on the sum of methyl bromide and the halons only
and is driven mainly by the reduction in atmospheric methyl bromide. The contributions
of other organic bromine containing gases are considered to have remained constant
as they are generally assumed to be almost entirely of natural origin.

Recently, Sturges et al. (2001) found no evidence for any significant temporal trends
in the southern hemisphere concentrations of these gases. There are currently no
published northern hemisphere trends of brominated trace gases as previous firn air
studies of these species and CH;Br at Devon Island, Canada (Sturges et al., 2001) and
CHgBr at Tunu, Greenland (Butler et al., 1999) resulted in the observation of anomalous
profiles within the firn that were interpreted as having been affected by post depositional
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In this work we present the first unperturbed firn profiles of four trihalomethanes
(CHBr3, CHBr,Cl, CHBrCl, and CHCI;) for the northern hemisphere from firn air col-
lected at NGRIP (North GReenland Icecore Project), Greenland. The anthropogenic
contribution to the CHClI; budget is assessed using a 2-D model and constrained using
firn air measurements from NGRIP, Dome C and DML. The implications for the budgets
of the other THM’s are also considered based on the observed variations in the NGRIP
firn air.

2. Sampling and analysis
2.1. Firn air measurements

Firn air samples were collected at NGRIP, Greenland (75.1° N, 42.4° W). Details of the
NGRIP site (Reeves et al., 2005), sampling (Schwander et al., 1993; Sturges et al.,
2001) and analytical methodologies (Fraser et al., 1999; Oram et al., 1995; Sturges et
al., 2001) have been given elsewhere. In brief, aliquots of the firn air samples (~400 ml)
were cryogenically concentrated using liquid argon, then desorbed and separated on
a DB-5 capillary column (J&W, 60 m) prior to detection by single ion mode mass spec-
trometry (Micromass Autospec) with detection limits of ~0.001 pptv.

2.2. Firn modelling

A firn physical transport model that accounts for gravitational fractionation and gaseous
diffusion (Rommelaere et al., 1997) was employed to interpolate atmospheric trends
into firn concentration depth profiles. The required tortuosity profile was determined by
inverse modelling of the CO,, profile (Fabre et al., 2000). Diffusion coefficients of other
molecules relative to CO, were estimated from Le Bas molecular volumes (Fuller et
al., 1966). Thermal fractionation effects were not included in the model.
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2.3. Atmospheric model

Temporal trends in atmospheric concentrations for the locations of the firn sites were
generated using a 2-D atmospheric chemistry transport model. Details of the model
are given in Reeves (2003). The model contains 18 equal area latitudinal bands and 6
vertical layers, each of 2.5km. The ocean component of the 2-D model was removed
as the lifetime of CHCI; with respect to loss to the ocean has been reported to be
insignificant (Kindler et al., 1995; Yvon-Lewis and Butler, 2002) relative to the ~0.41
year lifetime resulting from the reaction with OH (Ko et al., 2003). Other sink terms
including dry deposition and loss to soils were also removed as the reaction with OH
was considered to be the dominant loss process (Keene et al., 1999; McCulloch, 2003).
The stratospheric lifetime of CHCI; has been estimated at 3.18 years (Kindler et al.,
1995) and this was used to determine the diffusive loss term out of the uppermost layer
of the model.

3. Results and discussion
3.1. Firn depth profiles
3.1.1. CHCl;

Figure 1 shows the CHCI; measurements at four polar sites (NGRIP, DI, Dome C and
DML) plotted versus CFC-12 instead of depth. This is in order to give an axis that is
more linear with time and that allows comparisons between different sites (Sturges et
al., 2001) because CFC-12 is long lived and has increased in both hemispheres at the
same rate. The samples collected in the convective zones (i.e., effectively surface air)
are not included in the comparison plots (above 10m for NGRIP and Dome C, and
above 3 and 5m for DI and DML, respectively). There is excellent agreement between
the two arctic sites (NGRIP and DI) and between the two Antarctic sites (DML and
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Dome C). The plot would suggest that in the northern hemisphere the atmospheric
concentration of CHCI3 has increased by almost a factor of 2, from 7 to 14 pptv, before
declining in more recent times to around 10 pptv. CHCI; in the southern hemisphere
would also appear to have increased but not to the same degree with an increase
of ~2pptv. The maximum CHCI; concentrations occur at the 66.99 m sample depth,
which as will be shown later (Sect. 3.2) corresponds to a date of ~1990.

The major sink for atmospheric chloroform is from the reaction with OH (Keene et
al., 1999; McCulloch, 2003) and the global average concentration of these radicals
has been reported to have increased by ~15+22% between 1979 and 1989 and to
subsequently have decreased to levels in 2000 that were ~10+24% lower than those
in 1979 (Prinn et al., 2001). These findings are disputed due to reported continued
emissions of methyl chloroform, used to determine the OH trend, from Europe that call
into question the magnitude of the initial OH increase and the existence of a negative
trend during the 1990’s (Krol et al., 2003). These variations even if they are correct
are not only unlikely to be significant enough to explain the magnitude of the observed
variations but they are also in anti-phase to the observed changes in the CHCI; con-
centrations such that variations from OH driven changes in the atmospheric lifetime
cannot be responsible. It is also unlikely that the observed variations recorded in the
firn are due to changes in the natural fluxes from the oceans and soils as a result of the
relatively short timescales involved. Although, the perturbation of the natural source
fluxes by anthropogenic activities cannot be discounted, e.g., variations in soil based
emissions as a result of changing agricultural practices or increased oceanic emissions
resulting from human forced climatic changes.

3.1.2. Bromocarbons

Figure 2 shows the measured concentration depth profiles of CHBr;, CHBr,Cl,
CHBrCl,, CH,BrCl and CH,Br, derived from NGRIP firn air. The lines represent the
firn model outputs corresponding to constant atmospheric burdens over time (the sce-
narios in all cases begin in 1900). As a result of their OH and photolysis sinks (Ko et
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al., 2003) the concentrations in the shallow firn reflect the seasonal variations in at-
mospheric concentrations (Kaspers et al., 2004; Sturges et al., 2001). Essentially, the
summer firn drilling takes place when OH and photolysis levels are close to the peak
annual values and as a result the concentrations of these halocarbons species are at
a minimum. The gradients between the surface and 15 m reflect the atmospheric con-
centrations from the previous 6 months or so and as such show the variation between
the winter and summer concentrations. The scatter in the ambient (0 m) measurements
are the result of variations in the local meteorological conditions between sample col-
lections.

The modelled lines shown in Fig. 2 incorporate seasonal cycles for CHBr; and
CHBI,Cl, based on measurements from Alert, Canada (Yokouchi et al., 1996) and for
CH,Br, from measurements at Alert, Canada and Point Barrow, Alaska (Montzka, per-
sonal communication, 2005). As no seasonality for CHBrClI, in the polar regions was
available in the literature the same seasonality as for CHBr,Cl was assumed based
on similarities in their lifetimes (77 and 69 days, respectively) of these two species
(Ko et al., 2003). Yokouchi et al. (1996) reported no seasonal variation for CH,BrCI
at Alert and the NGRIP firn measurements show very little evidence for a seasonal
cycle, most likely reflecting its longer atmospheric lifetime (Ko et al., 2003). It appears
from these firn profiles that the annual mean atmospheric concentration of the CH,Br,
and CH,BrClI have been constant implying that non-natural sources are insignificant,
although for CH,BrClI the interpretation is complicated in the deepest firn by high con-
centrations that could be the result of post deposition effects. In contrast, it is evident
that an increase in the atmospheric concentrations of CHBr5, CHBr,Cl and CHBrCI,
are necessary in order to explain the observed behaviour in the deepest firn. The
similar nature of the observed changes in the deepest firn would implicate a similar
source driving the increases in the brominated THM concentrations. The large magni-
tude change in the CHCI; concentrations at NGRIP relative to the brominated THM’s
(Sect. 3.1.2) implies a different source is likely to be responsible for the observed vari-
ations in atmospheric CHCl;.
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Figure 3 shows the measurements of CHBr5, CHBr,Cl and CHBrClI, versus CFC-12
at NGRIP. As a result of the seasonally influenced concentrations the samples collected
in the shallow firn (<30 m) are not included in this plot and the remaining data have
been corrected for gravitational settling. The depth where the concentrations “level
off” can be dated at ~1992, based on the dates determined through the atmospheric
CHCI5; modelling (Sect. 3.2). It is important to note that the diffusion coefficients and
hence the diffusion rates for the various trace gases within the firn are distinct such that
the inferred age scale is only approximate.

3.2. Atmospheric modelling

The global CHCIl; emissions were separated into 5 major source terms; oceans, soils,
pulp and paper (P+P), water chlorination (WC) and other industrial processes (Ol).
Biomass burning is only considered to be a very minor component, <2 Gg CHCl5/yr
or <1% of the total annual emissions (Lobert et al., 1999), relative to the other natural
emissions and thus was not included.

3.2.1. Natural emissions and distributions

Natural emissions are reported to be significantly larger than anthropogenic releases
but are also far less constrained (Keene et al., 1999; McCulloch, 2003). The abso-
lute values for both ocean and soil emissions are based on measurements made by
Khalil et al. (1998, 1983) whose calibration scale for CHCI; has been shown, through
an intercomparison of measurements at Cape Meares (Khalil; 45° N, 124° W) (Khalil
and Rasmussen, 1999) and Trindad Head (AGAGE; 41° N, 124° W) (O’Doherty et al.,
2001), to over estimate CHCI; concentrations by a factor of ~2 relative to the Atmo-
spheric Lifetime Experiment/Global Atmospheric Gases Experiment/Advanced Global
Atmospheric Gases Experiment (ALE/GAGE/AGAGE) network. This factor is also likely
to be appropriate for comparisons to measurements made by the National Oceanic and
Aeronautical Administration — Climate Monitoring and Diagnostic Laboratory (NOAA-
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CMDL) flask sampling network, which have been shown to be in good agreement
(<5%) with the ALE/GAGE/AGAGE measurements (Cox et al., 2003; O’'Doherty et
al., 2001). Hence, it follows that the quoted emission values are also likely to be over-
estimates by the same factor such that the values used here are 180+45 and 100
+100/-50 Gg CHCl3/yr for oceans and soils, respectively, i.e., ~50% lower than those
values reported by Khalil et al. (1999).

As a result of the significant reported uncertainties in the natural emission magni-
tudes and a lack of information concerning the likely source distributions, the RCEI did
not attempt to estimate the latitudinal distribution. Nevertheless as part of the RCEI’s
work (Khalil et al., 1999) the ocean and soil emissions were constrained into 4 latitu-
dinal bands; 0-30°, 30—90° for each hemisphere. In order to incorporate the natural
emissions into our model it was necessary to estimate the distribution of the natural
sources on a finer scale (i.e., 18 latitudinal boxes). This was achieved by assuming
that the flux rates per unit area within these bands are uniformly distributed. The lat-
itudinal distribution of natural emissions from this very simple approach, from now on
referred to as ND1, is shown in Fig. 4.

A second approach was aimed at developing this first approximation into a more
smoothed distribution. This approach involved determining emission factors for the
ocean and soils based on their fractional global coverage (Gross, 1972), which was
used in conjunction with the assumption that the tropical oceans (<30°) are more pro-
ductive than the sub tropics (>30°) and that this relationship was linear with latitude,
i.e., increasing linearly towards the equator. This assumption is supported in essence
by the greater emissions reported at lower latitudes by Khalil et al. (1999), although
the linearity of the relationship is based on speculation only. For the soils, they were
assumed to cover all areas that were not classified as oceans by Gross (1972) and
the emission factor was assumed to be independent of latitude and thus constant for
the entire globe. This assumption is clearly limited since there are large differences
in soil and landscape types. Soil emissions from the most southerly box were set to
zero since the only land mass <60°S is Antarctica. However, due to the resolution of
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the model, it was not possible to assume the same for the most northerly box because
there is not a permanent icesheet covering all land masses >60° N.

To obtain a distribution that fitted within the constraints of all these parameters it was
necessary to use individual normalisation factors for both the oceans and the soils to
correct the calculated figures within each of the 4 larger semi hemispheric bands to
match those reported by Khalil et al. (1999). All of these applied normalisation factors
were 1.0+0.1 giving good confidence for the calculated figures and for comparisons
between the individual model boxes. It should be noted that the applied soil emission
factors >33°S, i.e. in the most southerly semi-hemisphere, are higher by a factor of
~2.6 than for all other latitudes. This appears to be necessary in order to match the
estimated emissions of Khalil et al. (1999) without requiring a large normalisation factor.
Since land accounts for only 0.2 to 7.4% of the surface area in these boxes, this has a
negligible effect on the overall budget. This distribution, from now referred to as ND2,
is shown in Fig. 4.

3.2.2. Anthropogenic distributions and trends

The source strengths and distribution of CHCI; from anthropogenic emissions are re-
portedly smaller, but far better constrained, relative to the natural emissions. As part of
the RCEI work a global 1°x1° grided inventory of anthropogenic CHCI; emissions was
produced based on 1990 estimates (Aucott et al., 1999). The 3 Gg CHClI5/yr emissions
resulting from combustion sources, landfills and ruminants were not included in the
grided inventory as they were considered to be too small to make a significant impact
(Aucott et al., 1999). As emissions were given as mass emission per square metre it
was necessary to multiply by the prescribed grid cell areas. These grid cell emissions
were averaged into the latitudinal bands of the 2-D model to give a latitudinally depen-
dent source distribution. The grided inventory suggests that ~93% of anthropogenic
emissions are emitted in the northern hemisphere.

In 1990, 51% of the grided anthropogenic emissions (34 Gg CHCI,/yr) were esti-
mated to originate from the manufacture of pulp and paper, 32% from the chlorination
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of drinking waters and the chlorination of cooling waters used in power plants (21 Gg
CHCIg/yr) and 17% from other industrial uses (11 Gg CHCI5/yr) (Aucott et al., 1999).

3.2.3. Anthropogenic trends

By assuming that all three anthropogenic source terms have identical global distribu-
tions allows us to separate them and consider their temporal evolutions independently.
As there are not any long term trends which describe the evolution of these source
emissions it was necessary to use surrogates in order to extrapolate their values to the
beginning of the 20th Century.

In the case of the pulp and paper industry the surrogate chosen was the global
trend in paper production and/or consumption (Fig. 5) determined from a 3rd order
polynomial fit to reported global figures for the period 1910-2002 (FAO, 2004; Paper-
loop, 2004; Robins and Roberts, 1996), with the greatest frequency of data occurring
post 1960. The more recent higher frequency datasets of the FAO (2004) and Paper-
loop (2004) are for paper production, whereas the longer trend of Robins and Roberts
(1996) is for paper consumption. There is good overlap between the three datasets,
which suggests that the differences between production and consumption are negligi-
ble in the interests of this approximation. Now by assuming that in 1990 the amount
of paper produced released the reported emissions of CHCI; facilitates the determi-
nation of an emission factor (145 g CHCl5 / ton of paper) that allows the extrapolation
of CHCI; emissions from the pulp and paper industry as a function of paper produc-
tion. This emission factor lies within the range of previous estimates (Aucott, 1997,
and references therein) and as such is consistent with previous calculations. In 1990,
~95% of the global bleached chemical pulp used molecular chlorine (AET, 2001) and
therefore the relationship between CHCI; emissions and paper production ought to be
close to 1:1 and in the pursuit of simplicity was assumed as such.

This surrogate was used to determine only the pre-1990 trend for the P+P industry
due to significant changes in the industry during the 1990’s (AET, 2001). The chang-
ing trends within the global industry are illustrated in Fig. 6, which shows that the
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percentage of global bleached chemical pulp production using elemental chlorine has
decreased by slightly more than a factor of 5, from ~95% in 1990 to ~17% in 2002,
and that the elemental chlorine free (ECF) and totally chlorine free (TCF) bleaching
methods have both increased over the same time frame, from 5% to 68% and 0.2%
to 6.5%, respectively (AET, 2001). These changing trends are reflected, for the United
States of America (USA) at least, by significant reductions (~86%) in the air emissions
of CHCI; from the P+P industry (USEPA, 2004). This declining trend was well approx-
imated (R2=0.98) by a 2nd order polynomial function, which was used in all further
calculations. The decline in the USA’s use of elemental chlorine in pulp production is
shown (Fig. 7) to be well correlated (R2=+O.74) with the global decrease (AET, 2001).
This correlation suggests that it is reasonable to assume that the observed decrease
in CHCI; emissions from the USA P+P industry (USEPA, 2004) also reflects what has
been occurring on a global scale. This is a reasonably quantitative assumption since
the USA’s P+P production has accounted for >30-60% of world production over the
last 40 years (Paperloop, 2004). These approximations were used to determine the de-
clining trend in CHCI; emissions from the global P+P industry for the period 1990-2002
and combined with the surrogate trend based on paper production and consumption
figures to give an estimation of the 20th Century emission history.

The global population was used as a surrogate for WC and Ol processes and was
based on the assumption that with an increasing population comes an increasing de-
mand and use of chlorinated drinking water and an increasing demand for electricity
and hence a likely increase in the amount of cooling water chlorinated for use in power
stations. The increasing global population is also likely to reflect the additional de-
mands of an industrialising society that are considered as part of the other industrial
processes by the RCEI. The global population has been used previously as a surrogate
for anthropogenic CHCI; emissions (Trudinger et al., 2004) and this trend was deter-
mined from population figures above the 1920 population, hence fixing a timeframe for
zero emissions. The chlorination of water began at the turn of the century and became
widespread by 1920 (AWWA, 2004) suggesting this was a reasonable approximation
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for zero emissions.

The global population trend was determined from data published by the United Na-
tions (UN, 2004) and the Population Reference Bureau (Ashford et al., 2004) with the
higher frequency data occurring post 1950. It was necessary to assume a linear growth
rate between 1900 and 1950 due to a lack of data. A surrogate global population trend
was devised by correcting to population figures above that of 1920. Now by assuming
that in 1990 the reported releases of CHCI; for the water chlorination and other indus-
trial processes categories were associated with the surrogate population at that time
allows the determination of emission factors, 6.28 and 3.34 Gg CHClIy/billion people for
water chlorination and other industrial processes, respectively. These emission factors
allow the determination of CHCI; emissions from these industries as a function of the
global population.

The temporal variations, over a 100 year period, for all source terms are shown
in Fig. 8, including the natural source emissions from oceans and soils which are pre-
dicted to have remained constant over this time frame. Also shown in Fig. 8 are dashed
lines relating to alternative temporal variations that will be described later in this sec-
tion. An inherent assumption with this approach is that the latitudinal distributions of all
source terms have remained constant with time.

3.2.4. Varying the soil source as function of population

To reconcile their modelling results, Trudinger et al. (2004) hypothesise that the soil
source may have increased with time as a result of agricultural interference. This is
supported by a recent report that suggests that the amount of land being cultivated
has increased substantially in recent times and that since 1940 the amount of land
turned over to agriculture was larger than in the two previous centuries combined (UN,
2005). However, the notion that cultivated soil emits more CHCI; than uncultivated
soils is one of speculation and there is no supporting evidence for this at the current
time.

To investigate the suggestion of an increasing soil source, the soil emissions were
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fixed at 100 Gg CHCI; for 1990 and extrapolated back to the beginning of the century
as a function of the global population in the same way as was performed for the WC
and Ol temporal variations. This trend is referred to from now on as the changing soll
source (ASS). The effect of constant soil and changing soil emissions are discussed
later.

It is apparent that a much smaller variation in the natural emissions (e.g., soils) would
be needed relative to any changes in the anthropogenic emissions to affect the same
magnitude change in the concentrations observed at the Antarctic sites, as a result of
the northern mid latitude bias of the anthropogenic distribution.

3.2.5. Varying the magnitude of anthropogenic emissions

The level of uncertainty associated with each of the anthropogenic source terms sug-
gest that these values could be up to a factor of 2 different for P+P emissions or up
to a factor of 5 different for WC and Ol emissions (Aucott, 1997). Therefore, all the
anthropogenic emissions were doubled, which resulted in a better approximation to the
NGRIP data (Fig. 9).

By using increasing population as a surrogate for anthropogenic emissions Trudinger
et al. (2004) had difficulties modelling the recent declining trend in atmospheric levels at
Cape Grim, Tasmania as observed from ALE/GAGE/AGAGE measurements such that
they suggested that the anthropogenic emissions were most likely to have increased
with population until 1990 before decreasing slightly contrary to the continued popu-
lation growth. Following this the WC, Ol and ASS trends, which are all based on the
same global population trend, were also modelled fixed at 1990 levels for all subse-
quent years. These alternative temporal variations are all shown in Fig. 8 as dashed
lines. The effect of this change is clearly illustrated in Fig. 9 where the observed declin-
ing trend resulting from the reduced emissions of the P+P industry are no longer offset
by the increasing emissions from the WC, Ol and soil processes. In the case of WC,
this condition is supported, for the USA at least, by a USA Geological Survey report
that would suggest that as much as the population has increased in the last 15 years
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the amount of water withdrawn from the distribution system has remained relatively
constant over the same period (USGS, 2004) due to water conservation measures.
There was no information on the likely recent changes in soil and Ol emissions.

It is also evident from Fig. 9 that the magnitude of the anthropogenic emissions
required to fully capture the maximum values observed in the NGRIP firn air measure-
ments still needs to be larger than double the reported values. The strong declining
trend in atmospheric CHCI; observed at NGRIP coupled with the proposed source
trends would suggest that only by further increasing the emissions from the P+P in-
dustry would it be possible to both model the maximum values observed in the firn
while still maintaining a good approximation to the observed decline in the firn between
60 m and the surface. Several runs were preformed to evaluate the sensitivity of the
model to increases in emissions from the P+P industry. During these model runs the
natural emissions were constrained at a constant value of 280 Gg CHClI5/yr throughout.
The WC and Ol emissions were constrained with the same population dependent time
trends and incorporating either constant values post 1990 or increasing values based
on the link to the global population, which allowed the two different trends to be com-
pared. The magnitude of the WC and Ol emissions were fixed at either the reported
values (Aucott et al., 1999) or at double these values dependent on the particular run.
The P+P emissions were varied between 3-5 times the value reported by Aucott et
al. (1999).

The various model outputs are shown in Fig. 10 where it is clear that too effectively
model the near surface concentrations the emissions from the WC and Ol industries
need to be double those reported in the literature effectively. P+P emissions between
~3—4 times the reported values would appear to be necessary to simulate the maxi-
mum CHCI; concentrations observed in the firn with the bias being towards the upper
end of this range. We are not alone in believing that the anthropogenic emissions
fluxes have been underestimated, Trudinger et al. (2004) also invoked an increase in
emissions from anthropogenic sources to model their firn air measurements although
our magnitude is smaller by comparison.
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The conclusions regarding the magnitude of the anthropogenic emissions are based
on the assumption that the magnitude of the natural emissions are correct. It should
be noted that although the uncertainties in the natural source terms are fairly large
the fact that the concentrations observed at the bottom of the firn at NGRIP where
natural emissions account for >90% of the total emissions coupled with the modelled
concentrations for Dome C and DML together suggest that the emission magnitudes
are reasonable. The values corresponding to the model outputs corresponding to the
increased anthropogenic emissions are shown as latitudinal variations for 1990 levels
compared against the natural emissions in order to illustrate the importance of the an-
thropogenic contribution to the total budget. The largest contribution is in the northern
hemisphere mid latitudes where this modelling would suggest that the anthropogenic
emissions strongly dominant over the natural emissions (Fig. 11).

3.2.6. Latitudinal variation of peak anthropogenic emissions

In order to model the sensitivity of the location of the latitudinal maximum peak in the
anthropogenic emissions the peak of the emissions was moved north and south while
keeping the total emissions constant. The result is four different latitudinal distributions
shown in Fig. 12. The base case scenario used to test these latitudinal distributions
was with constant natural emissions, double the reported WC and Ol emissions (Aucott
et al., 1999) with constant values between 1990-2002 and treble the reported P+P
emissions (Aucott et al., 1999). As might be expected the location of the maximum
peak in the anthropogenic distribution has less effect on the modelled trends at sites
that are far removed from the northern mid latitudes, i.e., DML and Dome C. At NGRIP
(Fig. 13) the dependency is the largest and the concentrations vary by <+7.6/-7.1 %
between peak emissions in box 2 and boxes 1 and 4, respectively. This approach
also simulates a difference in transport rates, e.g., moving the maximum peak north
simulates a more northerly bias in the transport and vice versa, that perhaps is not
captured as a result of the parameterisation of the transport scheme within the 2-D
model.
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It is likely that the anthropogenic distribution used in this work is reasonably accu-
rate since, for the majority of the anthropogenic emissions, the RCEI used the reported
addresses of CHCI; emitting facilities to create their grided inventory. The largest un-
certainty associated with the conversion of the RCEI grided inventory into the 2-D
model is from the pulp and paper emissions from China and Russia. The location of
their pulp and paper plants are not known accurately since they are not listed in the In-
ternational Phillips’ 1997 Paper Directory (Miller Freeman Information Services 1996),
which was used by Aucott et al. (1999) to locate facilities in other parts of the world.
Instead, the emissions for China and Russia were re-distributed based on population
density (Aucott et al., 1999). In the case of China, this issue is complicated because
its geographical location straddles two of the model boxes. However, the effects are
likely to be small as China is responsible for <10% of global pulp and paper production
(Johnston, 1996).

3.2.7. Varying anthropogenic emissions

The closest fitting model trends are shown for NGRIP, Dome C and DML in Fig. 14.
There are four best fit trends that correspond to slightly different emission scenarios,
as defined in the figure legends. At 1990 levels, the emissions for all four scenarios
equate to oceanic emissions of 180 Gg CHClI;, soil emissions of 100 Gg CHCI; and to-
tal anthropogenic emissions of ~160-190 Gg CHCI;. These anthropogenic emissions
are significantly larger than the estimated 66 Gg CHClI; reported by the RCEI (Aucott et
al., 1999) and arise as a result of doubling the emissions from WC and Ol and tripling
or quadrupling those from the P+P industry. These increases were necessary in order
to capture the magnitude of the variation observed within the firn air at NGRIP. Invoking
more northerly transport would slightly reduce the estimated magnitude of the these
emissions.

The modelling strongly suggests that the reported anthropogenic emission estimates
are underestimated, especially for the P+P industry. The incorporated values for the
WC and Ol industries are within the described uncertainties of between a factor of 2
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and 5 (Aucott, 1997). However, the emission values used for the pulp and paper indus-
try are outside the described uncertainties of a factor of 2 (Aucott, 1997). This would
suggest that the defined emission factors used to extrapolate the global emissions are
inaccurate and need to be re-evaluated.

The four determined best fit trends model the maximum measured values at NGRIP
reasonably well within the uncertainties associated with both the measurements and
the model, although the values at the bottom of the firn are slightly over predicted in all
but one of the modelled scenarios (Fig. 14). The same three trends which over predict
the deepest firn at NGRIP also slightly over predict the absolute values observed from
the Dome C and DML firn data, although the general trends are well simulated. An
anthropogenic perturbation of the soil source cannot be ruled out and through the
modification of the soil source, referred to as ASS, an improved fit to the southern
hemisphere firn air could be obtained. In the absence of a varying soil source the over
predicted values for the southern hemisphere firn air suggest that the estimations of
the reported oceanic and soil based emissions could be slight over estimated.

The contribution of anthropogenic sources to the total global CHCIl; emissions at the
peak in 1990 was likely to have been ~40% (Table 1) and is strongly dependent on
exactly which values are chosen for the natural and anthropogenic emissions. What is
clear is that this value is significantly larger than the ~10-12% previously reported by
Khalil et al. (1999) and McCulloch (2003) and slightly lower than the ~60% estimated
by Trudinger et al. (2004). This contribution declines between 1990 and 2001 as a
result of the reduced emissions from the P+P industry but is still predicted to be ~19%
in 2001 (Table 1).

However, it is likely that the anthropogenic contribution is actually slightly higher
than these values since to improve the model fits at all three firn sites would involve
slightly lowering the natural and slightly increasing the anthropogenic emissions. The
atmospheric lifetime for CHCI; determined from the model was 0.4+0.01 years, which
is consistent with that recently reported by Ko et al. (2003). The total CHCI; emissions
associated with the best fit scenarios discussed above were ~440-480 Gg CHCl,/yr at
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the maximum peak in atmospheric levels around 1990, declining to ~340 Gg CHCl3/yr
by 2001, which are both within 20% of the reported modelled OH sink of 410 Gg Cl/yr
for 1990 (Keene et al., 1999; McCulloch, 2003).

The absolute values for the global and hemispheric averages, corresponding to the
scenario incorporating a ASS and P+P emissions 3 times those reported by Aucott
et al. (1999), suggest a global background of ~5.4 pptv around the turn of the century
(Fig. 15). This is higher than the ~4 pptv southern hemisphere background predicted
by Trudinger et al. (2004), although it is important to take into account the much lower
resolution of their model and that their value is more likely to be representative of
southern polar latitudes. The average global concentration between 1994-1998 is
10.2 pptv, which is higher than the 8.9+0.1 pptv reported by O’Doherty et al. (2001).
The rate of decline, —0.29 pptv/yr, during this period is slightly outside the errors of
the estimated decrease during the same period reported by O’Doherty et al. (2001).
These would suggest that there are still some uncertainties with the results and budget
implications of this modelling. The over estimates in the southern hemisphere that
result by assuming constant natural emissions over the time frame of the modelling
suggest that the absolute magnitude of the natural emissions could be slightly lower
than those incorporated within the model.

3.3. Pulp and paper production versus water chlorination

The difference between CHCI; and the other brominated THM modelled trends
(Sect. 3.1) would suggest that the major cause of the observed variation in the CHCl;
concentrations at NGRIP does not result in significant brominated THM production.
During both the processing of pulp and paper and through water chlorination, the added
chlorine reacts with organic material through classic haloform reactions (Ballschmiter,
2003) to form principally CHCI;, but in the presence of bromide the other brominated
THM are also observed to be produced (Cooper et al., 1985; Rook, 1974; Rook et al.,
1978). The major differences between these two industrial processes are the avail-
ability of bromide, which has been shown to directly effect the speciation of THM by-
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products (Cooper et al., 1985; Richardson et al., 2003; Rook, 1974; Rook et al., 1978)
and the amount of organic material that is present in the reaction system.

It is possible to make an estimation of the available pools of organic bromine that are
present during pulp and paper production and water chlorination processes. The total
water chlorinated globally has been estimated to be ~3.8x10™ litres/yr of which ~40%
was inland source water, i.e., river water, and the remainder was coastal in origin, i.e.,
seawater (Quack and Wallace, 2003, and references therein). The reported concen-
trations of bromide in non-seawaters are shown in Table 2, which give a range of upper
limit values for the potential formation of brominated organics assuming that all the
bromide present reacts with the organic material. An estimate of the average chloride
content in surface and ground waters is also shown in Table 2 for comparison. The
concentration of bromide in average composition seawater has been estimated to be
67.4mg/l (Libes, 1992). Using these figures the total organic bromine that could result
from the chlorination of drinking and cooling waters is ~1 5x10™ grams/yr dependent
on the concentration of bromide in the inland source water.

In 1990, around the time of the observed maximum peak in reconstructed atmo-
spheric CHCl,, it has been estimated that, globally, 6.27x10' kg of bleached chemical
pulp was produced through the use of elemental chlorine (AET, 2001). The average
bromide content of a variety of tropical and temperate woods are shown in Table 3. An
estimate of the average chloride content in tropical and temperate woods is also shown
in Table 3 for comparison. Using these figures the total organic bromine that could
result from the production of pulp and paper is between 4.1 x10°-6.2x10° grams/yr,
depending on the whether the wood being processed is temperate or tropical in origin.

These are only approximate figures and assume that all available bromide reacts
with the available organic matter. However, they suggest that water chlorination has a
much larger pool (6—8 orders of magnitude) of bromide and hence a greater potential to
produce brominated organics, such as the brominated THM’s, relative to the production
of pulp and paper.

The much lower availability of bromine during the processing of pulp and paper rela-
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tive to water chlorination would imply that THM by-production from this process is sig-
nificantly biased towards CHCI; formation. The difference in available bromide provides
an explanation for the observed differences in the firn air measurements at NGRIP be-
tween CHCI; and the other brominated THM species, which are most likely formed
as by-products in water chlorination. Following the higher bromide concentrations in
seawater it is also logical to conclude that when the source water to be chlorinated is
marine derived the speciation of THM are likely to be more biased towards the bromine
containing species. This suggestion is supported by larger estimates of CHBr; produc-
tion from coastal power plants relative to inland ones (Quack and Wallace, 2003) and
with observations of high concentrations of CHBr,Cl, CHBrCl, and CHBr; around sea-
water cooled power plants (Allonier et al., 1999; Jenner et al., 1997).

3.4. Implications for the THM budgets

The concentration depth profiles of the brominated THM, as shown earlier (Figs. 2
and 3), would imply that their atmospheric burdens have increased during the 20th
Century. As has been described for CHCI; (Sect. 3.1.1) the reported variations in OH
cannot account for the observed concentration variations in the firn. It also seems
unlikely that natural variations in solar radiation would have declined significantly over
the last 50 years or so to account for the increases in these species considering the
timescale involved.

As part of work reported by the WMO in the 2002 report the atmospheric removal
rates were estimated for the brominated THM'’s (Table 4) by dividing the global average
burden by the global average lifetime (Ko et al., 2003). The global average burden
was determined by deriving an expression based on the median boundary layer mixing
ratios determined during the TRACE-P, PEM tropics A and B campaigns coupled with
the estimated altitudinal profiles (Ko et al., 2003). This expression assumed that re-
moval in the stratosphere was negligible and that the atmospheric lifetime was uniform
throughout the troposphere. In order to estimate the emission fluxes in the northern
hemisphere only, the species were assumed to be in steady state such that the annual
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emission flux was equivalent to the annual removal rate and the value was halved. The
uncertainty, shown in Table 4, reflects both the range in the estimated removal rates
resulting from the different median mixing ratios and the ranges in these mixing ratios
used to determine the atmospheric burdens (Ko et al., 2003). It does not include any
uncertainty in the average global atmospheric lifetime.

It was possible to estimate the increase in fluxes for the three brominated THM’s as
a function of the observed increases from the NGRIP firn air measurements. This as-
sumes that the concentrations at NGRIP are representative of the northern hemisphere
such that the observed increases in the firn can be directly related to corresponding
increases in the annual northern hemispheric fluxes. Between the bottom of the firn
and the depth (~60 m) where the concentrations are observed to “level off” the concen-
trations of CHBr5, CHBr,Cl and CHBrCI, are observed to increase by ~20% (Table 5),
which would suggest similar percentage increases in the annual fluxes reflecting the
contribution from anthropogenic sources (Table 5). This depth interval in the NGRIP
firn represents approximately 40 years of history (~1950-1990) according to dating
based on the modelled and measured atmospheric evolution of CFC-12 (Sturges et
al., 2001). The estimated uncertainty, shown in Table 5, reflects the likely errors in
determining the observed increases in the firn between the close off and 60 m.

CHBr5 has been reported to contribute ~95% (Allonier et al., 1999; Jenner et al.,
1997) to the total THM’s measured in coastal power plant effluent such that this is re-
ported to be the dominant source of anthropogenic CHBr5 (Quack and Wallace, 2003).
As a result the contribution of the other brominated THM’s (CHBr,Cl and CHBrCI,) are
much smaller and this difference may account for the much smaller estimated fluxes
of these species relative to CHBr5 (Table 5). This is in agreement with the observa-
tions of CHBr,Cl and CHBrCI, being present at concentrations approximately 4—7% of
CHBr5 in a variety of coastal power plant effluents (Allonier et al., 1999; Jenner et al.,
1997). Interestingly, the estimated fluxes of CHBr,Cl and CHBrCI, (Table 5) are ~4%
of the CHBr3 flux, which would support the source of these species being the result of
seawater chlorination.
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The total global emission of bromoform from both fresh and sea water chlorination
has been estimated to be ~28 Gg Br yr'1 (Quack and Wallace, 2003) with the majority
(~90%) being from sea water chlorination used in coastal power stations. Estimates
of the hemispheric distribution of electricity production (WRI, 2004) would suggest that
>90% of these emissions (~25 Gg Br yr‘1) are likely to be located in the northern hemi-
sphere, which considering the associated uncertainties results in good agreement to
the 20 Gg Br yr'1 estimated from this work (Table 5). Gschwend et al. (1985) reported
the total organobromines estimated to result from water chlorination to be 4.6 Gg Br
yr'1, which was considerably lower especially considering that it also includes emis-
sions of other bromine containing gases. The most significant difference between the
estimates of Quack and Wallace (2003) and Gschwend et al. (1985) is that Quack and
Wallace (2003) report that the chlorination of seawater is by far the larger source of
CHBr3; (~90%) whereas Gschwend et al. (1985) estimated that freshwater chlorination
produces an order of magnitude more organobromines than seawater chlorination. Our
results show that, in the case of bromoform at least, seawater chlorination far outweighs
freshwater as an anthropogenic source of bromoform, and the small apparent atmo-
spheric fluxes of the bromochloromethanes, which are believed to exceed emissions
of bromoform in freshwater chlorination (Lepine and Archambault, 1992), also argues
against a significant impact of freshwater chlorination on observed atmospheric THM
concentrations.

Another consideration is that, due to its location (~75° N) and the modelled transport
pathways (Kahl et al., 1997), the concentration increase observed at NGRIP could be
more representative of only the northern most semi hemisphere (30-90° N) as opposed
to the whole of the northern hemisphere. This suggests that the concentration increase
in CHBr3 in the firn would be representative of only emissions that are emitted into
these latitudinal bands where they are likely to be subjected to a longer lifetime than
tropical emissions (<30° N) but that are also effectively emitted into a smaller volume.
The increased lifetime and the reduced dilution factor act in opposing directions such
that they could arguably cancel each other out, which would suggest that the estimated
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anthropogenic flux from this work could still be a good approximation. Interestingly, the
absolute magnitude of CHBr5 and CHBr,Cl concentrations at NGRIP are reasonably
comparable to the concentrations detected during the TRACE-P and the PEM tropics
A and B campaigns (Blake et al., 1999a, b, 2001, 2003) that were used to determine
the global burden (Ko et al., 2003).

The estimated anthropogenic fluxes for the brominated THM’s suggest, assuming
they are entirely the result of seawater chlorination, that seawater chlorination is a sig-
nificant atmospheric source of these species accounting for ~10% of the estimated
global fluxes (Ko et al., 2003). However, these anthropogenic fluxes are less significant
when compared to the estimated natural flux of ~800Gg Br yr‘1 reported by Quack
and Wallace (2003). Since there appears to be a measurable rise in concentrations
at NGRIP this suggests that if the global flux were to be much larger than that esti-
mated in the WMO 2002 report, then the estimated anthropogenic flux might also be
proportionately larger. Conversely, if much of the global flux were located in the tropics
then it might be, as a result of the shorter lifetime of CHBr; within the tropics, that the
observations at NGRIP are relatively insensitive to the magnitude of such a flux.

4. Summary

We have presented polar firn air data for CHCI; from both hemispheres that shows
excellent agreement between sites in the same hemisphere and also evidence for
changes in the CHCI; burden over the last century, with the greatest variations occur-
ring in the northern hemisphere. With the aid of 2-D atmospheric chemistry model we
have shown that the contribution of anthropogenic emissions to the total global CHCl;
budget was previously been underestimated and was likely to have been as high as
~40% at the maximum peak in atmospheric CHCI; concentrations in 1990. Our re-
sults also suggest that the soil source may not have been constant over time and could
have been increasing over the 20th Century possibly as a result of agricultural inter-
ference. The 2-D model results indicate that anthropogenic sources dominate over
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natural emissions >20° N and suggest that the global CHCI; concentration has dou-
bled over the last century. From NGRIP firn air we have shown measurements of 5
brominated species (CHBr5;, CHBr,Cl, CHBrCl,, CH,Br, and CH,BrCl) and with the
aid of firn diffusion model have shown that while CH,Br, is entirely of natural origin the
brominated THM’s show evidence for increases in their atmospheric burdens over the
20th Century, which would appear to be predominantly the result of the chlorination
of seawater used as cooling water in coastal power stations contributing ~10% to the
global budgets.
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Water Type [CI"'Img/l  [Br ] mg/l References
Ground 25 0.12 Luong et al. (1983)
Surface 35 0.15

Non-Seawater - <2 Richardson et al. (2003)
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Table 3. Mean halide contents of tropical and temperate wood.
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Wood Type [ClI"]mg kg_1 Dry Wt [Br'lmg kg_1 Dry wit.

Abstract | Introduction

Tropical 254 3.7, <10°
Temperate 109 0.07

Conclusions| References

& Watling and Harper (1998).
b Lee-Taylor and Holland (2000).
¢ Harper (personal communication, 2005).
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Table 4. Estimated lifetimes, removal rates/emission fluxes and associated uncertainties for
the three brominated THM in the northern hemisphere only (adapted from Ko et al., 2003).

Species Lifetime Estimated Removal Uncertainty in Estimated

(years) Rate/Emission Flux Removal Rate/Emission
Average, [Range] (Gg Br yr'1) Flux (%)
CHBrg 0.07 100, [75—-125] 55
CHBr,Cl 0.19 4.1, [2.1-6.0] 66
CHBrCl, 0.21 3.3, [3.1-3.5] 35
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Table 5. Average observed increases in the brominated THM’s from NGRIP firn air mea-
surements, the associated uncertainties and the estimated anthropogenic fluxes based on the
observed increases.

Species Average Observed Estimated Anthropogenic Flux

Increase (%) (GgBryr)

CHBry 20 20+6
CHBr,Cl 19 0.78+0.17
CHBrCl, 22 0.71+£0.10
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Fig. 2. Depth profiles of the brominated THM and DHM in firn air from NGRIP (symbols).
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where appropriate, are also shown.
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Fig. 5. The reported global trend in paper production/consumption during the 20th Century and
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the NGRIP firn air measurements of CHCl;.
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Fig. 10. A comparison of the effect of varying the magnitude of the various independent an-
thropogenic source components relative to the NGRIP firn air measurements of CHCIj;.
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Fig. 11. A comparison of the latitudinal distribution of the increased magnitude anthropogenic
emissions relative to the distribution of natural emissions.
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Fig. 12. The four various anthropogenic distributions used to demonstrate the sensitivity of the
model to slight shifts in the location of the maximum emissions.
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Depth (m)

Fig. 13. A comparison of the effect on the model output at NGRIP for the four anthropogenic
distributions shown in Fig. 12.
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Fig. 14. A comparison of the effect of varying the magnitude of the anthropogenic and soil
sources on the model fit relative to the NGRIP, Dome C and DML firn air measurements of
CHCl,.
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Fig. 15. The best fit modelled global and hemispheric atmospheric evolutions of CHCI; during

the 20th Century.
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