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Abstract

Measured Fluxes of nitrous acid at Browning Pass, Antarctica were very low, despite

conditions that are generally understood as favorable for HONO emissions, including:

acidic snow surfaces, an abundance of NO
−

3
anions in the snow surface, and abundant

UV light for NO
−

3
photolysis. Photochemical modeling suggests noon time HONO fluxes5

of 5–10 nmol m
−2

h
−1

; the measured fluxes, however, were close to zero throughout

the campaign. The analysis of soluble mineral ions in snow reveals that the NO
−

3
ion

is probably present in aged snows as NaNO3. This is peculiar to our study site, and

we suggest that this may affect the photochemical reactivity of NO
−

3
, by preventing

the release of products, or providing a reactive medium for newly formed HONO. In10

fresh snow, the NO
−

3
ion is probably present as dissolved or adsorbed HNO3 and yet,

no HONO emissions were observed. We speculate that HONO formation from NO
−

3
photolysis may involve electron transfer reactions of NO2 from photosensitized organics

and that fresh snows at our site had insufficient concentrations of adequate organic

compounds to favor this reaction.15

1. Introduction

The production of gas phase HONO from snow surfaces is generally understood to

proceed through a mechanism similar to that of NOx starting by the photolysis of NO
−

3
in the snow surface (Honrath et al., 2000), analogous to reactions in liquid phase (Mack

and Bolton, 1999). Fluxes were quantified above snow surfaces at Alert, Nunavut as20

ca. 40 nmol m
−2

h
−1

(Zhou et al., 2001), and 5–10 nmol m
−2

h
−1

at Summit Greenland

(Honrath et al., 2002) (both noon-time maximum values). The absence of measur-

able HONO fluxes in the marine Arctic at Ny-Ålesund, Svalbard was assigned to an

alkaline snow surface, which prevented the emission of HONO (Beine et al., 2003).

However, in fresh, acidic snow in ozone depleted airmasses, HONO emissions of up25

to 60 nmol m
−2

h
−1

were found at Ny-Ålesund (Amoroso et al., 2005). The impor-

616

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/6/615/acpd-6-615_p.pdf
http://www.atmos-chem-phys.org/acpd/6/615/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 615–648, 2006

Small Antarctic

HONO emissions

H. J. Beine et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

tance of the surface snow pH was shown again in the Italian Apennines, where up

to 120 nmol m
−2

h
−1

HONO were deposited on to snow surfaces that were rendered

alkaline by Saharan dust deposition (Beine et al., 2005).

We measured HONO fluxes, snow chemical composition and snow optical proper-

ties at Browning Pass, Antarctica; a site close to the Ross Sea. All observed condi-5

tions were generally favorable for HONO emissions, yet we observed fluxes larger than

5 nmol m
−2

h
−1

only on two short occasions under very specific local air flow conditions.

This paper discusses the surprisingly low HONO emissions.

2. Experimental

Measurements were carried out at Browning Pass (74
◦
36.915

′
S, 163

◦
56.487

′
E)10

(Fig. 1), which is located 10.1 km from the Italian coastal Antarctic station “Mario Zuc-

chelli” (formerly Terra Nova Bay). The site does not receive direct sea spray, and

is, during the rare katabatic flow from the Boomerang and Campbell glaciers some-

what removed meteorologically from marine influences by the Northern Foothills (up to

1000 m altitude); however, the marine influence is prevailing. At this field site, which15

was accessed by helicopter daily, we measured HONO fluxes, chemical and optical

snow properties between 9 November (DOY 314) and 28 (DOY 333), 2004.

2.1. HONO Fluxes

Fluxes of HONO were derived from independent chemical measurements of HONO

at two sampling heights above the snow surface (25 and 150 cm) and simultaneous20

temperature and wind speed measurements at the same heights. The glacier was

reasonably flat for a radius of hundreds of meters in all directions. The snow surface

showed alternating outcropping hard windpacks and softer layers, and steps between

these two types of snow could reach 30 cm. The large snowfall of 17–18 November

temporarily smoothed the snow surface. The only obstruction to the local windfield25

617

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/6/615/acpd-6-615_p.pdf
http://www.atmos-chem-phys.org/acpd/6/615/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 615–648, 2006

Small Antarctic

HONO emissions

H. J. Beine et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

were our instrument containers, which were located ca. 20 m from the sampling site,

perpendicular to the prevailing wind directions, which were SSW and NE, roughly par-

allel to the glacier.

We sampled HONO at 25 and 150 cm above the snow surface, using two indepen-

dent 2.5 cm (I.D.) light-shielded inlet lines of 15 m length at flow rates of 13 L min
−1

to5

feed the sample into the container where the instrument was placed. The samples

were taken from this flow through ca. 50 cm of 1.58 mm (I.D.) tubing at 3 L min
−1

. The

total residence time in the inlet lines was ca. 8.5 s. Both inlet lines were identical, and

no null-gradients between the two inlets were detected.

The details of our measurement technique are discussed in Beine et al. (2005) and10

Amoroso et al. (2005); briefly; gaseous HONO was trapped quantitatively in a 10-turn

glass coil sampler using 1-mM phosphate buffer. The scrubbing solution was then

derivatized with sulfanilamine (SA)/N-(1-naphtyl)-ethylendiamine (NED), subsequently

analyzed using high-performance liquid chromatography (HPLC), and detected by UV-

vis absorption. Typical operation conditions were: sample flow: 3 L min
−1

, solution15

flow: 0.2 mL min
−1

, derivatization conditions: 5 min at 45
◦
C; HPLC: loop: 300 mL C18

reverse phase column (Varian), eluent: 20% acetonitrile in 15 mM HCl.

To characterize the surface-atmosphere interaction and to determine the turbulent

fluxes we used a UVW tri-propeller anemometer (Gill, model 200-27005), which mea-

sured the three orthogonal wind vectors at 1 Hz sampling frequency. Fluxes were com-20

puted using the eddy covariance technique in the post processing. Additionally, profile

measurements of air temperatures and wind speeds were performed to be able to com-

pute fluxes of chemical species. The instrument was set up ca. 10 m from the chemical

measurements. The derivation of HONO fluxes from this mixed eddy covariance and

gradient technique is fully described in Beine et al. (2003, 2005).25

The mechanical tri-propeller was calibrated against 3-D sonic anemometers under

various field conditions; offsets are taken into account in the computational procedures.

The use of a mechanical device introduces a threshold wind speed (0.25 m s
−1

). Con-

sequently a detection limit for the observed HONO flux does not depend on the de-
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tection limit of the chemical HONO measurements alone. The 3σ detection limit for

the individual HONO measurement was <0.5 pmol mol
−1

. In the simplest approach we

use this value also for the minimum detectable ∆HONO (=[HONOdown] – [HONOup]). Two

chemical samples were taken at the same time, and analyzed over a 10-min period;

the fluxes were calculated for 10-min envelopes around this time of sampling. At the5

threshold wind speed the minimum ∆HONO translates into a minimum observable flux of

ca. 0.3 nmol m
−2

h
−1

(0.33 nmol m
−2

h
−1

to 0.28 nmol m
−2

h
−1

under neutral conditions

between −40
◦
C and 0

◦
C).

At mixing ratios above the 10σ quantification level (1.6 pmol mol
−1

) the error is

ca. 30%. The error attached to the flux gradient method was estimated through a10

comparison of sensible heat fluxes measured by the tri-propeller and a fast temper-

ature sensor and analysis by eddy covariance and gradient flux calculations. The

mean relative error between these two techniques was around 15%. Because both

air temperatures and HONO mixing ratios are scalars, we can assume that the flux of

a generic scalar variable in similar atmospheric conditions shows similar errors. Using15

the HONO data as if they were available at 1 Hz, we can calculate an error using eddy

covariance theory; such a (hypothetical) error would come to 35%. Taking into account

the difference between the eddy covariance and gradient flux techniques, our HONO

fluxes generated by the gradient flux theory have a (mean) total error on the order of

50%.20

2.2. Snow optical properties

The optical properties (scattering and absorption cross sections) of the Antarctica

snowpacks found at Browning Pass were determined by an experimental and mod-

eling method we have used previously in mid-latitude snowpacks (Fisher et al., 2005),

and sea ice (King et al., 2005), where details can be found. The modeling was originally25

described in Lee-Taylor and Madronich (2002). Briefly, the optical properties of a snow-

pack can be defined and constrained by measuring the wavelength-resolved albedo

and the wavelength-resolved transmission of light through snowpack. The transmis-
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sion measurements are made at a series of depths below a starting depth a few cen-

timeters below the surface of the snowpack where the optical e-folding depth, ε, is

constant and only very weakly dependent on the solar zenith angle. (The optical prop-

erties of snowpacks are described well by Lee-Taylor and Madronich, 2002; Warren,

1982; King and Simpson, 2002; Simpson et al., 2002). The albedos of the snowpack5

were measured using a GER1500 spectrometer (λ=300–1000 nm) and measured rel-

ative to a reflectance standard under identical light conditions. The e-folding depth of

the snowpack (the depth of snowpack to reduce the light intensity by 1/e of its initial

value) was measured by probing the snow with a flat plate irradiance probe connected

to a spectrometer (λ=280–449 nm) at different depths within the snowpack. During10

the transmission measurement any changes in the downwelling irradiance were mea-

sured by the GER1500 fitted with a cosine collector. The downwelling atmospheric

flat-plate irradiance was measured throughout the campaign by the GER1500 fitted

with a cosine corrector every 1–5 min (more technical information on the GER1500

and the spectrometer used to sample irradiance in the snow can be found in Fisher et15

al., 2005).

2.3. Snow sampling and analysis

Snow was sampled and analyzed in a manner essentially similar to that described

by Dominé et al. (2002, 2004) for physical measurements. Polyethylene gloves were

used to avoid contamination, and snow was sampled into polyethylene sampling vials.20

For each snow layer, two sets of triplicate samples were taken for anions and cations,

respectively. Samples were usually melted and analyzed on site by ion chromatography

within 12 h of sampling, and in a few cases were stored frozen for up to 48 h before

analysis.

Melted snow was analyzed by ion chromatography (Dionex IC mod. DX120 and25

DX100) using Dionex AS12 and CS12 columns for anions and cations, respectively,

as detailed in Allegrini et al. (1999) and Domine et al. (2004). The 3σ limit of detection
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was between 0.01µeq (for NO
−

3
) and 0.50µeq (for Ca

2+
). It was 0.04µeq for Na

+
.

3. Photochemistry and photochemical model

3.1. Photochemistry of the nitrate ion in the snowpack

The aim of the optical measurements of the snowpack was to calculate the photolysis

rate, J(NO
−

3
) of nitrate in the snowpack and to estimate the expected molecular fluxes of5

gas-phase NO2 and HONO from the snowpack. The photolysis of nitrate in the snow-

pack can lead to gas phase nitrogen dioxide production or formation of nitrite, NO
−

2
,

(Chu and Anastasio, 2003; Cotter et al., 2003; Domine and Shepson, 2002; Dubowski

et al., 2001, 2002; Couch et al., 2000; Dubowski and Hoffmann, 2000; Honrath et al.,

2000):10

NO−

3
+ hν → NO2 + O− (R1)

NO−

3
+ hν → NO−

2
+ O (R2)

The resulting radical oxygen anion will form the hydroxyl radical,

O−
+ H3O+

→ OH + H2O. (R3)

The source of HONO in the snowpack is probably from one or more of the following15

three sources:

1) Photo production of nitrite, NO
−

2
, from nitrate photolysis in snowpack. The nitrite

is protonated and desorbs from the snow grains as HONO.

NO−

2
+ H3O+

→ HONO + H2O (R4)

2) Recombination of OH and NO radical within the snowpack (Mack and Bolton,20

1999).

NO + OH → HONO (R5)
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The sources of NO may be the photolysis of nitrite that is more photolabile than nitrate

under natural sunlight. The source of OH radicals can be the photolysis of nitrate and

hydrogen peroxide. The photolysis of H2O2 may be a more efficient production route to

produce OH radicals than nitrate depending on the concentrations of H2O2 and nitrate

within the snowpack, (Chu and Anastasio, 2005).5

NO−

2
+ hν → NO + O− (R6)

3) Electron transfer reactions from photosensitized phenoxy groups in organic mat-

ter to NO2. This mechanism has been demonstrated by George et al. (2005) on the

surface of organic aerosols during laboratory experiments, but not on ice surfaces.

In Antarctic snow, the importance of this pathway remains speculative, but it could10

possibly take place on organic aerosols that are known to exist in Antarctic snow

(e.g. Cincinelli et al., 2001), or possibly on sea salt or ice surfaces with adsorbed or-

ganic photosensitizers.

These mechanisms (1–3) all require nitrogen oxides and the sources of these nitro-

gen oxides is thought to be the photolysis of nitrate. Thus, we consider the photolysis15

of nitrate to produce nitrogen dioxide as a measure of snowpack photochemistry, and

photolysis of nitrate to produce nitrite as an estimation of the upper limit of HONO pro-

duction. The estimate of the flux of HONO from the snowpack is an upper limit because

the conversion of nitrite on the snowpack to gaseous HONO is probably not 100% effi-

cient and because HONO may undergo reactions in the snowpack before being emitted20

to the atmosphere.

3.2. Calculating photolysis rates

The photolysis frequency for Reaction (R1) is estimated from a coupled atmosphere-

snow radiative-transfer model, TUV-snow, (Lee-Taylor and Madronich, 2002). The

model requires knowledge of the optical properties of the snowpack (the scattering25

and absorption cross-sections), the concentration of nitrate in the snowpack and down-

welling irradiance on the snowpack. The cross sections for scattering and absorption
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are derived from the measured light transmission (e-folding depth, ε) and albedo of the

snowpack measured at Browning pass. The model is described fully in Lee-Taylor and

Madronich (2002) and will only be described very briefly here. The model treats the

optical properties of the snowpack empirically with two constants σscatt and σ+

abs which

describe the scattering and absorption properties of the snowpack. With these data the5

wavelength-resolved actinic flux, F (λ), at each point in a 1 m thick snowbank can be

calculated using the DISORT code in the TUV-snow model. The absorption spectrum

of nitrate in a thin film of ice, σ(λ), of Burley and Johnson (1992) was used. For Reac-

tion (R1) to produce NO2 the temperature dependent quantum yield, Φ(T), measured

in ice by Chu and Anastastio (2002) was used. For Reaction (R2) to produce NO
−

2
10

(and thus HONO), the quantum yield data for ice of Dubowski et al. (2002) was used.

A temperature-independent value of 1.5×10
−3

was taken from Dubowski et al. (2002)

and assumed to supersede the older value of 4.5×10
−3

(Dubowski et al., 2001). With

these quantities one can calculate the photolysis frequency, J , according to Eq. (1):

J =

∫

σ (λ)Φ (T ) F (λ) dλ (1)
15

The photochemical predictions of the model have been shown to be consistent with

laboratory measurement of nitrate photochemistry (Phillips and Simpson, 2005).

4. Results

4.1. HONO measurements

Table 1 lists the statistics of the observed HONO fluxes during our campaign split for20

data below and above the method detection limit. To identify periods during which

HONO fluxes were actually significantly different from 0, we performed statistical anal-

ysis and t-tests for data above the detection limits in bins of varying length in time.

Consecutive data above (or below) the detection limits of ±0.3 nmol m
−2

h
−1

fall into
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an individual bin. The length in time of these bins is shown in Fig. 2c by the size

of the symbols, with the smallest size representing a single 10-min measurement,

and the largest symbol representing a 200 min (20 measurements) period. Figure 2c

shows the averages of the detected data in these bins. The median positive flux was

1.66 nmol m
−2

h
−1

(mean 2.86; 340 bins); the median negative flux was −1.74 (mean5

−2.91, 237 bins). Compared to typical Arctic values of HONO and NOx emissions of

around 40 nmol m
−2

h
−1

(Beine et al., 2002; Honrath et al., 2002) these values are very

small. Dibb et al. (2004) measured HONO mixing rations in the atmosphere (of up to

30 pmol mol
−1

) and in snowpack interstitial air at South Pole. Since values were 5 times

higher in snowpack air than in the atmosphere, they concluded that the snowpack must10

be a strong source of HONO but they did not actually quantify fluxes. Our mixing ratios

were mostly below 5 pmol mol
−1

; the difference in mixing ratios is expected comparing

the stable and stratified atmosphere at South Pole (Davis et al., 2001) with a windy site

near the coast. Still, Oncley et al. (2004) measured average NOx fluxes at South Pole

of ca. 23 nmol m
−2

h
−1

(NO ∼15 nmol m
−2

h
−1

). If the chemistry is comparable to what15

was observed at Alert (Beine et al., 2002), NOx and HONO fluxes should be of similar

magnitude.

4.2. Snow structure

The snow surface at Browning pass is shaped by wind. In late October, it consisted of

hard windpacks with a positive relief and of softer layers in hollows, each type covering20

roughly half of the surface. As observed during our stay, snow layers are formed by

wind events that remobilize recent precipitation and exposed layers, and are always

discontinuous. As a result, the apparently similar-looking windpacks that outcropped

were in fact outcrops of different layers (perhaps 2 to 5) formed at different times, so

that spatially variable snow chemistry and physics can be expected.25

During our stay, snowfalls took place on DOY 311/312 (6–7 November) (<1 mm wa-

ter equivalent), DOY 322/323 (17–18 November) (12 mm) and 25 November (DOY 330)
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(2.5 mm). The last 2 snowfalls took place under low winds and formed continuous lay-

ers that were eventually windblown to form discontinuous layers. Other thin layers with

a very small spatial coverage were formed in hollows by wind in the absence of pre-

cipitation. Often, these layers were dark, presumably because they had incorporated

terrigeneous material. The main four surface layers observed were thus (a) hard wind-5

pack, (b) soft windpack, (c) recent windblown snow that has been advected in and that

had not yet sintered, (d) fresh precipitation, i.e. recent snowfall before it was windblown.

The variations of the surface coverage of these 4 snow types are shown in Fig. 3.

The snow stratigraphy is composed of alternating hard windpacks formed of small

rounded grains, including an incredibly hard layer of density 0.61 (no melting visible)10

40 cm down in the deep pit we dug, and softer layers composed of larger crystals

showing some variable degrees of faceting, of density as low as 0.3. Numerous ice

layers, ice lenses, melt-freeze crusts and layers where some frozen percolating water

was present were seen throughout the snowpack, suggesting frequent melting events,

and not just in summer. Signs of frozen water were more frequent in softer layers.15

120 cm down, and for a depth of at least 70 cm, all the snow layers showed signs of

frozen water, and their density was as high as 0.7. This was certainly the summer melt

layer. A 3 m probe from the bottom of our 1.9 m pit could not reach solid ice, indicating

that our location was in the lower part of the accumulation zone of the glacier.

4.3. General trends in snow chemistry20

We analyzed 148 triplicate snow samples from Browning Pass, almost all taken within

2 km from our air sampling site, and >70% taken within 100 m. Table 2 sums up cor-

relations and ratios between major soluble mineral ions. It is clear that sea salt has

a major influence on snow composition, as most major ions are correlated to [Na
+

].

Cl
−

and Mg
2+

show ion/Na
+

ratios very close to those of sea water. [K
+

] shows the25

best correlation with [Na
+

], but surprisingly the ratio, [K
+

]/[Na
+

] is 50% greater than

that of sea water. Furthermore, Cl
−

and Na
+

were usually the most abundant ions on

a molar basis, sometimes exceeding 1000µeq, while Ca
2+

, SO
2−
4

and Mg
2+

were also

625

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/6/615/acpd-6-615_p.pdf
http://www.atmos-chem-phys.org/acpd/6/615/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD

6, 615–648, 2006

Small Antarctic

HONO emissions

H. J. Beine et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

abundant, reaching 200µeq. Concentrations of NO
−

3
and K

+
reached 50 and 40µeq,

respectively. The sea is just a few km from our site, so the trends of Table 2, and the

predominance of Na
+

and Cl
−

were expected. Table 2 shows that SO
2−
4

has a source

other than sea salt, and this is presumably the oxidation of dimethyl sulfide, with a pos-

sible volcanic contribution from Mount Melbourne, some 40 km away. The influence of5

marine biogenic products is expected, as marine organic compounds have been iden-

tified in snow in this area (Cincinelli et al., 2001). Ca
2+

also has an extra source, most

likely terrigeneous particles, as a lot of rock outcrops are present nearby. These are

mostly granite, but also micashists, and volcanic rocks are present near Mt Melbourne.

Some snow that was windblown during our campaign had a yellow to brownish color,10

indicating episodes of fairly high concentrations of mineral aerosols. All the snow sam-

ples with a high concentration of ions were from the snow that was remobilized during

our presence. From their ion balance, most of the snows were acidic. A few samples

(20%) were alkaline. All samples from the hard windpacks and from the 25 Novem-

ber (DOY 330) fall were acidic (pH 5.0 to 5.5). 30% of recently windblown samples15

were alkaline. There was no clear correlation between acidity and total ion concen-

trations, although alkaline samples showed a slight tendency to be more concentrated

that acidic ones. The range of concentrations was large; however, that just one highly

concentrated sample could change the trend. Regarding NO
−

3
in snow, it is necessary

to discuss separately aged and freshly precipitated snows.20

4.4. Origins of nitrate in snow

Figure 4a shows the excellent correlation between the concentrations of NO
−

3
and Na

+

in aged snows. The most likely explanation is that gas phase nitric acid reacted with

sea salt to release HCl and form NaNO3 (Fenter et al., 1994). Na
+

concentrations are a

function of sea salt mass, while the rate of sea salt reaction depends on aerosol surface25

area. The existence of this excellent correlation suggests that the size distribution

of sea salt aerosol varies little at Browning pass. This seems reasonable, given the

existence of the Ross sea polynya, and among the possible sources (Domine et al.,
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2004) sea salt aerosol probably comes mostly from nearby sea spray. There is also

a good correlation between [NO
−

3
] and [Ca

2+
] (R

2
=0.918), and it could be argued that

NO
−

3
in aged snow comes from the reaction of mineral aerosol with gas phase HNO3.

This reaction is fast, with a reaction probability γ>0.01 on many minerals (Hanisch and

Crowley, 2001). However, since [Ca
2+

] and [Na
+

] are well correlated, a [NO
−

3
] – [Na

+
]5

correlation results also in a [Ca
2+

] – [NO
−

3
] correlation, without necessarily a chemical

reason. Furthermore, since the correlation with Ca
2+

is not as good, our preferred

interpretation is that NO
−

3
in aged snows is present as NaNO3, after acid attack of sea

salt by HNO3.

Figure 4b shows that there is little correlation between [NO
−

3
] and [Na

+
] for fresh10

snow samples, i.e. in precipitated snows before they were remobilized by wind. The

ion balance of almost all fresh samples is acidic, with corresponding pH values in

the range 5–6. The ionic concentrations are also much lower than for many aged

snows in the preceding figure. Our interpretation is that the source of NO
−

3
in these

snows is gas phase HNO3 that dissolved in the ice to form a solid solution (Thibert and15

Domine, 1998). Adsorbed HNO3 may also contribute to the NO
−

3
signal (Sokolov and

Abbatt, 2002). Back trajectory calculations (10 day isentropic cluster back trajectories

at three different potential temperatures), using the British Atmospheric Data Center

model, indicate that air masses that generated the precipitations had spent the past

few days over the Antarctic continent. The back trajectory is consistent with the low20

Na
+

concentration, and explains why there is no correlation between [Na
+

] and [NO
−

3
].

In summary, in fresh snows, our data suggest strongly that NO
−

3
is present as dis-

solved or adsorbed nitric acid taken up from the gas phase, while in aged snows NO
−

3
is present as NaNO3, presumably because of the reaction of atmospheric nitric acid

with sea salt.25
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4.5. Optical properties of the snow

Since photochemistry takes place mostly in the top few cm or tens of cm in the snow-

pack (Simpson et al., 2002; Lee-Taylor, 2002; Warren, 1982) our chemical and optical

studies focused on the surface snow layers. Snowpits were dug for optical measure-

ments under each one of the main 4 snow types discussed above and in Fig. 3. Seven5

snowpits were studied in detail, the objective being to obtain optical properties aver-

aged over several snow layers found under and including each type of surface layer

considered. The thin snow layers found at Browning Pass did not allow the optical

properties of just the surface layer to be obtained in isolation. In each pit, the stratigra-

phy had to be simplified to allow analysis of the optical data and modeling of the fluxes10

of nitrogen oxides leaving the snowpack. The detailed stratigraphy, calculation of σscatt,

σ+

abs and ε, and analysis of these data are described in a separate future paper, and

details of the method can be found in Fisher et al. (2005). Table 3 lists the optical

and physical properties of typical snowpacks under and including each type of surface

layer, together with the nitrate concentrations of these surface layers. The values of15

the physical parameters in Table 3 reflect in part the structure and the grain size and

shape of the surface layers, and in part the effect of heterogeneities in these layers that

include the presence of sub-layers and of frozen water. They also reflect the proper-

ties of the underlying layers, as no snow layer (except the fresh windblown) was thick

enough to be measured in isolation (i.e. to be treated as semi-infinite). Thus values of20

σscatt, σ
+

abs and ε presented in Table 3 describe the measured optical properties of the

surface snow at Browning Pass, but are not to be interpreted as characteristic of the

surface layer in isolation.

4.6. Calculating molecular fluxes of NO2 and HONO from the snowpack

As shown in Fig. 3, the temporal changes in the proportion of outcropping layers and25

the resulting changes to the snowpack in Browning pass are complex. The total calcu-

lated flux of NO2 (or HONO) sourced from the snowpacks at Browning Pass depended
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on the proportions of snowpack present. The molecular flux from each surface snow

layer listed in Table 3 was calculated and the weighted sum of the molecular fluxes

from these snowpacks according to Fig. 3 was calculated, in order to compare with the

measured molecular flux.

The snow-atmosphere radiation transfer model was run with daily measured ozone5

columns, each one of the 4 snow types in Table 3 and varying optical depths of cloud

(asymmetry factor, g=0.85 and altitude ∼2 km) to coarsely replicate the measured solar

downwelling irradiance (Fig. 5). When a coarse agreement between modeled and

measured values had been achieved the values of J(NO
−

3
) were calculated in a 1 m

deep slab under each type of surface layers. Coarse agreement between the modeled10

and measured irradiances was refined by multiplying the calculated photolysis rates,

J(NO
−

3
), by the ratio of the measured and modeled irradiance, I , at 350 nm,

Iλ=350 nm
measured

Iλ=350 nm
model

.

While this is a crude method the adjustment is small (∼20%) and allows molecular

fluxes of NO2 and HONO to be estimated.

The depth, z, integrated photolysis rate (transfer velocity), ν (NO2), is calculated by15

ν (NO2) =

∫

J
(

NO−

3
→ NO2

)

dz (2)

The molecular flux, F , is the product of the nitrate concentration in snow,
[

NO
−

3

]

and

the transfer velocity

F (NO2) = ν (NO2) ×
[

NO−

3

]

(3)

The analysis assumes that (I)
[

NO
−

3

]

is depth independent, and (II) all the photo-20

produced NO2 and HONO can exit the snowpack with 100% efficiency and do not

undergo further photolysis or reaction within the snowpack. Either assumption may not

always be true. Assumption (II) implies the molecular fluxes calculated in this paper are

upper limits. Using Eqs. (2) and (3) the molecular flux for NO2, F (NO2) was calculated

and is shown in Fig. 6. The flux of HONO, F (HONO), was estimated as an upper limit25

from the reaction to produce NO
−

2
(Fig. 6).
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Comparing the flux estimates from the photochemical modeling with our actual mea-

surements a significant discrepancy is obvious. While the maximum observed HONO

fluxes are of the same order of magnitude as the modeled estimates, the majority

(>90%) of measured HONO fluxes were below 5 nmol m
−2

h
−1

.

5. Discussion5

5.1. The case of aged snows

The particularity of this study is the quasi non-existent HONO fluxes, despite the normal

to high NO
−

3
concentrations in snow. The currently hypothesized mechanism of HONO

formation from NO
−

3
photolysis is discussed above, though the details are not well

known. From this mechanism alone we would expect daily noontime maximum HONO10

fluxes of ca. 10 nmol m
−2

h
−1

, which were not found. Other studies have reported or

inferred HONO fluxes associated with NOx fluxes at Alert, Summit, and South Pole

(Beine et al., 2002; Honrath et al., 2002; Dibb et al., 2004). We argued that NO
−

3
is present mostly as NaNO3 in aged snows at our study site, and this seems to be

peculiar. During this campaign, we also sampled snow at other nearby coastal sites15

such as ice tongues and inland on the plateau, all within 200 km from our site, and

the correlation between Na
+

and NO
−

3
was not observed (R

2
=0.02). Neither did we

observe a good correlation between both ions during previous campaigns at Alert and

Ny-Ålesund (Domine et al., unpublished results) and it is therefore tempting to relate

both characteristics: no HONO fluxes and NO
−

3
present as a sodium salt in aged snows.20

The state of salt particles in snow (i.e. solid or liquid) is not clear. From the NaCl

– H2O phase diagram (e.g. Hall et al., 1988), given the ionic concentrations present

and the temperatures encountered, usually between −5 and −15
◦
C, NaCl could not

induce melting, and the concentrations of the other ions measured cannot modify this

conclusion.25

However, ions present in snow may favor the existence of a quasi-liquid or brine
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layer at the surface of snow crystals, as evidenced in laboratory experiments by Cho

et al. (2002). The experiments of Cho et al. (2002), used NaCl concentrations much

higher than those present in our snow samples, and the phase behavior for low salt

concentrations still has to be established, especially since a basic extrapolation of the

data of Cho et al. (2002) to the concentrations found in Browning pass suggests that it5

may be unimportant here. This conclusion is reached by considering bulk concentra-

tions. Locally, a sea salt particle may induce very high ionic concentrations on a snow

crystal surface, causing the formation of a quasi-liquid layer, or actual melting. To our

knowledge, the impact of a salt particle on an ice surface has not been investigated

and we are not able to conclude on the state of sea salt ions, and of NaNO3 on the10

surface of snow crystals. It is still reasonable to suggest that NO
−

3
in aged snows re-

mains trapped in salt particles or that, even if a liquid phase is formed, NO
−

3
reactivity

differs from that of NO
−

3
present as nitric acid dissolved or adsorbed in/on snow crystals

(Beine et al., 2002, 2003).

Perhaps because of matrix effects in the solid state, or solvent “cage effects” in the15

liquid state, the products of NO
−

3
photolysis cannot escape. Another possibility is more

simply that HONO, if formed in a salt or brine medium, reacts rapidly with sea salt,

presumably to form NaNO2. This reaction is plausible, although available laboratory

studies are inconclusive (Vogt and Finlayson-Pitts, 1994).

5.2. The case of fresh snows20

The case for aged snows does not explain why no fluxes were observed out of fresh

snows, especially after the heavy fall of DOY 322/323 (17–18 November), when the

NO
−

3
concentration was larger than the Cl

−
concentration. In fact, the snowpack was

particularly inactive with respect to HONO uptake/release when that snowfall covered

the surface (Fig. 2), until it was partially windblown by a katabatic wind on DOY 32625

(21 November). The mechanism of HONO formation from NO
−

3
photolysis is not well

known. It is possible that it involves the reaction of NO2 (produced from NO
−

3
photolysis)
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with specific photosensitized organics (George et al., 2005). Species that are expected

to efficiently transfer electrons to NO2 include electron donors such as phenols as

photosensitizers in reaction cycles with aromatic ketones (George at al., 2005). In that

case, the HONO flux may depend on the concentration of photosensitizer in the snow;

with low concentrations of organic photosensitizers the fluxes of HONO will be low and5

perhaps non-detectable.

We did not measure organic compounds in the snow or in the air, and we are

therefore left to speculate on their concentrations, based on other studies. In gen-

eral, Antarctic snow may be suspected of having lower concentrations of organic com-

pounds than Arctic snow, because many of the Arctic sources such as soil dust (e.g. at10

Alert or Ny-Ålesund, Domine et al., 2002) or forest fire plumes (e.g. at Summit, Legrand

and De Angelis, 1996) are absent or reduced. Nevertheless, the sea and in particular

the nearby Ross sea polynya can be a source of organic compounds, as found in snow

samples near our site by Cincinelli et al. (2001). Dibb and Arsenault (2002) measured

formic and acetic acids at Summit, Greenland, and at South Pole in the atmosphere15

and in snowpack interstitial air. Both sites are at comparable elevations and distances

from the sea. They found concentrations about twice as high at Summit, supporting the

idea that the concentrations of organic compounds in the Antarctic are lower than in

the Arctic. However, Grannas et al. (2004) analyzed total organic carbon in snow and

found similar values at South Pole and Summit. More importantly, the complex humic20

style material that Grannas et al. (2004) observed is capable of the type of photosen-

sitization reactions that George et al. (2005) describe. In summary, the data available

on organic compounds in polar snow do not seem to support the idea that the lack of

HONO fluxes could be due to a lack of organic photosensitizers. Furthermore, Dibb et

al. (2004) inferred strong HONO fluxes out of the snow at South Pole, strengthening25

our impression that our site is peculiar.

The above considerations on the composition of Antarctic fresh snow are general

and do not allow any conclusion on the reactivity of a given snow layer at a given site.

Our monitoring of snow layers showed that fresh snow always had low ionic concentra-
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tions. Most of the mineral ion loading came from dry deposition due to wind pumping

or while snow was airborne. The same mechanisms that deposit soluble mineral ions

probably also deposit organic compounds. Both Arctic and Antarctic measurements

cited above involved aged snows and the conclusion that they had a significant organic

loading may thus not apply to our fresh snows, that may well have been depleted in or-5

ganic compounds. We therefore suggest that the concentration of organic compounds

was too low to support production of detectable HONO fluxes. This is consistent with

our back trajectory calculations that showed that air masses generating fresh precipi-

tation came from the continent. The highest HONO flux out of the snow was measured

on DOY 327 (22 November), just after a katabatic wind partially remobilized the thick10

17–18 November snowfall that was particularly unreactive (Fig. 2). The katabatic wind

increased the sea salt content of the snowfall snowlayer throughout, with Na
+

concen-

trations increasing from 1–5µeq to 10–20µeq. It is reasonable, although speculative

at this stage, to suggest that this dry deposition of sea salt was accompanied by the

deposition of organic compounds of marine origin that allowed HONO formation. The15

HONO flux out of the snow was short-lived, possibly because the salt subsequently

trapped HNO3 as NaNO3. More field and laboratory experiments will be necessary to

test these suggestions.

6. Conclusions

We have attempted to sum up some of the possible (photo) chemical and physical20

reaction pathways for HONO production suggested by this study in Fig. 7. Our some-

what speculative suggestions to explain the near-absence of detectable HONO fluxes

at Browning pass is that:

(1) In aged snow samples, i.e. snows that have been remobilized by wind, NO
−

3
is

present as NaNO3, and there is a significant concentration of sea salt. The absence25

of HONO emissions may be due to the fact that the NO
−

3
is present as NaNO3, which

does not allow photolysis products to escape, possibly because of matrix or solvent
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cage effects in the phase in which NaNO3 is contained, probably NaCl, or because

HONO is taken up by sea salt.

(2) In fresh snow samples, i.e. in recent snow falls before their remobilization by wind,

NO
−

3
is present as dissolved and/or adsorbed HNO3, as also suggested from studies

at Alert and Ny-Ålesund (Beine et al., 2002, 2003). Products of the photolysis of NO
−

3
,5

including HONO, are thus expected. A possibility is that HONO is produced from NO2

via electron transfer from photosensitized organic compounds, and that fresh snows

had concentrations of organic photosensitizers too low for this photochemistry to be

efficient. When wind deposited organic compounds to the snow, the accompanying

sea salt trapped all the NO
−

3
as NaNO3, preventing HONO production as described10

above.

It is clear that HONO production could follow several pathways, the prevalence of one

over the other depending on several aspects of snow chemistry, such as the chemical

form of NO
−

3
, the concentration of organic photosensitizer, etc. Well designed labora-

tory experiments, with different chemistry of the ice substrate and ideally a control over15

the location of NO
−

3
in the substrate, seem necessary to solve the puzzle.
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Fluxes of Nitrates Between Snow Surfaces and the Atmosphere in the European High Arctic,
Atmos. Chem. Phys., 3, 335–346, 2003,15

SRef-ID: 1680-7324/acp/2003-3-335.
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Table 1. Observed HONO fluxes [nmol m
−2

h
−1

].

All data Detected >0.3 Detected <−0.3 Below method detection limits

N 1440 675 413 352
Minimum −26.111 0.300 −26.111 −0.300
Maximum 29.566 29.566 −0.303 0.298
Mean 0.229 1.750 −1.831 0.022
Median 0.579 3.140 −3.131 0.023

Upper 95% CI
(a)

0.801 3.439 −2.776 0.039

Lower 95% CI
(a)

0.358 2.841 −3.487 0.007
Std. Dev. 4.280 3.961 3.674 0.154

(a)
CI = Confidence Interval
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Table 2. Correlation coefficients, R
2
, between the concentrations of ions and those of Na

+
, and

comparison of the ion/Na
+

ratio to that of sea salt.

Ion Cl
−

SO
2−
4 NO

−

3 Ca
2+

Mg
2+

K
+

Correlation with Na
+(a)

0.88 (0.95)
(b)

0.915 0.972 0.889 0.992 0.996

Molar ratio [ion]/[Na
+
] 0.951 (1.22)

(b)
0.108 0.052

(c)
0.090 0.110 0.033

Sea salt ratio [ion]/[Na
+
] 1.165 0.060 0.00003 0.022 0.113 0.022

a
Linear correlation coefficient for least square fit.

b
Value if four outliers, presumably caused by highly fractionated sea salt, are removed.

c
Aged snows only.
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Table 3. Optical properties, for a wavelength of 400 nm, of the snowpack at Browning Pass,
studied for the 4 types of surface layers observed. The measurements are naturally averaged
over several different snow layers as no one layer was thick enough to measure the optical
properties in isolation. σscatt is the scattering cross section, σ+

abs is the absorption cross section,

A is the Albedo, ε is the e-folding depth,
[

NO
−

3

]

is the mean concentration of the nitrate ion in
the surface layer, and ρ is the mean density of the surface layer.

Snow type σscatt / σ+

abs / A ε/ cm
[

NO
−

3

]

/µeq ρ/ g cm
−3

m
2

kg
−1

cm
2

kg
−1

Hard windpack 1.3 4.3 0.86 12 2 0.4
Soft windpack 6.3 24 0.85 3.3 30 0.4
Recent windblown 3.7 37 0.79 4.5 3 0.35
Precipitation 4.3 17 0.87 15 3 0.15
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Fig. 1. Map of the area surrounding our measurement site at Browning Pass, near the Italian
Mario Zucchelli (formerly Terra Nova Bay) station.
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Fig. 2. (a) Timeseries of HONO mixing ratio measured at the lower inlet (red symbols) and

the upper inlet (blue symbols). (b) Timeseries of the friction velocity u
∗

[m s
−1

]. (c) Timeseries

of averaged HONO fluxes above the detection limits of ±0.3 nmol m
−2

h
−1

. The data are av-
eraged in bins of variable length; the length in time of these bins is shown by the size of the
symbols. The smallest size representing a single 10-min measurement, and the largest symbol
representing a 200 min (20 measurements) period.
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Fig. 3. Relative proportions of the four different surface snows at Browning Pass during the
campaign.
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 Fig. 4. Correlation between NO
−

3 and Na
+

for (a) aged snows (NO
−

3=0.037+0.052 Na
+
;

p=0.000; R
2
=0.973); (b) fresh snows (NO

−

3=2.571+0.08 Na
+
; p=0.01; R

2
=0.195). Fresh snow

samples were taken up to 6 days after each fall, but samples remobilized by wind are not
plotted. Several levels in each layer were sampled whenever possible.
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Fig. 5. The measured downwelling surface irradiance recorded throughout the campaign at

350 nm (blue, units of W m
−2

nm
−1

, right scale). Also plotted is the calculated quantum yield for

nitrate photolysis to yield NO2 in ice (Reaction R1, units of 10
−3

, red, left scale). The variation
of the quantum yields is due to the temperature of the snowpack recorded at 12.5 cm depth
throughout the campaign.
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Fig. 6. Molecular fluxes of NO2 (blue line) and HONO (red line) estimated from photolysis of
nitrate at Browning Pass during the campaign.
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Fig. 7. Possible reaction mechanisms for the formation of HONO from the NO
−

3 anion. Blue
arrows indicate gaseous emissions from the reaction medium, curvy arrows show transport
mechanisms. Most of these chemical pathways occur in aqueous solution (Mack and Bolton,
1999), several seem to be confirmed for ice surfaces and snow (Domine and Shepson, 2002).
We suggest that NO

−

3 absorbs photons regardless of its location in snow, but cage effects are

predominant when NO
−

3 is present as NaNO3 or other salts. HONO, if formed, can be trapped
on salt surfaces, and the efficiency of this process depends on snow composition. The reaction
cycle involving photosensitized electron transfer with organics was shown in the lab (George et
al., 2005).
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