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Abstract. This paper deals with the problem of Blind Source Separation.
Contrary to the vast majority of works, we do not assume the statistical
independence betwwen sources and explicitly consider that they are de-
pendent. We introduce three particular models of dependent sources and
show that their cumulants have interesting properties. Based on these
properties, we investigate the behaviour of classical Blind Source Separa-
tion algorithms when applied to these sources: depending on the source
vector, the separation may be sucessful or some additionnal indetermina-
cies can be identified.

1 Introduction

Independent Component Analysis is now a well recognized concept, which has
fruitfully spread out to a wide panel of scientific areas and applications. Contrary
to other frameworks where techniques take advantage of a strong information on
the diversity, for instance through the knowledge of the array manifold in antenna
array processing, the core assumption is much milder and reduces to the statistical
mutual independence between the inputs.

However, this assumption is not mandatory in Blind Source Separation. For
instance, in the case of static mixtures, sources can be separated if they are only
decorrelated when their nonstationarity or their color can be exploited. Other
properties such as the fact that sources belong to a finite alphabet can alterna-
tively be utilized [1,2] and do not require statistical independence.

Inspired from [3,4], we investigate the case of dependent sources, without as-
suming nonstationarity nor color. To our knowledge, only few references have
tackled this issue [5,6].

2 Mixture model and notations

We consider a set of N source signals (si(n))n∈Z, i = 1, . . . , N . The dependence
on time of the signals will not be made explicit in the paper. The sources are
mixed, yielding a P -dimensional observation vector x = (x(n))n∈Z according to
the model:

x = As (1)



where s = (s1, . . . , sN )T, x = (x1, . . . , xP )T and A is a P × N matrix called the
mixing matrix. We assume that A is left-invertible.

Source separation consists of finding a P×N separating matrix B such that its
output y = Bx corresponds to the original sources. When only the observations
are used for this, the problem is referred to as the blind source separation (BSS)
problem. Introducing the N × N global matrix G , BA, the BSS is problem is
solved if G is a so-called trivial matrix, i.e. the product of a diagonal matrix with
a permutation: these are well known ambiguities of BSS.

In this paper, we will study separation criteria as functions of G. Source sep-
aration sometimes proceeds iteratively, extracting one source at a time (e.g. de-
flation approach). In this case, we will write y = bx = gs where b and g = bA

respectively correspond to a row of B and G and y denotes the only output of the
separating algorithm. In this case, the separation criteria are considered as func-
tions of g. Finally, we denote by E {.} the expectation operator and by Cum {.} the
cumulant of a set of random variables. Cum4{y} is equivalent to Cum {y, y, y, y}
and, for complex variables, Cum2,2{y} stands for Cum {y, y, y∗, y∗}.

3 Examples and properties of dependent sources

We introduce in this section different cases of vector sources that are dependent
and that will be considered in this paper.

3.1 Three dependent sources

Binary phase shift keying (BPSK) signals have specificities that will allow us to
obtain source vectors with desired properties. By definition, BPSK sources take
values s = +1 or s = −1 with equal probability 1/2. We define the following
source vector:

A1. s , (s1, s2, s3)
T where s1 is BPSK; s2 is real-valued non Gaussian, indepen-

dent of s1 and satisfies E {s2} = E
{

s3
2

}

= 0 and s3 = s1s2.

Interestingly, the following lemma holds true:

Lemma 1. The sources s1, s2, s3 defined by A1 are obviously mutually dependent.
Nevertheless they are decorrelated and their fourth-order cross-cumulants vanish,
that is:

Cum {si, sj} = 0 except if i = j, (2)

Cum {si, sj , sk, sl} = 0 except if i = j = k = l. (3)

Proof. Using the definition of s1, s2 and their independence, one can easily check
that E {s1} = E {s2} = E {s3} = 0. For these centered random variables, it is
known that cumulants can be expressed in terms of moments:

Cum {si, sj} = E {sisj} (4)

Cum {si, sj , sk, sl} = E {sisjsksl} − E {sisj}E {sksl}

− E {sisk}E {sjsl} − E {sisl}E {sjsk} (5)



Using again the definition of s1, s2 and their independence, it is then easy to check
all cases of equations (4) and (5) and to verify that these 4th order cross-cumulants
are indeed null. On the other hand, the third order cross-cumulant reads:

Cum {s1, s2, s3} = E {s1s2s3} = E
{

s2
1s

2
2

}

= E
{

s2
1

}

E
{

s2
2

}

> 0 (6)

and this proves that s1, s2, s3 are mutually dependent. ⊓⊔

Depending on s2, more can be proved about the source vector defined by A1. For
example, if the probability density function of s2 is symmetric, then s1 and s3 are
independent. On the contrary s2 and s3 are generally not independent.

An even more specific case is obtained when s2 is itself BPSK. In this case,
one can check that the sources (s1, s2, s3) are pairwise independent, although not
mutually independent.

3.2 Pairwise independent sources

We now investigate further the case of pairwise independent sources and introduce
the following source vector:

A2. s = (s1, s2, s3, s4)
T where s1, s2 and s3 are independent BPSK and s4 =

s1s2s3.

This case has been considered in [3], where it has been shown that

∀i ∈ {1, . . . , 4}, Cum {si, si, si, si} = −2 , Cum {s1, s2, s3, s4} = 1 (7)

and all other cross-cumulants vanish. The latter cumulant value shows that the
sources are mutually dependent; although it can be shown that they are pairwise
independent. It should be clear that pairwise independence is not equivalent to
mutual independence but in an ICA context, it is relevant to recall the following
proposition, which is a direct consequence of Darmois’ theorem [7, p.294]:

Proposition 1. Let s be a random vector with mutually independent components,
and x = Gs. Then the mutual independence of the entries of x is equivalent to
their pairwise independence.

Based on this proposition, the ICA algorithm in [7] searches for an output vector
with pairwise independent component. Let us stress that this holds only if the
source vector has mutually independent components: pairwise independence is
indeed not sufficient to ensure identifiability as we will see in Section 4.2.

3.3 Complex valued sources

We consider quaternary phase shift keying (QPSK) sources which by definition
take their values in {1, ı,−1,−ı} with equal probability 1/4 and we define the
following source vector:

A3. s = (s1, s2, s3, s4)
T where s1, s2 and s3 are mutually independent QPSK and

s4 = s1s2s3s4.



Based on the Equations (4) and (5) which hold for the above centered sources,
one can check the following proposition:

Lemma 2. The sources in A3 are dependent and satisfy Cum {s1, s2, s3, s
∗
4} = 1.

However, they are second-order decorrelated and all their 4th order circular cross-
cumulants (i.e. with as many conjugates as non-conjugates) vanish, that is:

Cum
{

si, s
∗
j

}

= 0 and Cum {si, sj} = 0 except if i = j, (8)

Cum {si, sj , s
∗
k, s∗l } = 0 except if i = j = k = l (9)

4 ICA algorithms and dependent sources

4.1 Independence is not necessarily required

The sources given by A1 provide us with a specific example of dependent sources
that are sucessfully separated by several ICA methods:

Proposition 2. Let y = gs where the vector of sources is defined by A1. Then,
the function

g 7→ |Cum4{y}|
α, α ≥ 1 (10)

defines a MISO contrast function, that is, its maximization over the set of unit
norm vectors (‖g‖2 = 1) leads to a vector g with only one non-zero component.

Proof. The above proposition follows straightforwardly from Lemma 1 since the
proof of the validity of the above contrast functions only relies on the property in
Equation (3). ⊓⊔

Considering again the argument in the proof, one should easily notice that the
above proposition can be generalized to the case of sources which satisfy:

A4. s = (s1, . . . , s3K) where: ∀i ∈ {0, . . . , K − 1}, s3i+1 is BPSK; s3i+2 is non
Gaussian and satisfies E {s3i+2} = E

{

s3
3i+2

}

= 0; s3i+3 = s3i+1s3i+2; and the
random variables {s3i+1, s3i+2 ; i = 0, . . . , K − 1} are mutually independent.

In addition, the above result can be generalized to MIMO (multiple input/multiple
output) contrast functions as defined in [7] [2]:

Proposition 3. Let y = Gs where the vector of sources is defined by A1. Then
the function:

G 7→

N
∑

i=1

|Cum4{yi}|
α, α ≥ 1 (11)

is a MIMO contrast, that is, its maximization over the group of orthogonal ma-
trices leads to a solution G which is a trivial matrix (permutation, scaling).

Many classical algorithms for BSS or ICA first whiten the data: it is known that
when doing so, they constrain matrix G to be orthogonal. In particular so does the
algorithm proposed in [7], which relies on the contrast function in (11). It justifies
that this algorithm successfully separates the sources A1. Actually, any algorithm
relying on a prewhitening and associated with a contrast function based on the
vanishing of the fourth-order cross cumulants (e.g. JADE) is able to separate
sources such as A1.



4.2 Pairwise independence is not sufficient

We now consider the pairwise independent sources given by A2 and show that
pairwise independence is not sufficient to ensure identifiability of the ICA model.
We first have the following preliminary result:

Lemma 3. Let y = gs where the vector of sources is defined by A2. Assume that
the vector (s1, s2, s3) takes all 23 possible values. If the signal y has values in
{−1, +1}, then g = (g1, g2, g3, g4) is either one of solutions below:

{

∃i ∈ {1, . . . , 4} gi = ±1, and: ∀j 6= i, gj = 0

∃i ∈ {1, . . . , 4} gi = ±1/2, and: ∀j 6= i, gj = −gi

(12)

Proof. If y = gs, using the fact that s2
i = 1 for i = 1, . . . , 4, we have with the

particular sources given by A2:

y2 = g2
1 +g2

2+g2
3 +g2

4+2
[

(

g1g2+g3g4

)

s1s2+
(

g1g3+g2g4

)

s1s3+
(

g2g3+g1g4

)

s2s3

]

Since (s1, s2, s3) take all possible values in {−1, 1}3, we deduce from y2 = 1 that
the following equations necessarily hold:

{

g2
1 + g2

2 + g2
3 + g2

4 = 1

g1g2 + g3g4 = g1g3 + g2g4 = g2g3 + g1g4 = 0
(13)

First observe that values given in (12) indeed satisfy (13). Yet, if a polynomial
system of N equations of degree d in N variables admits a finite number of
solutions3, then there can be at most dN distinct solutions. Hence, we have found
them all in (12), since (12) provides us with 16 solutions for (g1, g2, g3, g4). ⊓⊔

Using the above result, we are now able to specify the output of classical ICA
algorithms when applied to a mixture of sources which satisfy A2.

Constant modulus and contrasts based on fourth order cumulants The
constant modulus (CM) criterion is one of the most known criteria for Blind
Source Separation. In the real valued case, it simplifies to:

JCM(g) , E
{

(

y2 − 1
)2
}

with: y = gs (14)

Proposition 4. For the sources given by A2, the minimization of the constant
modulus criterion with respect to g leads to either one of the solutions given by
Equation (12).

Proof. We know that the minimum value of the constant modulus criterion is zero
and that this value can be reached (for g having one entry being ±1 and other
entries zero). Moreover, the vanishing of the constant modulus criterion implies
that y2 − 1 = 0 almost surely and one can then apply Lemma 3. ⊓⊔

3 One can show that the number of solutions of (13) is indeed finite.



A connection can now be established with the fourth-order autocumulant if we
impose the following constraint:

E
{

y2
}

= 1 (or equivalently ‖g‖ = 1 since y = gs) (15)

Because of the scaling ambiguity of Blind Source Separation, the above normal-

ization can be freely imposed. Under (15), we have Cum4{y} = E
{

(

y2 − 1
)2
}

−2

and minimizing JCM(g) thus amounts to maximizing −Cum4{y}. Unfortunately,
since Cum4{y} may be positive or negative, no simple relation between |Cum4{y}|
and JCM(g) can be deduced from the above equation. However, we have the fol-
lowing proposition:

Proposition 5. Let y = gs where the vector of sources is defined by A2. Then,
under the constraint (15) (‖g‖ = 1), we have:

(i) The maximization of g 7→ −Cum4{y} leads to either one of the solutions given
by Equation (12).

(ii) |Cum4{y}| ≤ 2 and the equality |Cum4{y}| = 2 holds true if and only if g is
one of the solutions given in Equation (12).

Proof. Part (i) follows from the arguments given above. In addition, using multi-
linearity of the cumulants and (7), we have for y = gs:

Cum4{y} = −2
(

g4
1 + g4

2 + g4
3 + g4

4

)

+ 24 (g1g2g3g4) (16)

The result then follows straightfowardly from the study of the polynomial function
in Equation (16). Indeed, optimizing (16) leads to the following Lagrangian:

L = −2

4
∑

i=1

g4
i + 24

4
∏

i=1

gi − λ

(

4
∑

i=1

g2
i − 1

)

(17)

After solving the polynomial system which cancels the Jacobian of the above
expresssion, one can check that all solutions are such that |Cum4{y}| ≤ 2. Details
are omitted for reasons of space. Part (ii) of the proposition easily follows. ⊓⊔

Similarly to the previous section, the above proposition can be generalized to
MIMO contrast functions. In particular, this explains why, for a particular set of
mixing matrices such as that studied in [3], the pairwise maximization algorithm
of [7] still succeeded: a separation has luckily been obtained for the considered
mixing matrices and initialization point of the algorithm, but it actually would
not succeed in separating BPSK dependent sources for general mixing matrices.

Let us stress also that the results in this section are specific to the contrast
functions given by (10) or (11). In particular, these results do no apply to algo-
rithms based on other contrast functions such as JADE, contrary to the results
in Sections 4.1 and 4.3.



4.3 Complex case

The output given by separation algorithms in case of complex valued signals may
differ from the previous results which have been proved for real valued signals
only. Indeed, complex valued Blind Source Separation does not always sum up to
an obvious generalization of the real valued case [8]. We illustrate it in our context
and show that, quite surprisingly, blind separation of the sources given by A3 can
be achieved up to classical inderterminations of ICA. This is in contrast with
the result in Equation (12) where additionnal indeterminacies appeared. First, we
have:

Lemma 4. Let y = gs where the vector of sources is defined by A3. Assume that
the vector (s1, s2, s3) takes all 43 possible values. If the signal y is such that its
values satisfy |y|2 = 1, then g = (g1, g2, g3, g4) satisfies:

∃i ∈ {1, . . . , 4} |gi| = 1, and: ∀j 6= i, gj = 0 (18)

Proof. If y = gs, using the fact that |si|
2 = 1 for i = 1, . . . , 4, we have with the

particular sources given by A3:

|y|2 =

4
∑

i=1

|gi|
2 +

∑

i6=j

gig
∗
j sis

∗
j (19)

Since (s1, s2, s3) take all possible values in {1, ı,−1,−ı}3, we deduce from |y|2 = 1
that the following equations necessarily hold:

{

|g1|
2 + |g2|

2 + |g3|
2 + |g4|

2 = 1

g1g
∗
2 = g1g

∗
3 = g1g

∗
4 = g2g

∗
3 = g2g4∗ = g3g

∗
4 = 0

(20)

Solving for the polynomial system in the variables |g1|, |g2|, |g3| and |g4|, we obtain
that the solutions are the ones given in Equation (18). ⊓⊔

Constant modulus and fourth-order cumulant based contrasts In con-
trast with Propositions 4 and 5 we have the following result:

Proposition 6. Let y = gs where the sources satisfy A3. Then, the functions:

g 7→ −E
{

∣

∣|y|2 − 1
∣

∣

2
}

and: (21)

g 7→ |Cum2,2{y}| under constraint E
{

|y|2
}

= 1 (22)

are contrast functions, that is, their maximization leads to g satisfying (18).

Proof. The validity of the first contrast function is obtained with the same argu-
ments as in the proof of Proposition 4: we have |y|2

m.s.
= 0, which yields (20) via

(19). In the case of independent sources, the proof of the validity of the second
contrast involves only cumulants with equal number of conjugate and non con-
jugate variables: invoking Lemma 2, one can see that the same proof still holds
here. ⊓⊔

Note that the same arguments can be applied to ICA methods such as the pairwise
algorithm in [2] or JADE [9]. Figure 1 illustrates our result.
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Fig. 1. Typical observed separation result of the sources A3 with the algorithm
JADE (left: sensors, right: separation result)
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