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ENHANCED LINE SEARCH: A NOVEL METHOD TO ACCELERATE
PARAFAC∗

MYRIAM RAJIH† , PIERRE COMON† , AND RICHARD A. HARSHMAN‡

Abstract. Several modifications have been proposed to speed up the alternating least squares
(ALS) method of fitting the PARAFAC model. The most widely used is line search, which extrap-
olates from linear trends in the parameter changes over prior iterations to estimate the parameter
values that would be obtained after many additional ALS iterations. We propose some extensions of
this approach that incorporate a more sophisticated extrapolation, using information on nonlinear
trends in the parameters and changing all the parameter sets simultaneously. The new method,
called “enhanced line search (ELS),” can be implemented at different levels of complexity, depending
on how many different extrapolation parameters (for different modes) are jointly optimized dur-
ing each iteration. We report some tests of the simplest parameter version, using simulated data.
The performance of this lowest-level of ELS depends on the nature of the convergence difficulty. It
significantly outperforms standard LS when there is a “convergence bottleneck,” a situation where
some modes have almost collinear factors but others do not, but is somewhat less effective in classic
“swamp” situations where factors are highly collinear in all modes. This is illustrated by examples.
To demonstrate how ELS can be adapted to different N-way decompositions, we also apply it to a
four-way array to perform a blind identification of an under-determined mixture (UDM). Since anal-
ysis of this dataset happens to involve a serious convergence “bottleneck” (collinear factors in two of
the four modes), it provides another example of a situation in which ELS dramatically outperforms
standard line search.
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AMS subject classifications. 65B99, 15A69, 15A21

DOI. 10.1137/06065577

1. Introduction. PARAFAC can be seen as a generalization of two-way factor
analysis to multiway data. It was first introduced by Harshman in 1970 [9] based on
the principle of parallel proportional profiles (PP) proposed by Cattell in 1944 [4].
The PP principle states that if two (or more) different two-way models are described
by the same set of loading vectors but their relative proportions or weights change
from one model to the other, then those loading vectors lead to a new model which is
unambiguous with respect to (w.r.t.) rotation [4, 5, 2]. In other words, suppose that
the matrix X1 can be modeled:

X1 = a1b
T
1 c11 + a2b

T
2 c12 + · · · + aFbT

F c1F + E1,

where af and bf (1 ≤ f ≤ F ) are the columns of matrices A and B, respectively,
and E1 is a matrix of random disturbances (and/or other unmodeled variation). And
suppose that another matrix X2 can be modeled using the same set of loading vectors
only in different proportions (i.e., c11

c21
�= c12

c22
�= · · · c1F

c2F
):

X2 = a1b
T
1 c21 + a2b

T
2 c22 + · · · + aFbT

F c2F + E2.
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Then, we can build a combined model:

Xk = ACkB
T + Ek, k = 1, 2,(1)

where Ck is a diagonal matrix with the elements of vector ck in its diagonal, where ck
denotes the kth row of the slice weighting or “occasion weights” matrix C [13]. The
trilinear decomposition used in the model is also known as CANDECOMP for CANon-
ical DECOMPosition; it was introduced by Caroll and Chang in 1970 [3] to provide
a basis for fitting INDSCAL, an important generalization of multidimensional scaling
that provides unique dimensions and allows the estimation of dimension weights for
individual subjects. Alternatively, the model can be written in scalar form as

Xijk =
∑
f

AifBjfCkf + Eijk.

Matrices A, B, and C are called loading matrices.
The three-way PARAFAC model, along with its extension to higher orders [9, 3],

has most often been applied in psychometrics and chemometrics [26, 27], and in the
signal processing area [18, 6, 7]. While the two-way factor model suffers a rotational
indeterminacy that yields an infinite set of solutions, the PARAFAC model enjoys a
uniqueness property under conditions that often can be met in real data situations.
Uniqueness properties have been studied by multiple authors, with some of the most
important general results found in [10] and its recent generalization [15], the Kruskal
theorems in, e.g., [16], and the extensions in [26], and elsewhere. Progress in this
area is ongoing—for example, in the case of “tall” arrays, a significantly more relaxed
condition has been derived in [19]. A relatively complete list of relevant articles up
to 2006-07 can be found in [15].

A variety of algorithms have been used to fit the PARAFAC model (for a detailed
summary and discussion; see, e.g., [28]. The most widely used is the alternating least
squares (ALS) algorithm. The convergence of ALS was found to be very slow in some
cases, typically when two factors are almost collinear. Line search [2, 24] is one of
the most important solutions proposed to cope with the problem of slow convergence.
We focus in this paper on the line search solution and present a generalization of
this method for speeding up ALS; we discuss its simplest version and demonstrate
that it can exhibit very good performance in some circumstances, yet perform less
successfully in others—opening interesting directions for further exploration. We call
this method enhanced line search (ELS).

A regularized (ridge) regression was proposed by Rayens and Mitchell in [23]
to speed up the ALS algorithm in case of ill-posed problems. While the estimates
produced by ridge regression are biased, they suggested ways of dealing with this,
including a switch back to regular ALS estimation at the end of the fitting procedure,
when the approximate solution has been reached. They designed their method to
avoid difficulties which they called convergence “swamps,” characterized by high factor
collinearity in all three modes. We will see that ELS (at least the simple version tested
here) is most successful with a different kind of convergence difficulty.

In [22], Paatero proposed the multilinear engine (ME) program to accelerate the
fit of the PARAFAC model. ME changes all of the sets of parameters at once, whereas
ELS is based on ALS, and updates alternatively each of the loading factors.

In [8], Franc proposed an acceleration to the convergence of PARAFAC based on
a gradient method. In fact, the loading matrices A, B, and C are updated using the
gradient descent.

A closed-form solution to fit the PARAFAC model was proposed by Sanchez
and Kowalski in [25]. It reduces the problem to a rectangular eigenvalue-eigenvector
equation, but it needs at least two of the loading matrices to be linearly independent.
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Another closed-form solution for three-way arrays, and based on a single matrix eigen-
value decomposition (EVD) was presented in [21] by Leurgans, Ross, and Abel. It also
requires that two of the loading matrices are linearly independent and that every pair
of columns of the last loading matrix is linearly independent. Previous approaches
are made more robust in [20] by taking all matrix slices into account, which leads to
a simultaneous matrix decomposition. All of these methods require that the array
rank (as defined in [17], for instance), F , is less than or equal to two of the array
dimensions. In [19] De Lathauwer generalizes the approach presented in [20] to the
case where F is less than or equal to one of the array’s dimensions, and subject to a
condition involving the product of the remaining array dimensions. One advantage of
ELS is that it can be applied even if the previous conditions are not met.

2. Model and notation. We consider the three-way PARAFAC model of ex-
pression (1). This model can be written in a compact form using the Khatri–Rao
product � (columnwise Kronecker product) as, possibly up to an error term,

X(I×JK) ≈ A(C � B)T ,

where matrices A, B, and C are matrices of size I×F , J×F , and K×F , and X(I×JK)

is the matrix of size I×JK obtained by unfolding the array X of size I×J×K in the
first mode. There exist several algorithms that fit the PARAFAC model. We focus
on the most widely used among all: the ALS algorithm. ALS consists of estimating
one of the three matrices at each step by minimizing in the least squares sense the
error

Υ =‖ X(I×JK) − A(C � B)T ‖2
F ,

where ‖ • ‖F denotes the Frobenius norm. With matrices B and C fixed to initial
values, the estimate of A in the least square sense is given by

Â = X(I×JK)(Z+
a )T ,(2)

where Za = C�B and (+) is the Moore–Penrose pseudoinverse. We estimate matrices
B and C in an equivalent way, with Zb = A�C and Zc = B�A, and repeat the same
steps until a convergence criterion is reached—typically when the error Υ exhibits,
between two iterations, a change smaller than a predefined threshold, which varies
depending on the data. For simple data it can be set to 10−6, for example, but it
should be smaller for difficult data, 10−10, for example. Note that, in order to avoid
a threshold that is scale dependent, a relative error can be used instead, or array X
can be prenormalized by its Frobenius norm.

We summarize the steps of the ALS algorithm in Figure 1.
It sometimes happens that the convergence needs a very large number of itera-

tions. Choosing good starting values will, in some cases, help to reach the global
minimum very quickly. Sometimes, however, it is impossible to reach a global mini-
mum quickly by ALS from any starting point because the solution is embedded in a
deep swamp, or is in fact unreachable at the solution rank, and can only be approached
through an infinite series of diverging better fitting sets of loadings, as described by
Kruskal.

3. Line search. Bro (in [2, p. 95–96]) and Harshman (in [9, p. 32–33]) have
pointed out the important fact that, when the convergence is slow, there exist cycles
of convergence defined by a unique direction. Within a given cycle, the loading factors
evolve in the same direction to the final solution of that cycle. The following cycles
exhibit the same scenario. The convergence within the cycle can take several itera-
tions. To limit the number of iterations of a given cycle, Harshman and Bro propose
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Step 2c :

Step 2b : Estimate B(it) using A(it) and C(it−1)

Estimate C(it) using A(it) and B(it)

Estimate A(it) from expression (2) using B(it−1) and C(it−1)

A(it−1)
Step 1 : Initial Values

B(it−1) C(it−1)

Step 3 :

• if |Υ(it) − Υ(it−1)| ≤ threshold, stop

• if |Υ(it) − Υ(it−1)| > threshold, go back to step 1 with A(it), B(it),

and C(it) as initial values

Compute the new error Υ(it) = ||T(I×JK) − A(it)(C(it) � B(it))T ||2F :

Step 2a :

Fig. 1. Steps of the ALS algorithm.

to extrapolate, or more precisely, they propose to predict the value of the loading
factors a certain number of iterations ahead by computing a sort of linear regression:

A(new) = A(it−2) +RLS(A(it−1) − A(it−2))(3)

A(it−1) is the estimate of matrix A obtained in the ALS iteration (it−1), and A(new) is
the matrix that will be used in the itth iteration instead of A(it−1). (A(it−1)−A(it−2))
defines the direction of the cycle. Matrices B(new) and C(new) are obtained in an
equivalent way using the same relaxation factor RLS . Of course, extrapolation should
be very simple and does not make sense if it requires more time than the corresponding
iterations. The simplest case is, of course, when RLS is given a fixed value (between
1.2 and 1.3) [9], or is set to it1/3 [2].

At every iteration it, the “new” loading factors are used to compute the error

Υ(new) =‖ X(I×JK) − A(new)(C(new) � B(new))T ‖2
F .(4)

If Υ(new) ≥ Υ(it−1), then this means that we went too far in the extrapolation
because RLS is too large; RLS is decreased, and we take the loading factors of iteration
(it− 1) instead of the “new” ones. However, if Υ(new) < Υ(it−1) then acceleration is
accomplished and we gain some iterations.

The steps of the ALS algorithm with line search, as proposed by Andersson and
Bro in [1], are summarized in Figure 2. The dashed area corresponds to the line search
part.

Line search is executed after a few iterations of the ALS algorithm in order to wait
for the system to stabilize. In [1] “few” is set to 6 but it could be higher depending on
the data. The relaxation factor RLS is defined for iteration (it) by : RLS = it1/n, with
n fixed to 3 at the beginning of the simulation. When the acceleration fails several
times (5 times in [1]), RLS is decreased to it1/(n+1) and A(it−1), B(it−1), and C(it−1)
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Step 2 :

Step 3 :

• if |Υ(it) − Υ(it−1)| ≤ threshold, stop

Υ(new) < Υ(it−1)

?

Initial ValuesStep 1 :
B(it−2), B(it−1)A(it−2), A(it−1) C(it−2), C(it−1)

A(new) = A(it−2) + RLS(A(it−1) − A(it−2))

C(new) = C(it−2) + RLS(C(it−1) − C(it−2))

B(new) = B(it−2) + RLS(B(it−1) − B(it−2))

Compute the error Υ(new) and compare it with Υ(it−1)

Go to step 4 with : A0 = A(new) Go to step 4 with : A0 = A(it−1)

B0 = B(new)

C0 = C(new)
B0 = B(it−1)

C0 = C(it−1)

YES

YES NO

NO

Compute A(new), B(new), and C(new) using the linear regression of expression (3)
Line Search Steps

A(it) = X(I×JK)(Z+
a )T with Za = C0 � B0

B(it) = X(J×IK)(Z+
b )T with Zb = A(it) � C0

C(it) = X(K×IJ)(Z+
c )T with Zc = B(it) � A(it)

Estimate A(it), B(it), and C(it) using expression (2) and A0, B0, and C0 :

Compute the new error Υ(it) = ||X(I×JK) − A(it)(C(it) � B(it))T ||2F :

• if |Υ(it) − Υ(it−1)| > threshold, go back to step 1 with : it ← it + 1

Step 5 :

Update A(it−1) = A0

B(it−1) = B0

C(it−1) = C0

Step 4 :

Fig. 2. Steps of the ALS algorithm with LS.

are used to update the loading factors of the current iteration (it) as described by
the graph in Figure 2 at the end of the third step. However, when Υ(new) < Υ(it−1),
matrices A0, B0, and C0 are set to A(new), B(new), and C(new), respectively. After
estimating the loading factors at step 4, we update the loading matrices of iteration
(it − 1) to A0, B0, and C0, and use them with those of iteration (it) for the next
iteration (unless the algorithm has converged).

The fact that RLS has a small value would suggest that the acceleration is not
very efficient. This is not true since the effect of RLS is compounded from one iteration
to the next, leading eventually to a noticeable reduction of the number of iterations,
as shown in Figure 10.

This linear extrapolation was applied to our synthetic data in section 5.6, as a
basis for comparison with our ELS method. We will see that it can produce a clear
improvement, for example reducing iterations in one example from about 10,000 to
5,000. However, since the number required is still high, it is still of interest to look
for a novel method to reduce the number of iterations even further.

4. Enhanced line search (ELS). The idea of the enhanced line search (ELS)
consists of seeking the optimal relaxation factor RLS that leads to the final solution of

a given cycle in only one step. For iteration (it), define G
(it)
a = A(it−1)−A(it−2) as the
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direction of the cycle for loading matrix A. G
(it)
b and G

(it)
c are defined equivalently.

Instead of fixing a single value RLS for the three modes as in expression (3), we may
look for the optimal triplet (Ra, Rb, Rc) that minimizes

ΥELS =‖ X(I×JK) − (A(it−2) +RaG
(it)
a )(

(C(it−2) +RcG
(it)
c ) � (B(it−2) +RbG

(it)
b )

)T
‖2
F .(5)

ELS is performed at the beginning of the ALS algorithm as shown in Figure 3, where
step 1′ corresponds to the ELS part. Relaxation factors applied to the loadings are
no longer fixed as for the line search method in Figure 2, but they are computed
at step 1′ of Figure 3 as the optimal values that provide the smallest error ΥELS .
At step 3, after estimating the loading matrices of iteration (it), we update those of
iteration (it− 1) to A(new), B(new), and C(new). Loading matrices of both iterations
(it−1) and (it) will then be used in the next iteration if the algorithm does not reach
convergence.

The optimal solution is obtained when we jointly minimize ΥELS w.r.t. the three
different factors Ra, Rb, and Rc. In this case the problem consists of solving a system
of three polynomials in three unknowns, which leads to a high numerical complexity.
Solutions with a smaller complexity are obtained by taking only two unknowns, or the
same factor for all the modes R = Ra = Rb = Rc. Some of the possible optimizations
are listed below:

• (Ra, Rb, Rc) which gives the optimal solution and involves a polynomial in
three unknowns of degree 6.

• (R,R,Rc) where we use the same factor for A and B and we minimize ΥELS

w.r.t. two variables R and Rc. This involves a polynomial in two unknowns
of degree 6.

• (R,R,R) where we use the same factor for all matrices and involves a poly-
nomial in a single unknown of degree 6.

• R(Rb, Rc) where we use the relaxation factor of line search R = it1/3 for
matrix A, and minimize (5) w.r.t. Rb and Rc. This involves a polynomial in
two unknowns of degree 4.

• R(R,R) which is the same as R(Rb, Rc) with Rb = Rc, and involves a poly-
nomial in a single unknown of degree 4.

• R,R(R) where we optimize only w.r.t. to Rc.

In this article, the exploration of alternative ELS models is initiated by imple-
menting (R,R,R), which is the simplest one that is “fully ELS.” In this case, the error
ΥELS is a polynomial of degree 6 in R (we omit the iteration index (it) to simplify
the notation):

ΥELS(R) =
∑
ijk

⎛⎝Xijk −
F∑

f=1

(Aif +RGa,if )(Bjf +RGb,jf )(Ckf +RGc,kf )

⎞⎠2

=

6∑
d=0

pdR
d,(6)

where pd, d = 0, . . . , 6 are functions of observed values stored array X and coefficients
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of loading matrices of iterations (it − 1) and (it − 2); the expression of pd are given
in section A.2. To find the optimal R it suffices to determine the roots of polyno-
mial Υ′

ELS(R), which provides five possible values of R. We feed those values into
expression (6) and keep the one that gives the smallest error ΥELS .

Step 2 :

Update

• if |Υ(it) − Υ(it−1)| ≤ threshold, stop

Find optimal (Ra, Rb, Rc) that minimizes :

ΥELS = ||X(I×JK) − (A(it−2) + RaG
(it)
a )
(
(C(it−2) + RcG

(it)
c ) � (B(it−2) + RbG

(it)
b )
)T

||2F

Estimate A(it), B(it), and C(it) using expression (2) and A(new), B(new), and C(new) :

A(it) = X(I×JK)(Z+
a )T with Za = C(new) � B(new)

B(it) = X(J×IK)(Z+
b )T with Zb = A(it) � C(new)

C(it) = X(K×IJ)(Z+
c )T with Zc = B(it) � A(it)

Compute A(new), B(new), and C(new) using the linear regression of expression (3)

Line Search Steps

Enhanced Line Seach

Step 1 : Initial Values
A(it−2), G

(it)
a B(it−2), G

(it)
b C(it−2), G

(it)
c

Step 1’ :

Step 3 :

A(new) = A(it−2) + RaG
(it)
a

B(new) = B(it−2) + RbG
(it)
b

C(new) = C(it−2) + RcG
(it)
c

Compute the new error Υ(it) = ||X(I×JK) − A(it)(C(it) � B(it))T ||2F :

• if |Υ(it) − Υ(it−1)| > threshold, go back to step 1 with : it ← it + 1

B(it−1) = B(new)

C(it−1) = C(new)

Step 4 :

A(it−1) = A(new)

Fig. 3. Steps of the ALS algorithm with ELS.

To obtain some insight into whether the extrapolation is likely to be advantageous
in the short-range sense (cf. question (i) posed at the end of this section), we can
estimate the relative computation required by a single ELS iteration compared to LS.
To do this, we compute the complexity of ALS and compare it with the complexity
of optimization (R,R,R), for example. At each ALS iteration the following steps are
performed:

1. Compute the optimal relaxation factor R by minimizing expression (5). To
do so, take the derivative of (5) w.r.t. R, and root the obtained polynomial
of degree 5 in one unknown.

2. Compute the new loading factors as in (3) and compute the corresponding
error Υnew given by expression (4).

3. Use A(new), B(new), and C(new) as starting values for the PARAFAC itera-
tion instead of A(it−1), B(it−1), and C(it−1), and estimate the first loading

factor Â as shown in (2).
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4. Perform step 3. To estimate each of the remaining loading factors B̂ and Ĉ,

by using matrices Â and C(new) to estimate B̂, and matrices Â and B̂ to

estimate Ĉ.

According to the details given in section A.1, one (ALS+ELS) iteration corre-
sponds to about (F + 7F 2)(IJ + JK + IK) + 3IJKF + 11F 3 + 2F 2(I + J +K) +
(8F + 10)IJK multiplications. For instance, this equals 2601 multiplications, when
I = 2, J = 3, K = 3, and F = 3. Without ELS, ALS requires (F + 7F 2)(IJ + JK +
IK) + 3IJKF + 11F 3 + 2F 2(I + J + K), which means 1989 multiplications in the
same conditions. On the other hand, ELS makes the number of iterations decrease
from 7100 to 250 iterations, hence allowing a decrease of the overall complexity from
14121900 to 650250 multiplications.

It is worth noting that Υ(new) is always smaller than Υ(it−1) when we use optimal
values for Ra, Rb, and Rc as is the case for the first three optimizations. However,
when we use a fixed relaxation factor as in LS, Υ(new) can exceed Υ(it−1), which
means that the acceleration may fail.

This can explain the fact that, in theory, a single iteration of ELS should always
improve fit as much as and almost always more than LS at any given point in the
solution space. The questions then become: (i) Does the fit improvement turn out to
be more beneficial than the cost of added computation is detrimental? (ii) Does the
method find a significantly better path to the solution? Question (ii) is particularly
important in cases where progress becomes very slow because of local characteristics
of the hypersurface along which the fitting procedure is moving. Question (ii) is much
subtler than (i). For example, one can easily imagine that a good long-range method
might trade off some locally slower steps for a much better path a bit further along
(a shortcut just over the horizon). This sort of question can only be answered well
through application of a method to simulated and/or real data.

5. Computer results. To compare the performance of ELS to LS, a standard
PARAFAC program was minimally modified to change the line search to ELS and to
record time and fit information on each iteration. The test datasets were three-way
and four-way synthetic data arrays, constructed according to the PARAFAC model to
have specific kinds of factor structure and levels of random error. Then, in each test,
the two algorithms were given identical problems; that is, they were given the same
synthetic datasets, with the same analysis options, and started from the same random
starting positions. This allowed us to compare the progress of the two methods step-
by-step as they proceeded from a given starting point toward the best least-squares
solution.

To obtain a general picture of the relative performance of ELS and LS, we con-
sidered a wide range of datasets1. A fully systematic exploration has not yet been
completed, and even the partial results obtained so far require much more space than
is available for this article, so we present here summary conclusions for each of our
main test conditions, and give a few illustrative examples.

In most experimental conditions (i.e., most of the data structure types tested),
the iteration count for ELS was substantially lower than that for LS, and in no con-
dition was it (reliably) higher. This is consistent with the theoretical expectations
described earlier. On the other hand, ELS execution times were longer than LS by

1We took as our “standard” the PARAFAC function contained in Andersson and Bro’s
[1] N-way Toolbox for MATLAB (which may be found at http://www.models.kvl.dk/source/
nwaytoolbox/index.asp). The same MATLAB code was used except that the ELS extrapolation
code replaced the LS extrapolation code in the function. In both versions of the PARAFAC func-
tion, a few lines were inserted that obtained time information on each iteration and saved it along
with the current value of fit computed by the program at that iteration. Release 7 of MATLAB was
used in all experiments.
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more than we expected—generally the ratio of ELS to LS execution time per iteration
was always the same for any given problem, but was larger than we would predict
from our approximate estimates of complexity computation; despite streamlining and
vectorization of the code, the ELS to LS ratio was still somewhat larger than our com-
plexity estimates by roughly a factor of three. This might be due to inefficiencies in
our ELS algorithm, or perhaps some particularly efficient features in the LS code, or
as yet unanticipated considerations. Since reduction in the execution time is the goal
of the proposed method, we feel that it is important to communicate both the time
and iteration reductions we have observed, even though we are not yet sure of how to
interpret the time information (or even whether or not it is somehow artifactual). We
will describe a theoretical adjustment that brings times in line with computational
complexity, and this provides one way of dealing with the current uncertainty in our
timing results.

Complexity differences. In applications where the rank F is small in the sense of
inequality (7) given in the appendix, the (R,R,R) version of ELS will significantly
increase the complexity per iteration, and hence the CPU time required per iteration
over that of LS. Whether or not ELS is attractive thus depends in part on the problem
size and dimensionality.

Datasets sizes and numbers of factors to be extracted from them vary from one
discipline to the next. In chemometrics and signal processing, typical problems might
involve data arrays of the order of 60×60×20 and perhaps three or four factors to be
extracted. In such cases, the computational complexity of ELS is approximately three
times that of LS, at least as estimated by the formulae in the appendix. For these
problems, use of ELS would be attractive only for classes of problems in which it is
clearly superior to LS in ability to traverse the curvature of the solution space. To
provide a benefit beyond the use of LS, the ELS method needs to reduce the number
of iterations required by LS.

It turns out that a single “bottleneck”—one of the most common and simple
kinds of convergence slowdown—appears to have the required properties. We have
also found other classes, such as triple bottleneck, where ELS will actually increase
substantially the time needed to find the solution.

The data variation that turned out to have the most important impact on the
relative performance of the two methods was the factor correlation structure both
within and across modes. When no modes had collinear factors and all factors were of
roughly equal size, there was no convergence difficulty for either method. For example,
midsized datasets (e.g., 45×40×35) often satisfied the convergence criterion—usually
a change in root mean square error (RMS) of 10−8 between successive iterations—in
15–75 iterations. ELS usually took fewer iterations to converge, but the iterations
were slower. In other words, with our MATLAB implementation, ELS often took on
the order of 15%-25% more time than LS to reach the convergence criterion, even if
figures given by computational complexity calculations are more optimistic.

5.1. Dealing with bottlenecks. We have considered several different situa-
tions where convergence of ALS PARAFAC algorithms become slow, but have focused
mainly on the one that is the simplest and (outside of the social sciences) the most
common: simple factor collinearity. This has several different versions; some or all
factors can be collinear in one or several factor loading matrices that define the vari-
ation structure of an array. We only briefly look at the other important case—the
more complicated kind of convergence difficulties caused by “degenerate PARAFAC
solutions.”

When one of the factor matrices in the optimal solution has two or more collinear
columns, resolving them can seriously slow down the overall progress of ALS estima-
tion of the factors, even though the solution may eventually be well defined. Harshman
terms this situation a “bottleneck” [12]. When such collinearity is present in two or
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three modes of the array (i.e., two or three of the “latent” factor loading matrices),
then one has a structure with a “double” or “triple” bottleneck. We created synthetic
data involving single, double, and triple bottleneck structure to test the performance
of ELS vs. LS in these conditions. The (R,R,R) version of ELS that we used for
these tests behaved quite differently in single vs. multiple bottleneck situations—at
least for three-way arrays.

5.2. Single bottleneck situations: When factors in one mode are collin-
ear. In our tests, ELS always outperformed LS when only one mode had factor
loading vectors that were almost collinear, providing the analysis reached a global
optimum in which all factors were approximately recovered. The time and iteration
values observed in one such run are shown in Figure 4.
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Fig. 4. Performance of ALS with both LS or (R,R,R)-ELS accelerations, on a 12 × 11 × 10
array of rank 5, in the presence of a single bottleneck (3 factors out of 5 are almost collinear in one
of the 3 modes).

The example shown is for an array with 5 factors and the lowest level of random
noise used in the tests (0.1%). Three of the factors were almost collinear (separated by
10 degrees in the Mode C factor space) while the other two were roughly orthogonal to
the other factors. The shape of the curves is quite similar. This suggests that the two
algorithms are following “similar” or somewhat parallel paths through the solution
space, and are encountering a similar sequence of more and less difficult regions in
the solution space, but they are progressing at different rates because ELS tends to
make bigger improvements in fit. As shown here, ELS often reduced the total number
of iterations by approximately an order of magnitude, but because its iterations took
somewhat longer (at least with our MATLAB implementation), the time reduction
was between half and two-thirds of the size of the reduction in iterations. The fit and
time curves in Figure 4 are based on a relatively small dataset (12× 11× 10 with five
factors). In that case, index (7) is 1.37, which shows that an ELS iteration is more
complex than LS.
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Fig. 5. Performance of ALS with both LS or (R,R,R)-ELS accelerations, on a 80 × 60 × 20
array of rank 5, in the presence of a single bottleneck.

With the larger dataset considered next, index (7) is even smaller, and the relative
computational complexity of ELS is at least three times that of LS per iteration. Our
MATLAB implementation takes closer to 9 times as much time, for reasons that we
are not yet able to fully explain. ELS is, however, still attractive in this low-rank
large-dimension case, despite the relatively high complexity per iteration.

Note the clear two-step pattern in Figure 5, both in the fit drop and in the
associated time needed at each successive iteration (i.e., two-iteration values are close
to one another, and then there is a larger interval, and two are close to one another
again). The pattern is present in both curves, but is much more obvious in the ELS
curve because of the rapid drop in fit at every other step. This “paired-step”pattern is
due to the way LS is currently implemented in the PARAFAC function for the N -way
toolbox. The program collects two sets of loadings, from two successive iterations,
and then extrapolates based on those two, and collects two more, etc. Thus the
extrapolation occurs on every other iteration. Because ELS was incorporated into the
exact same loops that governed LS, it too is applied on every other iteration.

Our tests indicate that LS is considerably more effective when the extrapolation
is performed on every iteration, as in the original extrapolation used in Harshman
1970 [9]. However, we concentrate in this article on a direct comparison of paired-
step LS with paired-step ELS (we have also begun some comparisons between the
two methods when both are performed at every iteration, and our preliminary results
suggest that in this case the performance difference between them is smaller).

For this dataset, as with all other “single bottleneck” cases we have tested, paired-
step ELS clearly outperforms paired-step LS—so long as they find the global optimum.
However, when the path taken by an analysis traps it in a local optimum, or when
some of the highly collinear factors are too poorly resolved due to error in the data,
the behavior of LS and/or ELS changes and the time advantage offered by ELS is
reduced or eliminated. ELS continues to require fewer iterations, but the difference
between the counts becomes small enough that ELS does not reduce the overall time
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(at least with our MATLAB implementation).

5.3. Multiple bottlenecks and degenerate solutions. Multiple bottlenecks
and degenerate solutions appear when experimental requirements or practical limi-
tations in data collection make collinearity of some factors unavoidable; this most
commonly applies to only one mode of the data array. The previous results are for
single-mode bottlenecks which leads us to the tentative conclusion that for such cases
ELS would seem an attractive estimation method. There are situations, though, in
which some subset of the factors will be collinear in two modes, or even in all three
modes of a three-way array. Our experiments therefore simulated these (less common)
kinds of data as well. We found that the advantage of ELS does not generally extend
to these situations. The curvature of the path to the optimum gets more compli-
cated and apparently makes ELS “shortcut” methods less successful. This is another
demonstration of the subtlety of the considerations involved in nonlinear extrapolation
of PARAFAC solutions.

Neither double- nor triple-bottleneck situations benefited much from the simplest
(R,R,R) version ELS. In general, the time required by our MATLAB implementation
to reach the converged solution was increased. However, our test cases often were hard
to fit, so we had to take care to distinguish global optimum cases from local optimum
ones. To obtain global optima with adequate frequency in the double-bottleneck case,
the angle between factors had to be increased to moderate values (25 degrees in the
case of Figure 6), making the collinearity in individual factor spaces less extreme
but the combined effects of the collinearity in the two or three modes was still fairly
severe. Unfortunately, even in clear cases of having reached the global optimum,
where recovery of all factors was close to perfect (when the noise level was set at
0.001), the ELS method usually took longer (in CPU time) to converge than simple
LS. Figure 6 shows the results of one such triple-bottleneck case.
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Fig. 6. Performance of ALS with both LS or (R,R,R)-ELS accelerations, on a 80 × 60 × 20
array of rank 4, in the presence of a triple bottleneck.



ENHANCED LINE SEARCH 13

5.4. Degenerate and quasi-degenerate solutions. There is another impor-
tant situation in which serious convergence difficulties arise. This happens when the
factors are not particularly collinear on average, but the angle between them varies
greatly across levels of the array (i.e., differs across values of the third array index).
This kind of variation in factor structure is not consistent with the PARAFAC model.
However, PARAFAC can fit part of the “axis wobble” or “Tucker Variation” [14] by
reweighting axes after the space has been sheared [11]. Thus, when too much axis
“wobble” is present, the A, B, and C factor spaces become inversely sheared to better
fit it, creating a “degenerate solution,” which involves strong collinearities and seri-
ously impedes convergence. Degenerate solutions are usually dealt with by imposing
constraints. However, speedup methods like ELS could be useful if they accelerated
progress through “swamps” or deep into a swamp to find a final solution. In our initial
tests of the (R,R,R) method, ELS has not been helpful in dealing with swamps, but
it is not unreasonable to conjecture that versions more sophisticated than (R,R,R),
as suggested in section 4, might do better in these situations.

5.5. A four-way example with two collinear and two noncollinear modes.
From the experiments reported so far, it is unclear whether the relative lack of ELS
success when applied to factor structures with double and triple bottlenecks is because
of too many bottlenecks or too little “wiggle room.” That is, we cannot distinguish
the cases that have multiple modes with bottlenecks from those that do not have mul-
tiple modes without bottlenecks. In the present section, we report some earlier studies
on the impact of ELS on ALS in four-way arrays. In these arrays, two modes have
almost collinear factors and two do not. If multiple bottlenecks is what creates the
convergence problem, then ELS should also encounter difficulties in these datasets. If
lack of “wiggle room” is what creates the convergence problem, then ELS should be
better at dealing with double bottlenecks.

The experiments we are about to describe are simpler in two important ways:
(a) the tests did not measure or record execution time information; (b) the datasets
were constructed as error-free arrays, that is, without adding any random noise. The
first limitation makes the interpretation difficult, but the dramatic reduction in itera-
tion counts does appear impressive when compared to the relatively modest differences
in iterations in, for example, Figure 6. The second limitation can be minimized by
qualifying our interpretation. The difference is nontrivial because when collineari-
ties are combined with error, it can complicate the algorithm’s task of resolving the
highly similar factor profiles. However, the results are still informative if considered
as demonstrating certain theoretical/mathematical properties of four-way (R,R,R)-
ELS. They might also be interpreted as simulations of real world cases where the
error is sufficiently small to make the behavior of the algorithms roughly equivalent
to those found in these error-free cases.

We consider the four-way PARAFAC model:

Xijkl =

F∑
f=1

AifBjfCkfDlf ,

where

A =

(
1 cos(θ) 0 sin(θ)
0 sin(θ) 1 cos(θ)

)
,

B =

⎛⎝ 3 cos(θ) 0 sin(θ)
0 sin(θ) 1 cos(θ)
0 sin(θ) 0 sin(θ)

⎞⎠ ,
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and C and D are randomly generated matrices of size 3 × 4. The collinearity is
controlled through variable θ. We take θ = π/60 in Figures 7 and 8. The first and
second columns of each of the matrices A and B are almost collinear as θ is very close
to zero (θ 	 0.052). The same thing holds for the third and fourth columns of A and
B.

This example demonstrates one of the cases where results of [25] and [21] cannot
be applied, since there are more columns than rows in the loading matrices and so
they do not have full column rank.

We notice from Figure 7 that ELS reduces the number of iterations needed to meet
the criterion for approximate convergence from more than 10000 to about 2000! We
report in Figure 8 the median of the loss function for one dataset, over 100 independent
trials (with 100 different random initial values). We notice that even though ALS + LS
reaches the error 10−4 very quickly, it is then trapped for many iterations (“trapped
in the bottleneck”). In contrast, ALS + ELS escapes comparatively quickly from the
bottleneck (after 1000 iterations) and converges to smaller values of the error 10−12,
while ALS and ALS+LS remain in the plateaux 10−4 and 10−5, respectively.
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Fig. 7. Loss function Υ as a function of the number of iterations for ALS with LS, and ELS
with optimization (R,R,R,R) for θ = π/60.

Figure 9 appears to confirm this hypothesis by showing more frequent changes in
parameter sets. It gives the variation of the coefficients of matrix Â as a function of
the number of iterations. During progress through a bottleneck, the variation of Â
coefficients is very small and this increases when we get out of the bottleneck. The
same thing is evident in matrices B̂ and Ĉ.

5.6. ELS applied to blind channel identification of an UDM. This second
four-way example demonstrates an application of ELS to blind identification of an
under-determined mixture (UDM). Specifically, we use ELS to accelerate ALESCAF,
the algorithm proposed in [7] for blind channel identification based on the character-
istic function in an UDM.

Using the notation defined in [7], ALESCAF leads to a four-way PARAFAC
model:

T(P×KP 2) = A(D � A � A)T .



ENHANCED LINE SEARCH 15

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Number of Iterations

Lo
ss

 F
un

ct
io

n

ALS
ALS + LS
ALS + ELS (R, R, R, R)

Fig. 8. Loss function Υ as a function of the number of iterations for ALS with LS, and ELS
with optimization (R,R,R,R) for θ = π/60, median value over 100 independent trials.

The array T contains the third derivatives of the joint characteristic function of
the observations computed at K points of the grid Ω. Matrix D is obtained from the
independence property of the sources and its entries are defined as

Dkn = ψ(3)
n

(∑
q

Aqnuq[k]

)
,

where 1 ≤ k ≤ K and 1 ≤ n ≤ N . A is the channel matrix of size 2 × 3 to be
identified.

As in our earlier tests, we use the MATLAB ALS implementation of PARAFAC
made available by Andersson and Bro (http://www.models.kvl.dk) and described in
[1]. Also as before, we create our ELS version by replacing their LS procedure by our
ELS procedure, this time the (R,R,R,R) version. The three sources are BPSK, and
we generate an “infinite block” of data by taking all of the 23 possible combinations of
{−1, 1}, and we take 10000 as the maximum number of iterations. As in the previous
four-way example, noise is not taken into account.

In Figure 10 we report the gap between estimated and actual mixing matrix using
ELS and compare it with ALS with LS and nonaccelerated ALS. Figure 11 gives the
error as a function of the number of iterations. The figure shows that ELS is very
useful for reducing the number of iterations needed in three-bottleneck versions of
four-way arrays. The number of iterations decreases from 5000 when using ALS with
LS, to 500 when using optimization (R,R,R,R) of ELS. On the one hand, these results
seem to be too dramatic to be “canceled out” by increases in iteration time, but on
the other hand, the LS and ELS parameter changes (Figure 11) make us somewhat
more cautious, since these seem more similar.

Overall, these four-way results encourage us to hope that when there is at least
one mode that is free of collinearities, this type of ELS might be generally helpful.

A few cautionary points should be noted: When making comparisons of the me-
thods, it might be wise to underemphasize the dramatic ELS drops of the error (or
objective function) when the value falls below something like 10−3 or 10−4, since
these would be impossible with most real data containing measurement error or other
disturbances of the data values. It is also not known how the behavior in the graphs
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Fig. 9. Â coefficients as a function of the number of iterations.
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Fig. 10. Gap between estimated and original channel matrix as a function of the number of
iterations using ALS, ALS with LS, and ALS with ELS.

associated with our four-way examples might be modified even at higher levels by the
presence of random error; the three-way experiments suggest that some differences
can be expected.

6. Concluding remarks. ELS is a novel technique aiming at accelerating con-
vergence of the ALS algorithm when used to fit the PARAFAC model. Our simulations
indicated that ELS could be a very attractive way to deal with “single bottleneck”
situations—three-way arrays that have factor collinearities in one of the modes. As
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Fig. 11. Loss function Υ as a function of the number of iterations using ALS, ALS with LS,
and ALS with ELS.

shown in Figures 4 and 5, ELS often decreased the number of iterations by an order
of magnitude and the time to convergence by at least half to two-thirds of an order of
magnitude (except when trapped in a local optimum). This was more than enough to
counterbalance the longer iteration times due to the higher computational complexity.

On the other hand, in double- and triple-bottleneck three-way factor structures
(i.e., where at most only one mode is free of collinearities), the (R,R,R) version of
ELS that was tested here did not offer an advantage, but instead appeared to lengthen
the overall time to convergence. However, we remain open to the possibility that our
MATLAB time information is somehow unrepresentative or at least does not reflect
what might be possible.

Two applications involving four-way arrays (with high rank) lacked information
on execution time but some comparison based on computational complexity ratios
could be a basis for tentative predictions. The encouraging reductions in iterations
seen here open up the possibility that even when an array has three modes with
collinearities, this is not necessarily a problem for ELS—if there is also one mode
without factor collinearities. This possibility should be explored further.

This article presents some initial exploration of a nonlinear approach to ALS ex-
trapolation, but the investigation is obviously a work in progress. Our theoretical
understanding of multistep properties of ELS is still quite incomplete. We have iden-
tified some classes of problems where it works better than LS and others in which it
may not. The dramatic improvements that can be obtained by ELS in “single bot-
tleneck” situations is well demonstrated. And even if the (R,R,R) implementation
of ELS reaches its limits and does not perform significantly better than LS in the
absence of two noncollinear modes, or in the presence of convergence swamps arising
from “degenerate PARAFAC solutions,” there may be other implementations of ELS,
such as that called R(R,R) in section 4, which could be more successful in these
circumstances. These issues remain to be studied.

Appendix A.

A.1. ELS steps and complexity. During one iteration of the ALS algorithm,
the following operations are performed (we list the operations for the estimation of
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Â, but similar operations are required for the two other loading factors):

1. Compute the Khatri–Rao product to obtain matrix Za. This costs FJK
multiplications.

2. Compute Z+
a by reduced SVD of Za, which requires 7JKF 2 + 11

3 F
3 multi-

plications.

3. Estimate the factor loading Â as shown in expression (2), which requires
IJKF + IF 2 + IF multiplications (if we assume F ≤ JK).

As a consequence, the whole ALS iteration for the 3 modes requires an order of
(F + 7F 2)(IJ + JK + IK) + 3IJKF + 11F 3 + 2F 2(I + J +K)multiplications.

Now let us evaluate the additional computational complexity involved by ELS. In
order to do this, note that the ELS criterion can be rewritten as

ΥELS =
∑
ijk

[
Yijk +RDijk −R2Eijk +R3 Fijk

]2
.

The explicit calculation of arrays Y, D, E, and F requires an order of 8IJKF mul-
tiplications. Next, the calculation of the coefficients of the degree-6 polynomial in R
requires 10IJK multiplications. The computation of stationary points and the selec-
tion of the absolute minimum yield a negligible complexity since of order O(53). As a
conclusion, the additional complexity generated by ELS is thus of order (8F+10)IJK
multiplications when we choose the optimization with respect to a single factor R,
that is, (R,R,R) for a three-way PARAFAC model. This is not negligible and can be
considered to be small only for large enough F and small enough dimensions. More
precisely, if

F

(
1

I
+

1

J
+

1

K

)

 1,(7)

then the additional complexity required by ELS may be considered to be negligible
over that of LS. For instance, this is the case of generic arrays of size (I, J,K) =
(10, 10, 10), which have a rank F = 36.

More generally, it is interesting to evaluate the computational complexity for N -
way arrays of size I1 × I2 × . . .× IN , when all of the dimensions are of the same order
O(I). For ALS we get 11

3 NF
3 + 2F 2NI +NINF + 7F 2NIN−1 + FNIN−1. On the

other hand, it can be shown that ELS requires [2N F + O(N2)]IN + O((2N − 1)3)
additional multiplications.

A.2. Expression of pd. We define qf,d for d = 0, . . . , 6 as

qf,0 = AifBjfCkf ,
qf,1 = AifBjfGc,kf +AifGb,jfCkf +Ga,ifBjfCkf ,
qf,2 = AifGb,jfGc,kf +Ga,ifBjfGc,kf +Ga,ifGb,jfCkf ,
qf,3 = Ga,ifGb,jfGc,kf .
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qf,d depends on i, j, k but we omit the indices for simplicity. Then polynomial coeffi-
cients pd are given by

p0 =
∑

ijk

(
Xijk −∑f qf,0

)2
,

p1 = −2
∑

ijk

(
Xijk −∑f qf,0

)(∑
f qf,1

)
,

p2 =
∑

ijk

(∑
f qf,1

)2 − 2
(
Xijk −∑f qf,0

)(∑
f qf,2

)
,

p3 = 2
∑

ijk

(∑
f qf,1

)(∑
f qf,2

)− (Xijk −∑f qf,0
)(∑

f qf,3
)
,

p4 =
∑

ijk

(∑
f qf,2

)2
+ 2
(∑

f qf,1
)(∑

f qf,3
)
,

p5 = 2
∑

ijk

(∑
f qf,2

)(∑
f qf,3

)
,

p6 =
∑

ijk

(∑
f qf,3

)2
.
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