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Abstract

We give a new definition of the so-called overgenerated rings, which are the usual tool
used to define the asymptotic structure of a (C, E ,P)-algebra, written as a factor space
M(A,E,P)/N(IA,E,P). With this new definition and in the particular case of E = C∞, we
show that a moderate element i.e. in M(A,E,P) is negligible if and only if it satisfies the
C0-order estimate for the ideal N(IA,E,P).

Mathematics Subject Classification (2000): 35A20, 35A25, 35D05, 46F30, 46T30
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1 Introduction

More than ten years ago, J.-A. Marti has introduced the structure of (C, E ,P)-algebras [8] which
is a refinement of the Colombeau simplified algebras of new generalized functions [2, 6, 10].
These (C, E ,P)-algebras are constructed on a base (pre)sheaf E , which is usually a (pre)sheaf
of algebras equipped with a topology P and on an asymptotic structure given by a ring C of
generalized constants. Except in a few cases (for example [1]), the sheaf E is chosen to be the
sheaf of smooth functions. Roughly speaking a presheaf of (C, E ,P)-algebras is a presheaf of
factor algebras M(A,E,P)/N(IA,E,P), where M(A,E,P) (resp N(IA,E,P)) is the (pre)sheaf of algebras
of moderate elements (resp the (pre)sheaf of ideals of negligible elements) over the factor ring
C = A/IA. (The moderateness and the negligibility are defined by the asymptotic structure
given by the ring C.)

Although these (C, E ,P)-type algebras have proved their efficiency to give a meaning and to
solve singular differential problems, the investigations on their intrinsic properties have not yet
been developed, expect first attempts concerning topology in [4] and asymptotic analysis in [3].
In this paper, after recalling for sake of self contentedness the basic notions on (C, E ,P)-type
algebras (Section 2), we present a new definition of the so-called overgenerated rings in Section
3. This concept of overgeneration is one essential part of the theory for it allows to adapt the
algebraic structure to the singularities of the problems. Taking advantage of this new definition
and analogously to the theorem 1.2.3. of [6] for Colombeau simplified algebras, we show in
Section 4 that a moderate element (i.e. in M(A,E,P)) is negligible (i.e. in N(IA,E,P)) if and only if
it satisfies the C0-order estimate of the ideal, for the case of E = C∞ endowed with its classical
topology. This property allows radical simplification of many proofs of existence and uniqueness
for differential problems.
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2 The presheaf of (C, E ,P)-type algebras

We begin by recalling the algebraical construction of (C, E ,P)-algebras [8, 9] as improved in [3].
Let:
(1) Λ be a directed set with partial order relation �;
(2) A be a solid subring of the ring K

Λ (K = R or C): whenever (|sλ|)λ ≤ (|rλ|)λ for some
((sλ)λ, (rλ)λ) ∈ K

Λ × A, that is, |sλ| ≤ |rλ| for all λ, it follows that (sλ)λ ∈ A;
(3) IA be a solid ideal of A;
(4) E be a sheaf of K-topological algebras over a topological space X.

Suppose that for any open set Ω in X, the topology of the algebra E(Ω) is defined by a family
P(Ω) of seminorms such that:
(5) Whenever Ω1, Ω2 are two open subsets of X with Ω2 ⊂ Ω1 and ρ1

2 is the restriction operator
E(Ω1) → E(Ω2), then, for each p2 ∈ P(Ω2), the seminorm p1 = p2 ◦ ρ1

2 extends p2 to P(Ω1);
(6) Whenever Θ = (Ωh)h∈H is a family of open sets in X with Ω = ∪h∈HΩh, then, for each
p ∈ P(Ω), there exist a finite subfamily (Ωi)1≤i≤n of Θ and corresponding seminorms pi ∈ P(Ωi),
1 ≤ i ≤ n, such that

∀u ∈ E(Ω), p (u) ≤ p1 (u |Ω1
) + . . . + pn(u|Ωn

).

Define C = A/IA and |B| = {(|rλ|)λ , (rλ)λ ∈ B} (B = A or IA). From (2), it follows that
|A| is a subset of A and that A+ = {(bλ)λ ∈ A, ∀λ ∈ Λ, bλ ≥ 0} = |A|. The same holds for IA.
Furthermore, (2) implies also that A is a K-algebra [3]. With these notations, set

M(Ω) = M(A,E,P)(Ω) =
{

(uλ)λ ∈ [E(Ω)]Λ | ∀p ∈ P(Ω), ((p(uλ))λ ∈ |A|
}

,

N (Ω) = N(IA,E,P)(Ω) =
{

(uλ)λ ∈ [E(Ω)]Λ | ∀p ∈ P(Ω), (p(uλ))λ ∈ |IA|
}

.

Proposition-Definition 1 [3, 8]
(i) M(A,E,P) (resp. N(IA,E,P)) is a sheaf of K-subalgebras (resp. of ideals) of the sheaf EΛ (resp.
of M(A,E,P)).
(ii) The factor M(A,E,P)/N(IA,E,P) is a presheaf of algebras over the factor ring C = A/IA, with
localization principle, called presheaf of (C, E ,P)-algebras.

Remark that, with (2), the constant sheaf M(A,K,|.|)/N(IA,K,|.|) is exactly equal to C = A/IA.

Notation 1 We denote by [(uλ)λ]A = [uλ]A or [uλ], when no confusion may arise, the class of
(uλ)λ∈Λ in A(Ω).

Remark 1 We suppose in addition that {(aλ)λ ∈ A | limΛ aλ = 0} 6= ∅ and that IA satisfies

(7) IA ⊂ {(aλ)λ ∈ A | limΛ aλ = 0} ,

Then there exists a canonical sheaf embedding of E into A through the morphism of algebra

σΩ : E (Ω) → A (Ω) , f 7→ [(f)λ] .

Indeed, if [(f)λ] = 0, we have: ∀p ∈ P(Ω), (p(f))λ ∈ |IA|. From (7), it follows that ∀p ∈
P(Ω), p(f) = 0. Thus f = 0.

Remark 2 For the above algebraic considerations of this section (and specially Proposition-
Definition 1), we don’t need Λ to be a directed set. However, the previous remark shows the
importance of this assumption in order to get non trivial extensions.
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3 Overgenerated rings

In almost all works using (C, E ,P)-type algebras (see, for examples, [5, 8, 9]), the ring A and
the ideal IA are constructed as polynomially overgenerated rings and satisfy the assumption (7)
of Remark 1. For (aλ)λ , (bλ)λ ∈ R

Λ, we shall use the following notation

aλ ≪ bλ ⇔ ∃λ0 ∈ Λ, ∀λ � λ0 : aλ ≤ bλ.

We first give an improved definition of the overgeneration.

Proposition-Definition 2 (Polynomially overgenerated rings) Consider B0 a family of nets
in (R∗

+)Λ and B the subset of elements in (R∗
+)Λ obtained as rational functions with coefficients

in R
∗
+ of elements in B0 as variables. Set

AB =
{

(aλ)λ ∈ K
Λ | ∃ (bλ)λ ∈ B : |aλ| ≪ bλ

}

.

The set AB is a solid subring of K
Λ, called the ring (polynomially) overgenerated by B0 (or by

B).

Usually, the set B0 is finite and given by the problem itself. (See [5, 9].) The term polyno-
mially refers to the fact that the growth of elements of AB is at most polynomial with respect to
the elements of B0. This polynomial overgeneration is sufficient for the non linearities considered
in the quoted references, but, for example, does not permit to obtain (C, E ,P)-algebras stable
by exponential.

Remark 3 With this definition B is stable by inverse. In many practical cases and, for example,
in the case of Colombeau simplified algebras, which are a particular case of (C, E ,P)-algebras, B
is exactly the set of invertible elements of the ring of generalized constants.

As a “canonical” ideal of AB, one usually choose

(8) IB =
{

(aλ)λ ∈ K
Λ | ∀ (bλ)λ ∈ B : |aλ| ≪ bλ

}

.

A routine checking shows that IB is a solid ideal of AB. We shall always assume the existence
of (rλ)λ ∈ B such that limΛ rλ = 0, in order to have (7) and, thus, the canonical embedding
of E (Ω) into A (Ω). (This assumption is satisfied in all practical applications.) We denote by
CB = AB/IB the corresponding ring of generalized numbers.

4 An Austrian Lemma in (C, E ,P)-algebras

We take here E = C∞ with X = R
d, P

(

R
d
)

being the usual family of seminorms (PK,l)K,l
defined

by
PK,l(u) = sup

|α|≤l

PK,α(u) with PK,α(u) = sup
x∈K

|∂αu(x)| , K ⊂⊂ Ω, l = 0 or l = 1.

and ∂α =
∂α1+...+αd

∂zα1

1 ...∂zαd

d

for z = (z1, . . . , zd) ∈ Ω, l ∈ N, α = (α1, ..., αd) ∈ N
d. We consider a ring

of generalized constants C = AB/IB overgenerated as stated in Proposition-Definition 2. The
ideal IB is defined by (8) and the set of indices Λ is assumed to be left filtering. Recall that

M(Rd) = M(AB ,C∞,P)(R
d) = {(uλ)λ ∈ C∞(Ω)Λ : ∀p ∈ P(Rd), (p(uλ))λ ∈ |AB|},

N (Rd) = N(IB,C∞,P)(R
d) = {(uλ)λ ∈ C∞(Ω)Λ : ∀p ∈ P(Rd), (p(uλ))λ ∈ |IB|}.
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Proposition 3 Assume that there exists (aλ)λ ∈ B with limΛ aλ = 0. Then (uλ)λ ∈ M(AB,C∞,P)(R
d)

is in N(IB,C∞,P)(R
d) if, and only if,

∀K ⊂⊂ R
2, PK,0 (uλ) ∈ |IB| .

Remark 4 We recall that the set B is stable by inverse, which could be assumed for all the
(C, E ,P)-algebras considered up to now in the literature. Notice also that one has the existence
of (aλ)λ ∈ B such that limΛ aλ = 0 in all practical cases.

Proof. Take K ⊂⊂ Ω. We have to prove that ∀l ∈ N, PK,l (uλ) ∈ |IB|. By induction, it
suffices to prove that PK,0 (uλ) ∈ |IB| implies PK,1 (uλ) ∈ |IB|. In fact, this amounts to show that
PK,0 (uλ) ∈ |IB| implies PK,0 ((∂/∂xi)uλ) ∈ |IB| for i ∈ {1, . . . , d}. Set δ = min(1,dist(K,∂Ω))
and L = K + B(0, δ/2). We have K ⊂⊂ L ⊂⊂ Ω. Since (uλ)λ ∈ M(Rd), there exists (βλ)λ ∈ B
such that

∃λ0 ∈ Λ,∀λ � λ0, PL,2 (uλ) ≤ βλ.

We may assume that limΛ βλ = +∞. Indeed, for any (βλ)λ ∈ B, we set β′
λ = a−1

λ + βλ where
(aλ)λ ∈ B is such that limΛ aλ = 0. Thus, limΛ maxβ′

λ = +∞. Take any (cλ)λ ∈ B and define
bλ = aλcλ/ (aλ + cλ). Clearly we have bλ ∈ |AB|, bλ ≤ cλ and bλ ≤ aλ. Thus limΛ bλ = 0. Let
(ei)1≤i≤d be the canonical base of R

d. There exists λ1 such that, for all x ∈ K, x + bλβ−1
λ ei ∈ L

when λ � λ1, since limΛ β−1
λ = 0. By the Taylor theorem we have, for x ∈ K,

uλ

(

x + bλβ−1
λ ei

)

= uλ (x) + bλβ−1
λ

∂

∂xi
uλ (x) +

1

2

(

bλβ−1
λ

)2 ∂2

∂x2
i

uλ

(

x + θbλβ−1
λ ei

)

with 0 ≤ θ ≤ 1. It follows that

∂

∂xi

uλ (x) = b−1
λ βλ

(

uλ

(

x + bλβ−1
λ ei

)

− uλ (x)
)

−
1

2

(

bλβ−1
λ

) ∂2

∂x2
i

uλ

(

x + θbλβ−1
λ ei

)

.

Thus
∣

∣

∣

∣

∂

∂xi
uλ (x)

∣

∣

∣

∣

≤ 2b−1
λ βλPL,0 (uλ) +

1

2
bλβ−1

λ PL,2 (uλ) ≤ 2b−1
λ βλPL,0 (uλ) +

1

2
bλ

for λ � λ2 with λ2 � λj, 0 ≤ j ≤ 1. As PK,0 (uλ) ∈ |IB|, we have PL,0 (uλ) ≤ (1/4)b2
λβ−1

λ ∈ B
for λ � λ3 for some λ3. Thus

∣

∣

∣

∣

∂

∂xi
uλ (x)

∣

∣

∣

∣

≤ bλ for λ � λ4 with λ4 � λj, 3 ≤ j ≤ 4.

Finally, PK,0 ((∂/∂xi)uλ) ∈ |IB| as expected.
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