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Abstract

Missing data is a recurrent issue in epidemiology where the infection process may be
partially observed. Approximate Bayesian Computation, an alternative to data imputation
methods such as Markov Chain Monte Carlo integration, is proposed for making inference
in epidemiological models. It is a likelihood-free method that relies exclusively on numerical
simulations. ABC consists in computing a distance between simulated and observed summary
statistics and weighting the simulations according to this distance. We propose an original
extension of ABC to path-valued summary statistics, corresponding to the cumulated number
of detections as a function of time. For a standard compartmental model with Suceptible,
Infectious and Recovered individuals (SIR), we show that the posterior distributions obtained
with ABC and MCMC are similar. In a refined SIR model well-suited to the HIV contact-
tracing data in Cuba, we perform a comparison between ABC with full and binned detection
times. For the Cuban data, we evaluate the efficiency of the detection system and predict the
evolution of the HIV-AIDS disease. In particular, the percentage of undetected infectious
individuals is found to be of the order of 40%.

Keywords: Mathematical epidemiology; stochastic SIR model; unobserved infectious population;
simulation-based inference; likelihood-free inference.
AMS Subject Classification: 92D30, 62F15, 62M05, 62N02, 60K99.

1 Introduction

Mathematical modelling plays an important role for understanding and predicting the spread of
diseases, as well as for comparing and evaluating public health policies. Although deterministic
modelling can be a guide for describing epidemics, stochastic models have their importance in
featuring realistic processes and in quantifying confidence in parameters estimates and prediction
uncertainty [4]. Standard models in epidemiology consist in compartmental models in which the
population is structured in different classes composed of Susceptible, Infectious, and Recovered
(or Removed) individuals (SIR). Parameter estimation for SIR models is usually a difficult task
because of missing observations, which is a recurrent issue in epidemiology. When the infected
population is partially observed or when the infection times are missing, the computation of the
likelihood is numerically infeasible because it involves integration over all the unobserved events.

Markov Chain Monte Carlo (MCMC) methods that treat the missing data as extra pa-
rameters, have become increasingly popular for calibrating stochastic epidemiological models
with missing data [21, 20, 8]. However, MCMC may be computationally prohibitive for high-
dimensional missing observations [9, 24] and fine tuning of the proposal distribution is required
for efficient algorithms [17]. In this paper, we show that SIR models with missing observations
can be calibrated with Approximate Bayesian Computation (ABC), an alternative to MCMC,
originally proposed for making inference in population genetics [3]. This approach is not based on
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the likelihood function but relies on numerical simulations and comparisons between simulated
and observed summary statistics.

This work is motivated by the study of the Cuban HIV-AIDS database that contains the
dates of detection of the 8,662 individuals that have been found to be HIV positive in Cuba
between 1986 and 2007 [11]. The database contains additional covariates including the manner
by which an individual has been found to be HIV positive. The individuals can be detected
either by random screening (individuals ‘spontaneously’ take a detection test) or contact-tracing.
Contact-tracing consists in testing the sexual contacts of detected individuals [18]. The total
number of infectious individuals as well as the infection times are unknown.

In Section 2, we introduce the stochastic SIR model with contact-tracing developed by [10].
Section 3 is devoted to ABC methods when all detection times are known. We propose an
original extension of ABC to path-valued summary statistics consisting of the cumulated number
of detections through time. For a simple SIR model, we compare numerically the posterior
distributions obtained with ABC and MCMC. Section 4 deals with possibly noisy or binned
detection times for which the previous path-valued statistics are unavailable. We introduce a
finite dimensional vector of summary statistics and compare the statistical properties of point
estimates and credibility intervals obtained with full and binned detection times. Finally, Section
5 concentrates on the analysis of the Cuban HIV-AIDS database. We address several questions
concerning the dynamic of this epidemic: what is the percentage of the epidemic that is known
[18, 12, 11]; how many new cases of HIV are expected in the forthcoming years; and what is the
proportion of detections that is expected in the contact-tracing program.

2 A stochastic SIR model for HIV-AIDS epidemics with contact-

tracing

We restrict our study to the sexually-transmitted epidemic of HIV in Cuba (90% of the epidemic,
see [18]). For modelling the dynamics of the number of known and unknown HIV cases, we
consider a SIR model developed by [10]. The population is divided into three main classes
S, I and R corresponding to the susceptible, infectious, and detected individuals considered
as removed because we assume that they do not transmit HIV anymore (see Figure 1). The
population of the susceptible individuals, of size St, at time t > 0, consists of the sexually active
seronegative individuals. Individuals immigrate into the class S with a rate λ0 and leave it by
dying/emigrating, with rate µ0St, or by becoming infected. The class of infectious individuals,
of size It, corresponds to the seropositive individuals who have not taken a detection test yet
and may thus contaminate new susceptible individuals. We assume that each infected individual
may transmit the disease to a susceptible individual at rate λ1 so that the total rate of infection
is equal to λ1StIt. Individuals leave the class I when they die/emigrate with a total rate of µ1It,
or when they are detected to be HIV positive.

The class R of the detected individuals, of size Rt, is subdivided into two subclasses. We
denote by R1

t (resp. R2
t ) the size of the removed population detected by random screening

(resp. contact-tracing). The total rate of detection by random screening is λ2It. For the rate of
contact-tracing detection, the model shall capture the fact that the contribution of a removed
individual depends on the time elapsed since she/he has been found to be HIV positive. We
consider the two following expressions for the total rate of contact-tracing detection

λ3It
∑

i∈R

e−c(t−Ti) and λ3It
∑

i∈R

e−c(t−Ti)/(It +
∑

i∈R

e−c(t−Ti)), (2.1)

where Ti denotes the time at which a removed individual i has been detected. The weight
exp(−c(t − Ti)), with c > 0, determines the contribution of a removed individual i to the
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contact-tracing according to the time t − Ti she/he has been detected. The first rate in (2.1)
corresponds to a mass action principle, and is proportional to the sum of the contributions
of the detected individuals. The second rate in (2.1) corresponds to a model with frequency
dependence. In the following, θ = (µ1, λ1, λ2, λ3, c) denotes the multivariate parameter of the
model. The parameters of interest are here λ1, λ2 and λ3.

2.1 Connection between the stochastic and the deterministic SIR model

Here we consider the first rate of contact-tracing detection in (2.1), but similar results can be
obtained for the second rate. [10] showed that in a large population limit, the SIR process of
Section 2 can be modelled with stochastic differential equations and converges to the solution
of the following system of ordinary differential equations







dst
dt

= λ0 − µ0st − λ1stit
dit
dt

= λ1stit − (µ1 + λ2)it − λ3itrt
drt
dt

= λ2it + λ3itrt − crt

, (2.2)

where st and it denote the size of the susceptible and infectious populations, and where rt is the
contribution of the removed individuals to the contact-tracing (see Section 1 of the supplemen-
tary material for more details).

Apart from the inherent stochastic nature of epidemic propagation that may be particularly
important for small populations [14], considering a stochastic SIR model rather than its deter-
ministic counterpart can present at least two important advantages. First, it is quite straightfor-
ward to perform simulations from the stochastic model (see Section 2 of the supplementary ma-
terial) and this is one motivation for considering ABC methods. Second, the individual-centered
stochastic process suits the formalism of statistical methods, which are based on samples of
individual data. Since the estimates of the stochastic process converge to the parameters of the
ODEs [10], ABC provides a new alternative for calibrating parameters of ODEs [1, 7].

3 ABC with sufficient summary statistics for epidemic models

3.1 Main principles of ABC

For simplicity, we deal here with densities and not general probability measures. Let x be the
available data and π(θ) be the prior. Two approximations are at the core of ABC.

Replacing observations with summary statistics Instead of focusing on the posterior
density p(θ |x), ABC aims at a possibly less informative target density p(θ |S(x) = sobs) ∝
Pr(sobs|θ)π(θ) where S is a summary statistic that takes its values in a normed space, and sobs
denotes the observed summary statistic. The summary statistic S can be a d-dimensional vector
or an infinite-dimensional variable such as a L1 function. Of course, if S is sufficient, then the
two conditional densities are the same. The target distribution will also be coined as the partial
posterior distribution.

Simulation-based approximations of the posterior Once the summary statistics have
been chosen, the second approximation arises when estimating the partial posterior density
p(θ |S(x) = sobs) and sampling from this distribution. This step involves nonparametric kernel
estimation and possibly correction refinements given in Section 4.2.
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3.2 Sampling from the posterior

The ABC method with smooth rejection generates random draws from the target distribution
as follows [3]

1. Generate N random draws (θi, si), i = 1, . . . , N . The parameter θi is generated from the
prior distribution π and the vector of summary statistics si is calculated for the ith data
set that is simulated from the generative model with parameter θi.

2. Associate to the ith simulation the weight Wi = Kδ(si − sobs), where δ is a tolerance
threshold and Kδ a (possibly multivariate) smoothing kernel.

3. The distribution (
∑N

i=1Wiδθi)/(
∑N

i=1 Wi), in which δθ denotes the Dirac mass at θ, ap-
proximates the target distribution.

3.3 Point estimation and credibility intervals

Once a sample from the target distribution has been obtained, several estimators may be consid-
ered for point estimation of each one-dimensional parameter λj, j = 1, 2, 3. Using the weighted
sample (λj,i,Wi), i = 1, . . . , N , the mean of the target distribution p(λj|sobs) is estimated by

λ̂j =

∑N
i=1 λj,iWi
∑N

i=1Wi

=

∑N
i=1 λj,iKδ(si − sobs)
∑N

i=1 Kδ(si − sobs)
, j = 1, 2, 3 (3.1)

which is the well-known Nadaraya-Watson regression estimator of the conditional expectation
E(λj | sobs). We also compute the medians, modes, and 95% credibility intervals (CI) of the
marginal posterior distribution (see Section 3 of the supplementary material).

3.4 Data and choice of summary statistics

Data Starting at the time of the first detection in 1986, the Cuban HIV-AIDS data consist
principally of the detection times at which the individuals have been found to be HIV positive.
At the time of the last detection event, in July 2007, there is a total of 8,662 individuals in the
database. For each detection event, there is a label indicating if the individual has been detected
by random screening or contact-tracing.

Summary statistics We consider the two (infinite-dimensional) statistics (R1
t , t ∈ [0, T ]) and

(R2
t , t ∈ [0, T ]). Their sum is equal to the cumulated number of detections since the beginning

of the epidemic. Because the data consist of the detection times for the two different types of
detection, these two statistics can simply be viewed as a particular coding of the whole dataset so
that the partial posterior distribution p(θ |R1, R2) is equal to the posterior distribution p(θ |x).

The L1-norm between the ith simulated path Rl
i and the observed one Rl

obs is

‖Rl
obs −Rl

i‖1 =

∫ T

0
|Rl

obs,s −Rl
i,s| ds , l = 1, 2, i = 1, . . . , N. (3.2)

For computing the weightsWi, we choose a product kernel so thatWi = Kδ1(‖R
1
obs−R1

i ‖1)Kδ2(‖R
2
obs−

R2
i ‖1) where δ1, δ2 are 2 tolerance thresholds. Epanechnikov kernels are considered for Kδ1 and

Kδ2 and δ1 and δ2 are found by accepting a given percentage Pδ1 = Pδ2 of the simulations.
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3.5 Comparisons between ABC and MCMC methods for a standard SIR

model

Following [3] a performance indicator for ABC techniques consists in their ability to replicate
likelihood-based results given by MCMC. Here the situation is particularly favorable for com-
paring the two methods since the partial and the full posterior are the same. In the following
examples, we choose samples of small sizes (n = 3 and n = 29) so that the dimension of the
missing data is reasonable and MCMC achieves fast convergence. For large sample sizes with
high-dimensional missing data, MCMC convergence might indeed be a serious issue and more
thorough updating scheme shall be implemented [9, 24].

We consider the standard SIR model with no contact-tracing (λ3 = 0). We choose gamma
distributions for the priors of λ1 and λ2 with a shape parameters of 0.1 and rate parameters of 1
and 0.1. The data consist of the detection times and we assume that the infection times are not
observed. We implement the MCMC algorithm of [21]. A total of 10, 000 steps are considered
for MCMC with an initial burn-in of 5, 000 steps. For ABC, the summary statistic consists of
the cumulative number of detections as a function of time. A total of 100, 000 simulations are
performed for ABC.

The first example was previously considered by [21]. They simulated detection times by
considering one initial infectious individual and by setting S0 = 9, λ1 = 0.12, and λ2 = 1 (see
Section 4 of the supplementary material for the data). As displayed by Figure 2, the posterior
distributions obtained with ABC are extremely close to the ones obtained with MCMC provided
that the tolerance rate is sufficiently small. We see that the tolerance rate changes importantly
the posterior distribution obtained with ABC (see the posterior distributions for λ2).

In a second example, we simulate a standard SIR trajectory with λ1 = 0.12, λ2 = 1, S0 = 30
and I0 = 1. The data now consist of 29 detection times (see Section 4 of the supplementary
material). Once again, Figure 2 shows that the ABC and MCMC posteriors are close provided
that the tolerance rate is small enough. ABC produces posterior distributions with larger tails
compared to MCMC, even with the lowest tolerance rate of 0.1%. This can be explained by
considering the extreme scenario in which the tolerance threshold δ goes to infinity: every
simulation has a weight of 1 so that ABC targets the prior instead of the posterior. As the prior
has typically larger tails than the posterior, ABC inflates the posterior tails.

4 Comparison between ABC with full and binned detection

times

When there is noise or when the detection times have been binned, the full observations (R1
t , t ∈

[0, T ]) and (R2
t , t ∈ [0, T ]) are unavailable. Then, we replace these summary statistics by a

vector of summary statistics such as the numbers of detections per year during the observation
period. Since these new summary statistics are not sufficient anymore, the new partial posterior
distribution may be different from the posterior p(θ |x). In the following, we compare point
estimates and CIs obtained from ABC with full (method of Section 3) and binned detection
times (method of Section 4.2).

4.1 A new set of summary statistics

We consider a d-dimensional vector of summary statistics of three different types. First, we
compute the numbers R1

T and R2
T of individuals detected by random screening and contact-

tracing by the end of the observation period. Second, for each year j, we compute the numbers
of individuals that have been found to be HIV positive Rl

j+1 − Rl
j, l = 1, 2. The third type of

summary statistics consists of the numbers of new infectious for each of the the sixth first years
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Ij+1 − Ij for j = 0, . . . , 5, as well as the mean time during which an individual is infected but
has not been detected yet. This mean time corresponds to the mean sojourn time in the class
I for the sixth first years. These summary statistics are available here because infectious times
before 1992 are known.

In order to compute the weights Wi, we consider the following spherical kernel Kδ(x) ∝
K(‖H−1x‖/δ). Here K denotes the one-dimensional Epanechnikov kernel, ‖.‖ is the Euclidian
norm of R

d and H−1 a matrix. Because the summary statistics may span different scales,
H is taken equal to the diagonal matrix with the standard deviation of each one-dimensional
summary statistic on the diagonal.

4.2 Curse of dimensionality and regression adjustments

In the case of a d-dimensional vector of summary statistics, the estimator of the conditional mean
(3.1) is convergent if the tolerance rate satisfies limN→+∞ δN = 0, so that its bias converges to
0, and limN→+∞NδdN = +∞, so that its variance converges to 0 [13]. As d increases, a larger
tolerance threshold shall be chosen to keep the variance small. As a consequence, the bias
may increase with the number of summary statistics. This phenomenon known as the curse

of dimensionality may be an issue for the ABC-rejection approach. The following paragraph
presents regression-based adjustments that cope with the curse of dimensionality.

The adjustment principle is presented in a general setting within which the corrections of
[3] and [6] can be derived. Correction adjustments aim at obtaining from a random couple
(θi, si) a random variable distributed according to p(θ | sobs). The idea is to construct a coupling
between the distributions p(θ|si) and p(θ|sobs), through which we can shrink the θi’s to a sample
of i.i.d. draws from p(θ|sobs). In the remaining of this subsection, we describe how to perform
the corrections for each of the one-dimensional components separately. For θ ∈ R, correction
adjustments are obtained by assuming a relationship θ = G(s, ε) =: Gs(ε) between the parameter
and the summary statistics. Here G is a (possibly complicated) function and ε is a random
variable with a distribution that does not depend on s. A possibility is to choose Gs = F−1

s , the
(generalized) inverse of the cumulative distribution function of p(θ|s). In this case, ε = Fs(θ) is
a uniform random variable on [0, 1]. The formula for adjustment is given by

θ∗i = G−1
sobs

(Gsi(θi)) i = 1, . . . , N. (4.1)

For Gs = F−1
s , the fact that the θ∗i ’s are i.i.d. with density p(θ|sobs) arises from the stan-

dard inversion algorithm. Of course, the function G shall be approximated in practice. As a
consequence, the adjusted simulations θ∗i , i = 1, . . . , N , constitute an approximate sample of
p(θ | sobs). The ABC algorithm with regression adjustment can be described as follows

1. Simulate, as in the rejection algorithm, a sample (θi, si), i = 1, . . . , N .

2. By making use of the sample of the (θi, si)’s weighted by theWi’s, approximate the function
G such that θi = G(si, εi) in the vicinity of sobs.

3. Replace the θi’s by the adjusted θ∗i ’s. The resulting weighted sample (θ∗i ,Wi), i = 1, . . . , N ,
form a sample from the target distribution.

Beaumont et al. local linear regressions (LOCL) The case where G is approximated by a
linear model G(s, ε) = α+ stβ + ε, was considered by [3]. The parameters α and β are inferred
by minimizing the weighted squared error

∑N
i=1Kδ(si − sobs)(θi − (α + (si − sobs)

Tβ))2. Using
(4.1), the correction of [3] is derived as

θ∗i = θi − (si − sobs)
T β̂, i = 1, . . . , N. (4.2)
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Asymptotic consistency of the estimators of the partial posterior distribution with the correction
(4.2) is obtained by [5].

Blum and François’ nonlinear conditional heteroscedastic regressions (NCH) To re-
lax the assumptions of homoscedasticity and linearity inherent to local linear regression, [6]
approximated G by G(s, ε) = m(s) + σ(s)× ε where m(s) denotes the conditional expectation,
and σ2(s) the conditional variance. The estimators m̂ and log σ̂2 are found by adjusting two
feed-forward neural networks using a regularized weighted squared error. For the NCH model,
parameter adjustment is performed as follows

θ∗i = m̂(sobs) + (θi − m̂(si))×
σ̂(sobs)

σ̂(si)
, i = 1, . . . , N.

In practical applications of the NCH model, we train L = 10 neural networks for each condi-
tional regression (expectation and variance) and we average the results of the L neural networks
to provide the estimates m̂ and log σ̂2.

Reparameterization In both regression adjustment approaches, the regressions can be per-
formed on transformations of the responses θi rather that on the responses themselves. Pa-
rameters whose prior distributions have finite supports are transformed via the logit function
and non-negative parameters are transformed via the logarithm function. These transforma-
tions guarantee that the θ∗i ’s lie in the support of the prior distribution and have the additional
advantage of stabilizing the variance.

4.3 A comparison for simulated datasets

In order to work on data similar to the Cuban database, we simulate M = 200 synthetic data
sets for the HIV-AIDS epidemic with µ1 = 2 × 10−6, λ1 = 1.14 × 10−7, λ2 = 3.75 × 10−1,
λ3 = 6.55 × 10−5, and c = 1 [10]. The initial conditions are set to S0 = 6× 106, the size of the
Cuban population in the age-group 15-49, I0 = 232 and R0 = 0 [11]. Here we simulate only 6
years of the epidemics.

We study four variants of ABC for estimating λ1, λ2, and λ3: one with the two path-valued
summary statistics and three with the vector of summary statistics. When using the finite di-
mensional vector of summary statistics, we perform the smooth rejection approach as well as the
LOCL and NCH corrections with a total of 21 summary statistics: the 18 summary statistics
corresponding to the yearly increases of R1, R2, and I; the final numbers of detected individuals
R1

6 and R2
6; and the mean sojourn time in the class I. Each of the M = 200 estimations of the

partial posterior distributions are performed using a total of N = 5000 simulations of the SIR
model with the mass action principle (first rate in (2.1)).

Prior distributions The prior distributions for µ1, λ1, λ2 and λ3 are chosen to be uniform on a
log scale. The choice of a log scale reflects our uncertainty about the order of magnitude of the
parameters. The prior distribution for log10(µ1) is U(−6,−4) where U(a, b) denotes the uniform
distribution on the interval (a, b). The prior distribution is U(−9,−6) for log10(λ1), U(−4, 3) for
log10(λ2), and U(−8, 2) for log10(λ3). The bounds of the uniform distributions are set to keep
the simulations from being degenerate. The prior for c is log(2)/U(1/12, 5) so that the half-life
of t 7→ e−ct, which measures the individual contribution to the detection by contact-tracing, is
uniformly distributed between 1/12 and 5 years.

Point estimates of θ and credibility intervals Figure 3 displays the boxplots of the 200
estimated modes, medians, 2.5% and 97.5% quantiles of the posterior distribution for λ1 as a
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function of the tolerance rate Pδ (see Figures 1 and 2 of the supplementary material for λ2 and
λ3). First, we find that the medians and modes are equivalent except for the rejection method
with 21 summary statistics for which the mode is less biased. For the lowest tolerance rates, the
point estimates obtained with the four possible methods are close to the value λ1 = 1.14× 10−7

used in the simulations, with smaller CI for the LOCL and NCH variants. When increasing
the tolerance rate, the bias of the point estimates obtained with the rejection method with 21
summary statistics slightly increases. By contrast, up to tolerance rates smaller than 50%, the
biases of the point estimates obtained with the three other methods remain small. As can be
expected, the widths of the CI obtained with the rejection methods increase with the tolerance
rate while they remain considerably less variable for the methods with regression adjustment.

Mean square error For further comparison of the different methods, we compute the rescaled
mean square errors (RMSEs). The RMSEs are computed on a log scale and rescaled by the
range of the prior distribution so that

RMSE(λj) =
1

M

M
∑

k=1

(log(λ̂k
j )− log(λj))

2

Range(prior(λj))2
, j = 1, 2, 3, (4.3)

where λ̂k
j is a point estimate obtained with the kth synthetic data set. We find that the smallest

values of the RMSEs are usually reached for the lowest value of the tolerance rate (see Figure
4). For λ1 and λ2, the RMSEs of the point estimates obtained with the four different methods
are comparable for the lowest tolerance rate. However, the smallest values of the RMSEs are
always found when performing the rejection method with the two sufficient summary statistics
R1 and R2. This finding is even more pronounced for the parameter λ3.

Rescaled mean credibility intervals To compare the whole posterior distributions obtained
with the four different methods, we additionally compute the different CIs. The rescaled mean
CI (RMCI) is defined as follows

RMCI =
1

M

M
∑

k=1

|ICk
j |

Range(prior(λj))
, j = 1, 2, 3, (4.4)

where |ICk
j | is the length of the kth estimated 95% CI for the parameter λj. As displayed by

Figure 3, the CIs obtained with smooth rejection increase importantly with the tolerance rate
whereas such an important increase is not observed with regression adjustment. In Figure 4, the
CIs obtained with the NCH method are clearly the thinnest, those obtained with the rejection
methods are the widest and those obtained with the LOCL method have intermediate width.
In the following, we perform the NCH correction when considering the finite dimensional vector
of summary statistics. This choice is motivated by the small RMSEs and RMCIs obtained with
the NCH method (Figure 4).

5 Application to the Cuban HIV-AIDS epidemic

We calibrate the SIR model with contact-tracing to the Cuban HIV-AIDS database. We consider
two methods: smooth rejection ABC with the two path-valued summary statistics (Section 3),
and the NCH-ABC with the vector of summary statistics (Section 4.2). For the Cuban data,
this vector is of dimension 51.
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5.1 Parameter calibration and goodness of fit

For the ABC algorithm, we perform a total of 100,000 simulations, we consider the two different
rates of contact-tracing detection (2.1), and we use the same initial conditions and priors as
in Section 4.3. To set the value of the tolerance rate Pδ, we consider the 15 first years of the
epidemic as the training data and choose the value of the tolerance rate Pδ that minimizes the
prediction error at the end of the epidemic (T = 21.5)

PredError = E

[

|R1
21.5(Pδ)−R1

obs,21.5|

R1
obs,21.5

+
|R2

21.5(Pδ)−R2
obs,21.5|

R2
obs,21.5

]

. (5.1)

For the optimal tolerance rate Pδ, we investigate the goodness of fit of the SIR-type model.
By simulating paths of the SIR model associated with parameters θ sampled from the partial
posterior distribution, we check if the model reproduces a posteriori the observed summary
statistics [16]. In Figure 5, we display the Posterior Predictive Distributions (PPD) of different
summary statistics. Figure 5 has been obtained by considering the two sufficient summary
statistics R1 and R2, using the optimal tolerance rates of Pδ1 = Pδ2 = 1%, and considering
the model of frequency dependence (second rate in (2.1)). The cumulated number of detected
individuals are contained in the ranges of the PPDs. By contrast, the mean sojourn time in
the class I is not contained in the PPD and the observed number of infectious individuals is
in the lower tail of the PPD. An explanation might be that an age-structure has to be taken
into account for the infection rate in order to capture the non-Markovian effects (e.g. [25]). A
model with an increasing infection rate could diminish the mean sojourn time in the class I and
increase by compensation the number of infections to maintain the infection pressure constant.
When considering the model with a mass action principle (first rate in (2.1)), we observed (see
Figure 3 of the supplementary material) that the statistic R1

obs,21.5 is not contained in the PPD.
With a mass action principle, the rate of contact-tracing detection increases linearly with the
contribution of the detected individuals, and that is too rapid in comparison with the data.
Last, we find that the PPDs obtained with the NCH method have extremely wide supports
for both rates of contact-tracing detection (see Figure 4 of the supplementary material). These
large PPDs suggest that the summary statistics measuring the detections and the infections may
contain conflicting signals, which results in a large variance of the partial posterior distribution.

To provide point estimates and CIs, we consider the model that provides the best fit (model
with frequency dependence fitted with the two trajectories R1 and R2). For point estimation, we
compute the posterior mode. The estimate of λ1 is 5.4×10−8 (95%CI [3.9×10−8; 2.3×10−7]), the
estimate of λ2 is 0.13 (95%CI [0.007; 1.17]), and the estimate of λ3 is 0.19 (95%CI [0.03; 0.82]).
The point estimate of the rate of infection λ1 implies that the net rate of infection per infectious
individuals λ1S is equal to 0.32 (95%CI [0.23; 1.37]). This means that the waiting time before
an infectious individual, that has not been detected yet, infects an other individual is 3.1 years
(95%CI [0.72; 4.34]).

5.2 The dynamic of the Cuban HIV-AIDS epidemic

Reconstruction of the cumulative numbers of detections Figure 6 displays the dynam-
ics predicted by the SIR model for the numbers of individuals detected by random screening,
contact-tracing and for the number of unknown infectious individuals. Interestingly, there is
a really good fit between the real and predicted numbers of individuals detected by random
screening except between 1992 and 1995. This period corresponds to the period of crisis that
followed the collapse of the Soviet Union and during which the HIV detection system received
less attention. We also find a slight discrepancy in the recent years (2000-2007) between the
real and predicted numbers of detections by contact-tracing, which may reveal a weakening in
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the contact-tracing system. An explanation is that a new mode of detection, related to contact-
tracing but still counted as random detection, has been developed. This new type of detection
is promoted by the family doctors who ask to their patients the names of individuals at risk (H.
De Arazoza, personal communication).

Performance of the contact-tracing system When testing the performance of contact-
tracing, [18] computed the coverage of the epidemic defined as the percentage of infectious
individuals that have been detected (R1 + R2)/(I + R1 + R2). As displayed by Figure 6, the
SIR model predicts a coverage of 62% (95%CI [36%; 66%]) in 2000 that is much lower than a
coverage of 83% (95%CI [75%; 87%]) as inferred by [18]. However, since the PPDs of Figure 5
show that the SIR model predicts less infectious individuals than observed, the coverage might
still be overestimated and would consequently be even smaller than 62%.

Using this estimation of the coverage, we can compare the rates of detection by random
screening and contact-tracing per infectious individual. The estimated per capita rate of ran-
dom screening is λ2 = 0.13. The per capita rate of contact-tracing equals λ3

∑

i∈R exp(−c(t −
Ti))/(It +

∑

i∈R exp(−c(t − Ti))). Using a zero-order expansion, we find that this rate can be
approximated by the product of λ3 with the coverage of the epidemic. Hence, the per capita
rate of contact-tracing can be estimated as 0.19 × 0.62 ≈ 0.12 that is almost equal to λ2.

Predictions Additionally, simulations of the SIR model provide predictions for the evolu-
tion of the HIV dynamic in the forthcoming years. The SIR model predicts that in 2015,
42, 000 (95%CI [29, 000; 107, 000]) individuals will be infected since the beginning of the epi-
demic in Cuba. Among these infected individuals, a proportion of 45% (95%CI [29%; 46%])
will be detected by random screening and a proportion of 21% (95%CI [10%; 22%]) by contact-
tracing. As displayed by Figure 6, the SIR-type model with contact-tracing predicts that the
total proportion of individuals detected by contact-tracing will reach an asymptote of 32%
(95%CI [25%; 33%]) in 2015. The total number of infected individuals in 2015 corresponds to
27, 000 (95%CI [19, 000; 80, 000]) new cases of HIV between July 2007 and January 2015. In the
same period of time, the SIR model predicts that 12, 000 individuals (95%CI [9, 000; 24, 000])
will be detected by random screening and 6, 000 individuals (95%CI [4, 000; 8, 000]) by contact-
tracing.

6 Conclusions

In the context of temporal epidemiological data, ABC techniques can provide accurate estimates
of the parameters of interest such as the infection and detection rates [19, 28]. ABC relies on
simulations of the model and can therefore be applied to various epidemiological models.

For partially observed population and missing infectious times, MCMC methods require to
reconstruct the unknown data which can be highly computationally intensive for large popu-
lations. For instance, [21] and [25] considered MCMC algorithms for populations consisting of
about 100 individuals whereas the Cuban HIV-AIDS database contains almost 10,000 known
HIV positive individuals, which makes the total (known and unknown) number of infectious
individuals even larger. When the dimension of the missing data, the infection times here, is
both large and unknown, data imputation with MCMC can be computationally very demanding
and takes several days on a parallelized system [24].

However, compared with the abundant MCMC literature, the experience of statisticians with
ABC is still rather limited. For MCMC algorithms, theoretical convergence results [26] as well as
practical methods for monitoring numerical convergence are available [15]. Although theoretical
results are now available for ABC [5], there is no method for evaluating the two approximations
inherent to ABC (Section 3.1). Here, we are in a favorable situation since the full summary

10



statistics are sufficient so that the partial and the full posterior are the same. However, for
the second approximation, the practice of conditional density estimation in high dimensions
remains an issue. When comparing posterior distributions obtained with MCMC and ABC for
a standard SIR model, we find the same modes provided that the tolerance rate is small enough.
However, even for the smallest tolerance rate, we find that ABC generates posterior distributions
with larger tails compared with MCMC. More generally, ABC applications have been restricted
to models with moderate number of parameters whereas MCMC applications can involve a
very large number of parameters ([22]). For models with a substantial numbers of parameters,
adaptive ABC algorithms that use the simulations to modify the sampling distribution of the
parameter θ, might constitute interesting ways to explore for the future of ABC in epidemiology
[23, 2, 27].

In this paper, we consider both finite and infinite dimensional summary statistics for ABC.
When comparing ABC with the two different sets of statistics, we find that the point estimates
of the parameters λ1, λ2, λ3, with the smallest quadratic errors are obtained with the rejection
method based on the infinite-dimensional statistics. However, the 95% CIs obtained with this
method are large and critically depend on the tolerance rate. By contrast, regression-based
adjustment methods, and the NCH method more particularly, considerably shorten the CIs and
are less sensitive to the tolerance rate. Applications of regression-based ABC methods constitute
therefore a solution for ‘stabilizing’ the CIs. However, no ABC with regression adjustment have
been developed so far for infinite-dimensional summary statistics.

In the last section of the paper, we calibrate the SIR model to the Cuban HIV-AIDS data. By
comparing the posterior predictive distributions of the total number of detections, we find that
the model with a frequency-dependent rate of contact-tracing provides the best fit to the data.
Using this model, we compare the present-day rates of contact-tracing and random screening.
We find that they are almost the same and equal to 0.13/individual/year. Converting rates of
detection to waiting times before detections, we find that the waiting time before an individual
infected today will be detected is equal to 1/(2 × 0.13) ≈ 3.8 years. At the time of detection,
both types of detection are equally probable. Although it suggests that contact-tracing detection
contributes importantly to HIV screening in Cuba, we find that the screening might have been
largely incomplete. The percentage of undetected individuals among the infectious individuals
might have been underestimated [18] and would be of the order of 40%.
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Figure 1: Schematic description of the SIR model with contact-tracing.
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Figure 2: Comparison of the posterior densities obtained with MCMC and ABC. The vertical
lines correspond to the values of the parameters used for generating the synthetic data. a) The
data consist of 3 detection times that have been simulated by [21]. b) The data consist of 29
detection times that we simulated by setting λ1 = 0.12, λ2 = 1, S0 = 30, I0 = 1, and T = 5 (see
the supplementary material for the 29 detection times).
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Figure 3: Boxplots of the M = 200 estimated modes and quantiles (2.5%, 50%, and 97.5%) of
the partial posterior distributions of λ1. For each ABC method and each value of the tolerance
rate, 200 posterior distributions are computed for each of the 200 synthetic data sets. The
horizontal lines correspond to the true value λ1 = 1.14 × 10−7 used when simulating the 200
synthetic data sets. The different tolerance rates are 0.01, 0.05, 0.10, 0.25, 0.50, 0.50, 0.75, and
1 for all the ABC methods except the rejection scheme with the two summary statistics. For the
latter method, the tolerance rates are 0.007, 0.02, 0.06, 0.13, 0.27, 0.37, 0.45, 0.53, 0.66, 0.80, 1.
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Figure 4: Rescaled mean squared error (RMSE) of the posterior mode and rescaled mean cred-
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Figure 5: Bayesian posterior predictive distributions of R1
21.5, R

2
21.5, I6, and the mean sojourn

time in the class I. The SIR model corresponds to the model with frequency dependence for
contact-tracing detection. The partial posterior samples are obtained with the smooth rejection
ABC algorithm by making use of the 2 infinite-dimensional summary statistics R1 and R2.
Tolerance rate of Pδ1 = Pδ2 = 1% are considered for each summary statistic.
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Figure 6: Median and 95% credibility intervals of the posterior predictive distributions of R1
t ,

R2
t , R

1
t /(R

1
t + R2

t ) and coverage Rt/(It + Rt) from 1986 to 2015. The coverage is defined as
the proportion of known HIV positive individuals. The posterior samples are generated by the
rejection scheme with the two summary statistics. A tolerance rate of Pδ = 1% is considered for
each summary statistic.
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