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Abstract

The AdaBoost like algorithm for boosting CART regression trees is considered.
The boosting predictors sequence is analyzed on various data sets and the behaviour
of the algorithm is investigated. An instability index of a given estimation method
with respect to some training sample is defined. Based on the bagging algorithm, this
instability index is then extended to quantify the additional instability provided by
the boosting process with respect to the bagging one. Finally, the ability of boosting
to track outliers and to concentrate on hard observations is used to explore a non-
standard regression context.
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1 Introduction

Coming from the machine learning community, many authors have proposed
boosting algorithms during the nineties. In the first half decade, the main con-
cern is around the so-called PAC (Perturb And Combine) algorithm, see [1] for
a concise overview. Starting from a training set {(Xi, Yi)}16i6n, the problem

addressed is to fit a model delivering a prediction ŷ = f̂(x) at input x. The
basic idea is to generate many different base predictors obtained by perturb-
ing the training set and to combine them. Breiman [2] introduces bagging,
theoretically analysed by Bühlmann and Yu [3], which averages predictions
given by a sequence of predictors built from bootstrap samples of the training
set, and then proposes different variants (see Breiman [4,5]).

After the paper of Freund and Schapire [6] introducing the AdaBoost algo-
rithm for classification problems, a considerable interest for boosting schemes
grew not only in artificial intelligence but also in statistics. The basic idea of
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boosting is to improve the performance of a given estimation method using
some bagging like scheme except that each predictor copes with a bootstrap
sample obtained from the original one by adaptive resampling, highlighting
the observations poorly predicted. A lot of contributions try to elucidate the
surprisingly good behaviour of this algorithm in the classification context, see
Schapire et al. [7], Friedman et al. [8], Lugosi and Vayatis [9] and Blanchard et
al. [10]. An idea of the discussions five years ago can be found in the important
discussion paper written by Breiman [11] about arcing classifiers.

This paper deals with boosting for regression problems. Roughly speaking,
two different approaches have been considered. The first one is related to the
gradient-based algorithm following the ideas initiated by Friedman (see Fried-
man [12], Zemel and Pitassi [13] and Rätsch et al. [14]). Following an entirely
different line, other authors more closely relate the second one to the orig-
inal algorithm of Freund and Schapire. On one hand, Ridgeway et al. [15]
consider the regression problem as a large classification one. On the other
hand, Drucker [16] proposes a direct adaptation of AdaBoost to the regression
framework, which exhibits interesting performance by boosting CART regres-
sion trees (see also Borra and Di Ciacco [17]). These two papers conclude with
interesting remarks about global performance comparisons but do not analyze
the boosting predictors sequence and do not address the stability issue. These
two points are the main purpose of this paper.

The paper is organized as follows. Section 2 sets the model and presents the re-
gression tree estimation method. The Drucker’s boosting algorithm is recalled
in Section 3. The six reference data sets are described in Section 4. Section
5 analyzes the boosting predictors sequence. Section 6 provides a definition
of two instability indices, for a given estimation method with respect to some
training sample: an instability index based on bagging and an incremental in-
stability index measuring the contribution to instability provided by boosting
with respect to bagging. The ability of boosting techniques to track outliers
and to concentrate on hard observations is then used in Section 7 to explore
a non-standard regression context. Some concluding remarks are collected in
Section 8.

2 Model and estimation method

We consider the following regression model:

Y = f(X) + ξ, (1)

where (X, Y ) ∈ X × R, f is the unknown regression function to be recovered
and ξ is an unobservable additive noise centered conditionally to X with un-
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known variance σ2
ξ . The generalization error of an estimator f̂ of f is defined

as R(f, f̂) = E

[

‖f − f̂‖2
]

.

Let us consider a training (or learning) sample L and a test sample T , of
respective size n and nt, composed of independent realizations of the variable
(X, Y ). The goal is then to construct from L an estimator f̂ of f having low
generalization error. Since the joint distribution is unknown, we evaluate the
training error (often called the resubstitution error) and the prediction error
of f̂ , respectively defined as RL(f, f̂) and RT (f, f̂), where for a given sample
S of size m of the random variable (X, Y )

RS(f, f̂) =
1

m

∑

(Xi,Yi)∈S

(

Yi − f̂(Xi)
)2

.

Since f̂ is constructed from L and since T and L are independent, RT (f, f̂) is
used as an estimator of R(f, f̂).

In this paper we focus on CART regression trees to generate predictors. One
of the particularly attractive property of this estimation method is, in this
context, its instability. Therefore, the booststrap regression trees do not have
the same number of terminal nodes and involve different features of the data.

Let us denote by A the base algorithm providing some base estimator (or
predictor) f̂ of f , which is here the well-known CART for regression (see
Breiman et al. [18]), where the choice of the final tree is performed using a
tuning set randomly taken from L, keeping T to give independent estimates
of R(f, f̂).

3 Algorithms

To improve the performance of CART, we focus on two algorithms: bagging
and boosting.

Bagging is based on a bootstrap scheme: first, generate K replicate samples

Lk from the uniform distribution, then construct predictors f̂k

(bag)
using A on

Lk, and finally aggregate by averaging

f̃ (bag) =
1

K

K
∑

k=1

f̂k

(bag)
.

It is now well known that bagging improves, often a lot, the performance of
the considered method A (see Breiman [2,5] and Drucker [16] for regression
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trees), leading to take bagging as a reference to evaluate boosting.

The boosting algorithm used here is given in Table 1. This algorithm is that
of Drucker [16], which was directly adapted from AdaBoost algorithm [6] for
classification problems.

Table 1
Boosting algorithm.

Boosting

Input: L the training sample of size n, A the estimation method

and K the number of iterations,

Initialization: Set p1 = D the uniform distribution on {1, . . . , n}

Loop: for k = 1 to K do

- randomly draw from L with replacement, according to

pk, a sample Lk of size n,

- using A, construct an estimator f̂k of f from Lk,

- set from the original training sample L: i = 1, . . . , n

lk(i) =
(

Yi − f̂k(Xi)
)2

and ε
(boost)
pk

=
∑n

i=1 pk(i)lk(i),

βk =
ε
(boost)
pk

max
16i6n

lk(i)−ε
(boost)
pk

and dk(i) = lk(i)
max

16i6n
lk(i) ,

if ε
(boost)
pk

< 0.5max16i6n lk(i), wk+1(i) = β
1−dk(i)
k pk(i),

else wk+1 = p1,

pk+1(i) =
wk+1(i)

∑n

j=1
wk+1(j)

.

Output: f̃ the median of
(

f̂k

)

16k6K
weighted by

(

log
(

1
βk

))

16k6K
.

This algorithm comes from two ideas, theoretically motivated for the classifi-
cation case in [6]. The first is about the resampling distribution updating. At
iteration k, the distribution pk+1 is computed to increase the probability of
appearance in the next sample Lk+1 of the observations of L that are poorly
predicted by f̂k. So the next predictor f̂k+1 will concentrate more on these
observations. Here βk (see Table 1) can be viewed as a synthetic index of the
performance of f̂k on Lk, where, for brevity, we write the performance on L
under pk as the performance on Lk. The smaller βk, the better f̂k performs
on Lk. Since dk(i) is the individual performance of f̂k on L, multiplying pk(i)

by β
1−dk(i)
k merges in pk+1 the global performance of f̂k on Lk and also the

individual ones on L. The second is about the aggregation part of the algo-
rithm. It is important to notice that the predictor f̂k is constructed under
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the distribution pk, so the combination of the (f̂k) has to take into account
the resampling distributions (pk). Indeed, each predictor f̂k is designed to fit
observations of Lk obtained from pk, and then if f̂k performs well on Lk but
not globally on L, its weight will be large anyway. Let us mention that if
βk ≥ 1, then boosting is regenerated by resetting pk to p1, avoiding possible
degeneration.

4 Data sets and global performance

4.1 Data sets

We consider three simulated data sets, denoted by FR#1, FR#2 and FR#3,
and three real data sets, Boston Housing, Paris Pollution and Vitrolles Pollu-
tion. They are summarized in Tables 2 and 3 respectively. Data sets FR#1,
FR#2, FR#3 and Boston Housing are classical test examples (see [2], [18],
[16] and [4]) while P-Pollution and V-Pollution are French ozone data.

Table 2
Simulated data sets.

Data Predictors Model

FR#1 Xi ∼ U ([0, 1]) f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2

i = 1, . . . , 10 +10x4 + 5x5 + 0
∑10

i=6 xi

ξ ∼ N (0, 1)

FR#2 X1 ∼ U ([0, 100]) f(x) =
√

x2
1 + (x2x3 − 1/x2x4)2

X2/2π ∼ U ([20, 280]) ξ ∼ N (0, σξ) SNR=3

X3 ∼ U ([0, 1])

X4 ∼ U ([1, 11])

FR#3 Same as FR#2 f(x) = tan−1

[

x2x3 − (1/x2x4)

x1

]

ξ ∼ N (0, σξ) SNR=3

The simulated data sets have been considered by Friedman [19]. They are
relevant for our experiments for two reasons. First, they exhibit different diffi-
culties with respect to CART regression trees. Indeed, model FR#1 is defined
using a simple nonlinear function partially additive and separable but involves,
in addition, five useless variables while models FR#2 and FR#3 correspond
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to highly nonlinear functions with strong interactions (the more important for
FR#2). Second, these simulated data sets allow us to consider three different
situations (see section 4.2): FR#1 for which boosting outperforms bagging,
FR#2 for which bagging outperforms boosting and FR#3 which is a border-
line example.

In addition to data sets FR#2 and FR#3 corresponding to a signal-to-noise
ratio (SNR) equal to 3, we consider data sets denoted by FR#2-b and FR#3-b
for which the SNR is equal to 9. In the first case, the signal explains 75% of
the variance while it explains 90% in the second one. These two variants have
been considered separately in [2] and [16]. Thus we can compare FR#2 with
FR#2-b and FR#3 with FR#3-b to get an idea of the impact of changing
the SNR from a moderate to a high value.

Table 3
Real data sets.

Data Response Predictors Number

of obs.

Boston Housing Median housing 13 predictors. 506

(Bost. Hous.) price in the tract. Fully described in [18].

Paris Pollution Daily maximum 3 predictors. 1200

(P-Pollution) ozone concentration. Fully described in [20].

Vitrolles Pollution Daily maximum 41 predictors. 822

(V-Pollution) ozone concentration. Fully described in [21].

The first real data set, called Boston Housing, is fully described in [18, pp 217-
220] and extensively used in regression literature, allowing fair comparisons.

Let us sketch the specific problem addressed in this paper for the P-Pollution
data, dealing with the analysis and prediction of ozone concentration in Paris
area. Highly polluted days are often hard to predict: usual estimation methods
need to be suitably post-processed to improve the performance on these obser-
vations. We investigate in section 7.2 if, starting from a CART regression tree,
boosting performs automatically this improvement. The last data set called
V-Pollution differs from the previous one since the interesting days are suffi-
ciently numerous and a large number of explanatory variables is considered.
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4.2 Global performance

To start with a reference, we evaluate the performance of three estimators:
a single tree and those obtained by bagging and boosting. We perform K =
200 iterations for bagging and boosting. The performance is measured by the
prediction error RT (f, f̃) computed using a test sample T . This estimation is
computed by Monte Carlo from 10 runs of each algorithm. For the simulated
data, 500 training examples and 600 test examples are used. For the Boston
Housing data, we randomly take 10% of the data as test examples. For the
pollution data sets, we use a test sample containing 10% of the data and
stratified with respect to the response to preserve its distribution in the test
set since performance for polluted days is considered as crucial.

Remark 1. Usually (see [2], [16], [21]) the samples L and T (often of fixed
sizes) are randomized, which is convenient when the objective is to estimate
the true generalization errors. In this paper, since we focus on definitions of
instability depending on the training sample, all the predictors are generated
from fixed samples L and T , chosen in such a way that the prediction error of
a single tree designed using L, evaluated using T , is the median of the errors
obtained from numerous randomly generated candidates.

The performance of the three estimators on the data sets is given in Table 4.

Table 4
Single tree, bagging and boosting performance for data sets.

Data Single Tree Bagging Boosting

FR#1 8.79 5.75 4.46

FR#2 65,981 51,734 57,038

FR#2-b 26,147 18,981 19,507

FR#3 0.067 0.046 0.050

FR#3-b 0.036 0.026 0.024

Bost. Hous. 13.8 11.9 10.6

P-Pollution 556 469 488

V-Pollution 835 415 394

Remark 2. Let us mention that the results for single tree and bagging are
close to those obtained by Breiman [2] on common classical data sets and by
Ghattas [21] on V-Pollution. The prediction errors obtained for boosting are of
the same order of magnitude (larger for FR#1 and smaller for FR#2, FR#3
and Bost. Hous.) than those obtained by Drucker [16], who uses a different
pruning step in CART.
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First of all, bagging and boosting perform significantly better than a single
tree. This a widely known behaviour. However, boosting does not always have
a better performance than bagging since boosting outperforms bagging only
for FR#1, FR#3-b, Boston Housing and V-Pollution.

For FR#2 and FR#3 it is clear that boosting performs worse than bagging
while the degradation for P-Pollution is smaller. But when the SNR is in-
creased (see rows labeled FR#2-b and FR#3-b), the performance of a single
tree and the bagged predictor are dramatically improved and, what is more
interesting, bagging and boosting become closer. The comparison is even in-
verted for FR#3-b.

5 Analysis of the boosting predictors sequence

In the classification case, one can observe (see [11]) from the boosting predic-
tors sequence the five following facts. (1) Boosting outperforms bagging in all
but a few data sets examined in the literature. (2) The sequence (βk), where βk

is defined via the misclassification rate of f̂k, oscillates without any pointwise
stabilization. (3) Training and prediction errors decrease rapidly. Furthermore,
one observes that the training (or resubstitution) error rapidly reaches zero
and that the prediction error keeps on decreasing even after the training error
is equal to zero. (4) No characteristic behaviour indicates some possible over-
fitting. (5) Breiman notices a “strange signature” which can be interpreted as
an expression of the stabilization of the learning method via boosting. More
precisely, he plots the misclassification rate of each observation of L along the
K iterations, defined by

r(i) =
1

K

K
∑

k=1

1lYi 6=f̂k(Xi)
i = 1, . . . , n

with respect to the number of times that the observation i appears in the
different bootstrap samples Lk. The intuitive idea is that the more the ob-
servation i is misclassified, the more it appears in the bootstrap sample. But
r seems to stabilize around a constant value reached by the majority of the
observations. Breiman calls it “the plateau”. That is why boosting is often
interpreted in the classification context as a misclassification rate equalizer.

We sketch in this section a similar analysis for boosting in regression, to study
if the main attractive features of AdaBoost are preserved.
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5.1 The weights (βk) and the prediction errors

The behaviour of (βk) (defined in Table 1) and the training and prediction
errors with respect to k for FR#1 are plotted in Figure 1.

0 20 40 60 80 100 120 140 160 180 200
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

iteration

(a)

Beta

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

iteration

(b)

Training and prediction errors 
Prediction error
Training error
Single tree

Fig. 1. FR#1: On the left, the (βk) and on the right, from bottom to top, two curves
representing the boosting training and prediction errors and a line indicating the
prediction error of a single tree.

The sequence (βk) (see Figure 1(a)) is very unstable and oscillates around
0.07. Since (βk) is related to the global quality of f̂k on Lk, it follows that
this quality exhibits the same behaviour all along the boosting process with-
out any pointwise stabilization. Similarly, f̂k(xi) typically oscillates around yi

without any pointwise stabilization. On Figure 1(b), the training and predic-
tion errors have nearly the same behaviour as in the classification case, despite
the fact that the prediction error does not obviously keep on decreasing after
the training error stabilization. Moreover, it is interesting to notice that there
is no characteristic behaviour indicating some possible overfitting, even after
200 iterations which is usually considered as a large value (the corresponding
curves for the other data sets are similar).

5.2 The probability distributions (pk)

Figure 2 shows the boosting resampling probabilities along the iterations, for
two observations from FR#1 (panel (a)) and P-pollution (panel (b)). In each
case the two observations have been chosen in such a way that the associ-
ated probabilities are respectively almost always above and below the line
representing the uniform probability.

Again it appears that, in general, no pointwise stabilization occurs.
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Fig. 2. For FR#1 (a) and P-pollution (b), the boosting resampling probabilities for
two observations. The line represents the uniform probability.

5.3 The plateau

To study the plateau in regression, we define the individual average prediction
error of Yi using (f̂k) along the K iterations by

r(boost)(i) =
1

K

K
∑

k=1

(

Yi − f̂k(Xi)
)2

. (2)

Then, we plot, for each observation i of L, r(boost)(i) with respect to the number
of times that the observation i appears in the different bootstrap samples Lk

(see Figure 3).
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Fig. 3. FR#1: average error on 200 iterations vs. the number of appearances in the
samples Lk.

Boosting behaves in regression as in classification since the plateau phenomenon
occurs (the same behaviour is observed for the other data sets). So boosting
can be considered as an error equalizer.

After this quick tour of the behaviour of the boosting predictors sequence, let
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us focus on instability issue.

6 Bagging, boosting and instability

In the classification case, it is well known (see for example [11]) that, in order to
make bagging and boosting effective, a key property of the given estimation
method A is to be unstable. Intuitively A is an unstable method if small
changes in the training sample L may cause large changes in the resulting
estimator f̂ . In other words, A is unstable if it is not a robust method. Hence
different ways to define the instability or the stability of A appear in the
classification literature. On one hand, Bousquet and Elisseeff [22] study the
stability of A by replacing one observation in L with another one coming from
the same model. On the other hand, Breiman [23,11] studies a version of the
variance of A and connects instability with the good performance of bagging.
We follow the second line and we try to connect instability with bagging and
boosting sequences of predictors.

6.1 Bagging and instability

We define an instability index depending on a specific choice of the training
sample in order to be close to the actual problem of model estimation, for
which only one realization is available.

6.1.1 Instability index

The key quantities measuring the instability can be derived from the errors,

evaluated on L, of the bagging predictors (f̂k

(bag)
):

ε
(bag)
k = RL(f, f̂k

(bag)
). (3)

Indeed the fluctuations of these errors describe the changes of the estimator
caused by changes in the training sample. So the coefficient of variation of
ε(bag) provides an instability index defined as the ratio:

IL =
std

(

ε(bag)
)

ε(bag)
(4)
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where ε(bag) denotes the vector (ε
(bag)
k )16k6K , ε(bag) its average and std

(

ε(bag)
)

its empirical standard deviation.

It follows from this definition of instability that, for a given L, the more
unstable A, the larger IL, and, as soon as A is a local estimation method,
IL is not sensitive to outliers, since bagged predictors are involved. Let us
mention that, with respect to model (1), for a given training sample L and
some nonparametric estimation method A, IL can be viewed as an estimate
of the coefficient of variation of the random variable ‖f − f̂‖2.

6.1.2 Instability for data sets

To relate instability with performance of bagging, as Breiman does in [11] to
show that bagging improves only unstable methods, we compute, for each data
set, the instability index and the percentage of improvement of a single tree
by bagging, defined by 100(pest − pebag)/pest where pest and pebag denote the
prediction errors (given in Table 4) for a single tree and bagging respectively.
CART is bagged on the training sample L and 10 runs of bagging with 200
iterations per run are performed to estimate IL by the Monte Carlo method.
The question is: can we consider that the larger IL is, the more bagging will
improve CART? The results are given in Table 5. The data sets are split
in two groups numbered 1 when boosting performs better than bagging and
numbered 2 otherwise.

Table 5
Instability index and CART improvement by bagging.

Data Group IL %Improvement

by bagging

FR#1 1 0.075 34.6

FR#2 2 0.052 21.6

FR#2-b 2 0.055 27.4

FR#3 2 0.081 31.3

FR#3-b 1 0.093 27.8

Bost. Hous. 1 0.167 14.1

P-Pollution 2 0.039 12.0

V-Pollution 1 0.074 50.2

As expected, the percentage of improvement increases with IL, except for
Boston Housing which behaves as an outlier. For this last case, we observe
the highest value of IL and a percentage close to the smallest one. This is due
to the intrinsic difficulty of this data set since a very large instability index
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is combined with a large improvement of bagging by boosting (see Table 4).
This point will be addressed in the next section.

Let us remark that data sets of Group 1 seem to have larger instability indexes
than the ones of Group 2.

Two obvious remarks illustrate on data sets the good behaviour of the pre-
viously defined instability index: for a given regression function, IL increases
with the SNR (see FR#2 and FR#3 related rows) and IL decreases with the
number of missed variables (see Pollution data rows). This point is developed
in [24] by considering nested models.

6.2 Boosting and instability

6.2.1 Incremental instability index

Let us now define some indexes measuring the contribution of boosting to in-
stability. The general idea is that, compared to bagging, the adaptive updating
of the probabilities (pk) should provide a sequence of boosted predictors (f̂k)

much more unstable than the sequence of bagged predictors (f̂k

(bag)
).

Starting from the key sequence of the training errors of the boosting predictors
(f̂k)

ε
(boost)
k =RL(f, f̂k), (5)

the instability index I
(boost)
L carried out by boosting for the sample L is ob-

tained from IL by taking ε(boost) rather than ε(bag), that is:

I
(boost)
L =

std
(

ε(boost)
)

ε(boost)
. (6)

Then the incremental instability index of boosting for the sample L is defined
as the ratio of the instability index carried out by boosting and the instability
index:

δI
(boost)
L =

I
(boost)
L

IL

=
std

(

ε(boost)
)

ε(boost)
×

ε(bag)

std (ε(bag))
. (7)
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It follows that, for a given L, the larger δI
(boost)
L , the more boosting contributes

to instability with respect to bagging.

6.2.2 Incremental instability for data sets

For each data set, the two numerical instability indices and the ratio of the
prediction errors of bagging and boosting are given in Table 6.

Table 6
Instability indices for bagging and boosting.

Data Group IL δI
(boost)
L Ratio bagging/

boosting

FR#1 1 0.075 1.87 1.29

FR#2 2 0.052 2.38 0.91

FR#2-b 2 0.055 2.58 0.97

FR#3 2 0.081 1.57 0.92

FR#3-b 1 0.093 1.58 1.08

Bost. Hous. 1 0.167 1.50 1.11

P-Pollution 2 0.039 3.50 0.97

V-Pollution 1 0.074 1.97 1.05

First of all, let us notice that the contribution of boosting to instability is
effective for all data sets, since δI

(boost)
L is always greater than 1.

Second the results of Table 6 have to be balanced with the classification of
the data sets recalled in the second column of the table. We obtain that for
Group 1 the instability index is large and the incremental instability index is
moderate and, for Group 2, except for FR#3, the instability index is small
and the incremental instability index is significantly larger than the ones of
Group 1, particularly for P-Pollution.

This leads to the conjecture that the effectiveness of boosting is not only
related to the global instability of CART, but also to the incremental con-
tribution of boosting to instability: a large (resp. small) instability combined
with a moderate (resp. large) contribution of boosting to instability may imply
that boosting will perform well (resp. poorly).

The FR#3 data set is a borderline example since a change of the SNR suffices
to invert the bagging/boosting ratio.

The P-Pollution data set illustrates that boosting focuses on hard observa-
tions, which are the highly polluted days. Indeed, the instability index is small
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since it is robust with respect to them, but the incremental instability index is
very large since it is sensitive to them. Table 4 shows that boosting performs
slightly worse than bagging. A deeper analysis carried out in section 7.2 ex-
hibits a more interesting behaviour of boosting: it performs well and improves
bagging performance on highly polluted days even if it slightly degrades the
global performance.

6.2.3 More about the training errors

Let us formulate a surprising remark about the averaged errors by considering

the following ratio: ∆
(boost)
(bag) = ε(boost)

ε(bag)
. Intuitively, since bagging is not sensitive

to outliers or hard observations, the more boosting concentrates on some ob-
servations of the training sample L, the more the average error of the sequence

(f̂k) is far from the average error of the sequence (f̂k

(bag)
). So Table 7 contains

∆
(boost)
(bag) and the incremental instability index of boosting for all the considered

data sets.

Table 7
Ratio of the average errors of the predictors sequences provided by boosting and

bagging respectively and incremental instability index for the data sets.

Data ∆
(boost)
(bag) δI

(boost)
L

FR#1 1.51 1.87

FR#2 1.69 2.38

FR#2-b 1.57 2.58

FR#3 1.55 1.57

FR#3-b 1.49 1.58

Bost. Hous. 1.50 1.50

P-Pollution 1.68 3.50

V-Pollution 1.55 1.97

Surprisingly ∆
(boost)
(bag) remains within the interval [1.5; 1.7] for the considered

data sets. This means that the Drucker’s boosting seems to design predictors
in order to equalize their average error to at least 1.5 times the average error
of the bagging predictors sequence, as soon as K is sufficiently large. This
remark shows how important is the aggregation part of the algorithm.

In addition, it follows that the incremental instability index given by (7) seems
to be close to the ratio of the standard deviations of ε(boost) and ε(bag), up to
a multiplicative constant roughly speaking.

Let us come back to the plateau evidenced in section 5.3 by connecting r
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defined by (2) and ε, both for bagging and boosting. Indeed, we have that

r(boost) = ε(boost). Then by replacing f̂k by f̂k

(bag)
in the definition of r(boost)(i),

we define similarly r(bag)(i) and we have r(bag) = ε(bag). So

∆
(boost)
(bag) =

ε(boost)

ε(bag)
=

r(boost)

r(bag)
.

So ∆
(boost)
(bag) is also equal to the ratio of r(boost) and r(bag), this approximately

gives the ordinate of the plateau.

7 Outliers and hard observations

Let us analyze the boosting dynamic in front of hard observations, first by con-
taminating some population with outliers, and second by studying if boosting
is able to track the non-dominant population and to perform a kind of compro-
mise. We first consider some simulated data, to cope with outliers, and then
the P-Pollution data, which can be seen as a more intricate case of mixing of
populations.

7.1 Outliers

The main point of this section is to supply evidence that boosting does concen-
trate on the outliers. We start with the model generating the FR#1 data set
and contaminate it incrementally. Hence, since boosting performs well on this
problem, the behaviour of boosting in front of outliers can be easily analyzed.
From model FR#1 used to generate the dominant population, we simulate a
training sample L and a test sample T of size 500 and 600 respectively. Then L
and T are altered by adding to each of them δ% observations generated using
a shifted version of the former regression function (f2 = f + 20) to produce
the outliers. In addition we simulate two test samples T1 and T2 of size 600,
coming from the dominant population and the outliers respectively.

Let us summarize the comparison of CART, bagging and boosting with respect
to prediction errors evaluated on T , T1 and T2, for δ=1%, 2%, 3%, 5%, 10%, 25%
(see [24] for details). The prediction error of bagging is always smaller than
the prediction error of a single tree. Indeed bagging is not sensitive to outliers
and generally improves the performance of CART. For δ less than 10%, the
prediction errors of boosting and bagging are close to each other but bagging
outperforms boosting for the three test sets. This illustrates the sensitivity
of boosting to outliers, since boosting has better performance than bagging
on the unaltered data set FR#1. Moreover, when there is a large proportion
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of outliers (δ = 25%), boosting performs even worse than a single tree on
the dominant population. Nevertheless an improvement on T2 is reached. This
balance between the performance on the dominant population and a second
one is the key point highlighted in the next section.

What is more interesting is to focus on outliers. Figure 4 contains the number
of times that each observation is taken in the bootstrap sample Lk and the
percentage of outliers taken in Lk at each iteration k. Figure 4(a) shows that
the outliers (the last observations in the training sample) are taken in almost
every bootstrap sample Lk. Figure 4(b) shows that outliers do not represent
more than 55% of the observations in Lk. Let us mention that the weight
(with respect to the resampling distributions) of the outliers varies between
40% and 50%. This shows that boosting not only concentrates on outliers but
mixes observations from the two subpopulations. This behaviour is analogous
to the behaviour of boosting in classification, for which the pk+1-weight of the
observations misclassified by f̂k is equal to 50%.
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Fig. 4. (a): number of appearances of each observation in the bootstrap samples.
(b): percentage of outliers taken in the bootstrap samples during the loop for FR#1
altered with δ = 25% of outliers. Note: the outliers are the last observations in the
training sample.

7.2 Hard observations

We now consider the P-Pollution data. A comparison between different ap-
proaches shows that a simple nonlinear additive model captures the main
features of the complex underlying dynamics, despite the small number of ex-
planatory variables (see [20]). The main difficulty is to correctly predict alarms
defined by the maximum of ozone concentration exceedances of a high level
threshold, for which only few observations are available. When a classical es-
timator is used, one can observe an underestimation for these interesting days
despite the fact that the mean of absolute errors is satisfactory since it is close
to the measurement error. To improve this estimator, Chèze et al. [20] define
partial estimators for nonlinear additive models, which are recombined using
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suitably chosen weights leading to a modified estimator improving tremen-
dously the performance for interesting days. We study if boosting is able to
automatically perform this. Since the legal threshold of maximum concentra-
tion of ozone over Paris is 130, population 1 (denoted by P1) is composed
by observations having a response smaller than 130 and population 2 (P2)
contains the other ones. From section 4.2, we know that boosting performs
worse than bagging on this data set when performance is evaluated using T ,
which merges P1 and P2. Let us evaluate the performance separately on each
population. The training and prediction errors obtained from 10 runs with 200
iterations are given in Table 8.

Table 8
Performance per population for P-Pollution data: training and prediction mean

squared errors.

Single tree Bagging Boosting

Training error P1 305 249 207

P2 864 640 236

Prediction error P1 549 477 503

P2 632 386 318

As claimed, a single tree performs better on the dominant population P1,
both on training and test sets.

On the training set, bagging improves on a single tree both on P1 and P2.
What is more interesting is that boosting improves the performance of bagging
again on both populations and the accuracy on P2 becomes close to the one
obtained for P1. This is illustrated in Figure 5 giving along the iterations the
training errors for bagging (panel (a)) and boosting (panel (b)). Let us remark
that the final values are already reached for K = 80 iterations.
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Fig. 5. P-Pollution: the training errors for bagging (a) and boosting (b). From
bottom to top of each graph the curves correspond to P1, P1 ∪ P2 and P2.

On the test set, a more surprising situation occurs: on one hand, bagging has
better performance on P2 than on P1 and on the other hand, boosting slightly

18



degrades the performance of bagging on P1, but improves a lot the bagging
performance on P2. The results on the test set must be taken with caution
since only a small number of observations is involved.

From another viewpoint, it is clear from Figure 6 that boosting concentrates
on the P2 observations.
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Fig. 6. Number of times that each observation is taken in the bootstrap samples (a)
and percentage of P2 observations taken in the bootstrap samples during the loop
(b) for P-Pollution data.

8 Concluding remarks

The analysis of Drucker’s boosting algorithm focusing on predictors sequence
reveals that many meaningful properties of the original AdaBoost algorithm
are preserved. The definitions of instability introduced in this paper are also
derived from the predictors sequence and confirm the importance of instability
in order to get such resampling schemes effective. The instability indices allow
a better understanding of the performance of bagging and boosting on data
sets. For example, the effectiveness of boosting is not only related to the global
instability of CART, but also to the incremental contribution of boosting to
instability. The experiments carried out in this paper confirm the interest of
the Drucker’s algorithm to improve regression trees: the Paris pollution data
illustrates the good behaviour of the algorithm in front of a non-standard
regression model, performing a kind of tradeoff between the two underlying
subpopulations. In addition, our experiments suggest that boosting could be
used to highlight outliers or hard observations.

Finally, let us mention that, following numerous experiments (see [24]), it
seems to be rather difficult to significantly improve the original algorithm
using variants like aggregation using mean rather than median, aggregation
using space adaptive definition of the weight or probabilities updating using
classification like rule following [13].
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