Model Selection for CART Regression Trees

Abstract : The performance of the Classification And Regression Trees (CART) pruning algorithm and the final discrete selection by test-sample as a functional estimation procedure are considered. The validation of the pruning procedure applied to Gaussian and bounded regression is of primary interest. On the one hand, the paper shows that the complexity penalty used in the pruning algorithm is valid in both cases and, on the other hand, that, conditionally to the construction of the maximal tree, the final selection does not alter dramatically the estimation accuracy of the regression function. In both cases the risk bounds that are proved, obtained by using the penalized model selection, validate the CART algorithm which is used in many applications such as Meteorology, Biology, Medicine, Pollution or Image Coding.
Type de document :
Article dans une revue
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2005, 51 (2), pp.658 - 670
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00326549
Contributeur : Servane Gey <>
Soumis le : vendredi 3 octobre 2008 - 14:34:22
Dernière modification le : mercredi 4 janvier 2017 - 16:23:07
Document(s) archivé(s) le : vendredi 4 juin 2010 - 12:10:41

Fichier

GeyNed04.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00326549, version 1

Collections

Citation

Servane Gey, Elodie Nédélec. Model Selection for CART Regression Trees. IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2005, 51 (2), pp.658 - 670. <hal-00326549>

Partager

Métriques

Consultations de
la notice

136

Téléchargements du document

360