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PROJECTOR SPACE OPTIMIZATION IN QUANTUM CONTROL ∗

ANDREEA GRIGORIU 1 AND GABRIEL TURINICI 2

Abstract. We investigate in this work the numerical resolution of a quantum control problem; the specificity of
the approach is that, instead of searching directly for the optimal laser intensity that drives the system toward its
target, we consider here as main variable the evolution semigroup i.e. the set of propagators indexed with time. The
precise form of the generator of the semigroup (e.g. dipolar) is then enforced as a constraint. We present both an
algorithm and associated numerical results.

INTRODUCTION

Following successful quantum control experiments in the late 90s [1–4, 6, 7, 20] that build on the introduction of
the evolutionary paradigm [5] a large number of works [8, 11–13, 17, 18, 21, 23] investigated numerically the control of
quantum phenomena with laser fields.

The mean that allows to control the system is thus the laser field, more precisely its intensity. Traditionally, the
numerical simulations considered some description of the interaction of the laser and the system, of which the most used
is the dipole approximation, and performed optimizations considering the laser intensity as main variable.

We propose in this work a different view of the problem: we place ourselves in the evolution semigroup of unitary
propagators and ask that the resulting Hamiltonian be consistent with the chosen approximation type.

The balance of the paper is as follows: we introduce the main notations and the technical choices that determine our
problem in Section 1. Our specific optimization algorithm is presented in Sections 2 and 3 followed in Section 4 by
numerical results.

1. PROBLEM SETTING

We consider a quantum system evolving under the Schrödinger equation (we use atomic units, i.e ~ = 1):

i
d

dt
ψ(x, t) = H(t)ψ(x, t), (1)

ψ(t = 0) = ψinit

where ψ(x, t) is the wavefunction, ψinit is the initial data and H(t) the Hamiltonian of the system. We assume that
the system is described as finite dimensional, so that H is a N × N complex Hermitian matrix with entries in C and
ψ(x, t) ∈ CN. The initial data ψinit verifies ‖ψinit‖ = 1.
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This finite dimensional configuration represents an approximation of an infinite dimensional system. The same formu-
lation of the system given by (1) can be expressed using the time evolution operator U(t) U(N), called the propagator:

i
d

dt
U(t) = H(t)U(t) (2)

U(t = 0) = I

with the property ψ(x, t) = U(t)ψ(x, 0). We recall that U(N) is the space of unitary matrices

U(N) = {A ∈ CN×N ;AA∗ = A∗A = Id} (3)

In the following we suppose that our system it is submitted to an external interaction taken here as an electric field. In
the dipole approximation [9, 16, 19] the Hamiltonian H(t) has the following form:

H(t) = H0 + ε(t)µ, (4)

where H0 is the internal Hamiltonian of the system ε(t) ∈ R is the intensity of the laser field and µ ∈ RN×N the
(coupling) dipole moment operator.

Both H0 and µ are known, self adjoint operators. The control is here ε(t) which can be chosen to influence the
evolution of the system.

Our goal is to design an algorithm that finds an (optimal) laser field ε(t) such that, under the control ε(t), the system
evolves from the initial state U(t = 0) = I to the final state U(t = T ) = UT .

We work in a spaceHN , of the hermitian matrices with the scalar product defined by:

∀A,B ∈ HN < A,B >= real(tr(AB∗)), (5)

where B∗ is the transposed-conjugate of the matrix. This scalar product induces a norm on the space of Hermitian
matrices:

∀A ∈ HN ‖A‖ =
√
< A,A >. (6)

Instead of searching for the intensity ε [12,21,22] we take here a different view and search for a path U(t) in propagator
space such that the corresponding Hamiltonian will be of type (4). This leads us to minimize the following functional∫ T

0

‖H −ΠH0+Span(µ)(H)‖2dt, (7)

with the constraints:

• H(t) = iU̇(t)U∗(t) for every t in [0, T ]
• U∗(t)U(t) = U(t)U∗(t) = I for every t in [0, T ].

Since ‖H−ΠH0+Span(µ)(H)‖ = minξ∈R ‖H−H0−ξµ‖ = ‖H−H0−ΠSpan(µ)(H−H0)‖ our minimization problem
can be written as : 

min
U

∫ T
0
‖H(t)− (H0 + ΠSpan(µ)(H(t)−H0))‖2dt

H(t) = iU̇(t)U∗(t) for every t in [0, T ],
U∗(t)U(t) = U(t)U∗(t) = I for every t in [0, T ],
U(t = 0) = I, U(t = T ) = UT .

(8)

Note that when H(t) = H0 + ε(t)µ, since ΠSpan(µ)(H −H0)) = ε(t)µ, we can define our laser field as

ε(t) =
< (H(t)−H0), µ >

< µ, µ >
.
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Once a path Ũ(t) in propagator space has been given, to improve it we will search U(t) of the form U(t) =
Ũ(t) exp(iA(t)), with A(t) ∈ HN . Since U(t)U∗(t) = Ũ(t)eiA(t)e−iA(t)Ũ∗(t) = I for every t ∈ [0, T ], and re-
placing H(t) = iU(t)U∗(t) we obtain a cost functional depending on A(t) with no constraints:

J(U) = Jc
Ũ

(A) =
∫ T

0

‖iU̇(t)U∗(t)− (H0 + ΠSpan(µ)(iU̇(t)U∗(t)−H0))‖2dt (9)

U(t = 0) = I, U(t = T ) = UT . (10)

We discretize the interval [0, T ] with points tj = jT/N ; this allows to write an approximation for U̇(t) (e.g. by finite
differences) . For a given integer N , we define the discretization parameter ∆T = T/N , and Uj , Aj , Hj , εj represent
approximations for U(j∆T ),A(j∆T ) H(j∆T ), ε(j∆T ). In the following we denote ε = (εj)0≤j≤N , U = (Uj)0≤j≤N ,
A = (Aj)0≤j≤N , H = (Hj)0≤j≤N . We consider the time discretized version of the cost function

defined in (9):

JŨ (A) = ∆T
N∑
j=0

‖i
˙̂

ŨjeiAj
̂̃
UjeiAj

∗
− (H0 + ΠSpan(µ)(i

˙̂
ŨjeiAj

̂̃
UjeiAj

∗
−H0))‖2dt (11)

Aj ∈ HN

U0 = I, UN = UT .

2. ITERATION ALGORITHM

In order to minimize JU (A) with respect to A we use a gradient type method. At step k − 1, for a given Uk−1 we
minimize JUk−1(A) by taking Uk = Uk−1eiA

k

; we can easily verify that the property Uk(Uk)∗ = I holds at every step
k.

To compute U̇k we propose a centered finite differences formula:

Hk
j = iU̇kj (Ukj )∗ = i

Ukj+1 − Ukj−1

2∆T
(Ukj+1)∗ + (Ukj−1)∗

2
(12)

= i
Ukj+1(Ukj+1)∗ + Ukj+1(Ukj−1)∗ − Ukj−1(Ukj+1)∗ − Ukj−1(Ukj−1)∗

4∆T

= i
Ukj+1(Ukj−1)∗ − Ukj−1(Ukj+1)∗

4∆T

= i
Uk−1
j+1 e

iAk
j+1e−iA

k
j−1(Uk−1

j−1 )∗ − Uk−1
j−1 e

iAk
j−1e−iA

k
j+1(Uk−1

j+1 )∗

4∆T

Now we consider an iteration algorithm for solving the minimization problem (8). The iteration procedure is specified
as follows:

Step k ≥ 2

Akj = −ρ∂JUk−1(A)
∂Aj

for every j = 1, .., N − 1

Ukj = Uk−1
j eiA

k
j for every j = 1, .., N − 1
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where ρ is a positive constant. Note that the new value of the functional J(Uk) is:

J(Uk) = JUk−1(A) = ∆T
N∑
j=0

‖iU̇kj (Ukj )∗ − (H0 + ΠSpan(µ)(iU̇kj (Ukj )∗ −H0))‖2dt

The boundary condition in each step are:

Uk0 = I, Ak0 = 0, UkN = UT ,

The corresponding control field at each iteration step can be written as:

εkj =
< (Hk

j −H0), µ >
< µ, µ >

for every j = 0, .., N.

In the following for simplicity reasons we note ΠSpan(µ) = Π and P = I −Π ( I is the identity operator).

3. GRADIENT COMPUTATION

We explain in this section how to compute the variation ∂J
Uk−1 (A)

∂Aj
.

Theorem 3.1. The gradient of JUk(A) is given by:

∇JUk(A) =
(
− 2(Uk−1

j−1 )∗(P (Hk
j−1)(0)− P (H0))Uk−1

j − 2(Uk−1
j )∗(P (Hk

j−1)(0)− P (H0))Uk−1
j−2 + (13)

2(Uk−1
j )∗(P (Hk

j+1)(0)− P (H0))Uk−1
j+2 + 2(Uk−1

j+2 )∗(P (Hk
j+1)(0)− P (H0))Uk−1

j

)
j=1,..,N−1

(14)

Proof. In order to have an explicit formula for the gradient of JUk(A) we will compute the partial derivatives of JUk(A)
with respect to Aj for every j = 2, ..., N around the point A = (0, 0, ..., 0) .

∂JUk(A)
∂Aj

(A = 0) = ∆T
∂

∂Aj

( N∑
j=0

‖Hk
j −ΠHk

j + ΠH0 −H0‖2
)∣∣
A=0

= ∆T
∂

∂Aj

( N∑
j=0

< Hk
j −ΠHk

j + ΠH0 −H0, H
k
j −ΠHk

j + ΠH0 −H0 >
)∣∣
A=0

= ∆T
{ ∂

∂Aj
< P (Hk

j−1)(Aj)− P (H0), P (Hk
j−1)(Aj)− P (H0) > +

+
∂

∂Aj
< P (Hk

j+1)(Aj)− P (H0), P (Hk
j+1)(Aj)− P (H0) >

}∣∣
A=0

.

Continuing the computation we obtain

∂

∂Aj
< P (Hk

j−1)(Aj)− P (H0), P (Hk
j−1)(Aj)− P (H0) >=

∂

∂Aj
(< P (Hk

j−1)(Aj), P (Hk
j−1)(Aj) > +

+2 < P (Hk
j−1)(Aj),−P (H0) > + < P (H0), P (H0) >)
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which at the first order gives:

< P (Hk
j−1)(Aj + δAj), P (Hk

j−1)(Aj + δAj) >

+2 < P (Hk
j−1)(Aj + δAj),−P (H0) > + < P (H0), P (H0) >=

=< P (Hk
j−1)(Aj), P (Hk

j−1)(Aj) > +2 < P (Hk
j−1)(Aj), P (Hk

j−1)
∂

∂Aj
Hk
j−1(δAj) >

+2 < P (Hk
j−1)(Aj),−P (H0) > +2 < P (Hk

j−1)
∂

∂Aj
Hk
j−1(δAj),−P (H0) > +

< P (H0), P (H0) > +O(δAj)2.

We proceed now by identification to obtain:

∂

∂Aj
< P (Hk

j−1)(Aj)− P (H0), P (Hk
j−1)(Aj)− P (H0) >= (15)

= 2 < P (Hk
j−1)(Aj), P (Hk

j−1)
∂Hk

j−1

∂Aj
(δAj) >

+2 < P (Hk
j−1)

∂Hk
j−1

∂Aj
(δAj),−P (H0) >

= 2 < P (Hk
j−1)(Aj)− P (H0), P (Hk

j−1)
∂Hk

j−1

∂Aj
(δAj) >

= 2 < P ∗(P (Hk
j−1)(Aj)− P (H0)),

∂Hk
j−1

∂Aj
(δAj) >

= 2 < P (Hk
j−1)(Aj)− P (H0),

∂Hk
j−1

∂Aj
(δAj) > .

Using the same method we can also prove:

∂

∂Aj
< P (Hk

j+1)(Aj)− P (H0), P (Hk
j+1)(Aj)− T (H0) >= (16)

= 2 < P (Hk
j+1)(Aj)− P (H0),

∂Hk
j+1

∂Aj
(δAj) > .

In order to compute
∂Hk

j−1
∂Aj

and
∂Hk

j+1
∂Aj

we will use relation (12), and a first order approximation to obtain:
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Hk
j−1(Aj + δAj)

∣∣
A=0

=
(
i
Uk−1
j eiAj+iδAje−iAj−2(Uk−1

j−2 )∗

4∆T
−

−i
Uk−1
j−2 e

iAj−2e−iAj−iδAj (Uk−1
j )∗

4∆T

)∣∣
A=0

=
(
i
Uk−1
j (I + iAj + iδAj)(I − iAj−2)(Uk−1

j−2 )∗

4∆T
−

i
Uk−1
j−2 (I + iAj−2)(I − iAj − iδAj)(Uk−1

j )∗

4∆T

)∣∣
A=0

= i
Uk−1
j (Uk−1

j−2 )∗ − iUk−1
j−2 (Uk−1

j )∗

4∆T
+

i
Uk−1
j iδAj(Uk−1

j−2 )∗ − iUk−1
j−2 (−iδAj)(Uk−1

j )∗

4∆T
+O(δAj)2.

Again by identification we determine that:

∂Hk
j−1(Aj)
∂Aj

(δAj)
∣∣
A=0

= i
Uk−1
j iδAj(Uk−1

j−2 )∗ − iUk−1
j−2 (−iδAj)(Uk−1

j )∗

4∆T
. (17)

Same arguments can be invoked to prove :

∂Hj+1(Aj)
∂Aj

(δAj)
∣∣
A=0

= i
Uk−1
j+2 iδAj(U

k−1
j )∗ − iUk−1

j (−iδAj)(Uk−1
j+2 )∗

4∆T
. (18)

Substituting (17), (18) into (15) and respectively (16) we obtain:

∂JUk

∂Aj
(δAj)(A = 0) = ∆T

{
2 < P (Hk

j−1)− P (H0),
−Uk−1

j δAj(Uk−1
j−2 )∗ − Uk−1

j−2 (δAj)(Uk−1
j )∗

4∆T
>

+2 < P (Hk
j+1)− P (H0),

+Uk−1
j+2 δAj(U

k−1
j )∗ + Uk−1

j (δAj)(Uk−1
j+2 )∗

4∆T
>
}

= −0.5real(tr((P (Hk
j−1)− P (H0))Uk−1

j (δAj)(Uk−1
j−2 )∗)

−(P (Hk
j−1)− P (H0))Uk−1

j−2 (δAj)(Uk−1
j )∗))

+0.5real(tr((P (Hk
j+1)− P (H0))Uk−1

j+2 (δAj)(Uk−1
j )∗)

+(P (Hk
j+1)− P (H0))Uk−1

j (δAj)(Uk−1
j+2 )∗

)
).

Using the property of the scalar product real(tr(AB∗)) = real(tr(AB)) and the properties of the trace, by identifi-
cation we obtain the relation (13) which concludes the proof.

�

The previous theorem allows to define the set C of the critical points of JU (A)

C =
{
A = (A0, A1, ..., AN ), Aj ∈ HN ,∀j = 0, ..N

∣∣∣− 2(Uk−1
j−1 )∗(P (Hj−1)(0)− P (H0)Uk−1

j

−2(Uk−1
j )∗(P (Hj−1)(0)− P (H0)Uk−1

j−2 + 2(Uk−1
j )∗(P (Hj+1)(0)− P (H0)Uk−1

j+2

+2(Uk−1
j+2 )∗(P (Hj+1)(0)− P (H0)Uk−1

j = 0, j = 1, ..., N − 1
}
. (19)
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FIGURE 1. Convergence of the functional J towards the minimum value vs the number of iterations.

4. NUMERICAL SIMULATIONS

In order to demonstrate the efficiency of the algorithm, we choose a five-dimensional test system [14, 15] having
internal Hamiltonian H0 and dipole moment operator µ:

H0 =


1.0 0 0 0 0
0 1.2 0 0 0
0 0 1.3 0 0
0 0 0 2.0 0
0 0 0 0 2.15

 , µ =


0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0


Numerical simulations have been performed for a final time T = 200, which represents approximately 32 times the
natural period, at which the system without control oscillates. The system evolves between the initial state U0 = I5 and

the final state UT =


0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0

. The functional J(U) is positive and as we can see in Fig.1 the algorithm

obtains linear convergence towards the minimum point, zero. As soon as the minimum point is reached we also obtain the
optimal laser field, which representation is given by Fig.3.

After that we solve the equation (2) [10,15] with H(t) = H0 + εµ, where ε is the laser field given by the optimization
algorithm, starting from the initial point U0. In Fig.4 we represent |U(1, 1)|2 and |U(5, 1)|2 as functions of time, and we
observe that the final state UT is reached.

The algorithm provides satisfying results for a discretization time step ∆T < 10−1. If we choose the value of ∆T =
10−1 we accelerate the convergence of the functional towards the minimum point, but instead the laser field thus obtained
doesn’t allow the evolution of our system between the two chosen states.

If we take a small value for ∆T the error decreases and we can reach the final state UT , but we need a larger number of
iterations. The numerical simulations presented in Fig.1, Fig.2 Fig.3 and Fig.4 have been performed for ∆T = 0.04,
and ρ = 0.01.
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