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Abstract—This paper deals with the case of a high speed
mobile receiver operating in an orthogonal-frequency-division-
multiplexing (OFDM) communication system. Assuming the
knowledge of delay-related information, we propose an iterative
algorithm for joint multi-path Rayleigh channel complex gains
and data recovery in fast fading environments. Each complex gain
time-variation, within one OFDM symbol, is approximated by a
polynomial representation. Based on the Jakes process, an auto-
regressive (AR) model of the polynomial coefficients dynamics is
built, making it possible to employ the Kalman filter estimator
for the polynomial coefficients. Hence, the channel matrix is
easily computed, and the data symbol is estimated with free
inter-sub-carrier-interference (ICI) thanks to the use of a QR-
decomposition of the channel matrix. Our claims are supported
by theoretical analysis and simulation results, which are obtained
considering Jakes’ channels with high Doppler spreads.

Index Terms—OFDM, channel estimation, time-varying chan-
nels, Kalman filters, QR-decomposition.

I. I NTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is an effective technique for high bit-rate

transmission. In mobile communications, high speeds of
terminals cause Doppler effects that could seriously affect
the performance. In such case, dynamic channel estimation is
needed, because the radio channel is frequency selective and
time-varying, even within one OFDM symbol [4]. It is thus
preferable to estimate channel by inserting pilot tones, called
comb-type pilots, into each OFDM symbol [5].

For fast time-varying channel, many existing works resort
to estimate the equivalent discrete-time channel taps which are
modeled by a basis expansion model (BEM) [6]. The BEM
methods used to model the equivalent discrete-time channel
taps are Karhunen-Loeve BEM (KL-BEM), prolate spheroidal
BEM (PS-BEM), complex exponential BEM (CE-BEM) and
polynomial BEM (P-BEM). A great deal of attention goes
to the P-BEM [7] where its modeling performance is rather
sensitive to the Doppler spread though it has a better fit for
low Doppler spreads than for high Doppler spreads.

As channel delay spread increases, the number of channel
taps also increases, thus leading to a large number of BEM
coefficients, and consequently more pilot symbols are needed.
In contrast to the research described in [6], we sought to
directly estimate the physical channel, instead of the equivalent
discrete-time channel taps. This means estimating the physical
propagation parameters such as multi-path delays and multi-
path complex gains. In [1], we have proposed an iterative al-
gorithm for complex gain time-variation estimation and inter-

sub-carrier-interference (ICI) suppression whose execution is
done per block of OFDM symbols. This algorithm demands
very high computation. In [2], we have proposed a low-
complexity iterative algorithm based on the demonstration
that each complex gain time-variation can be approximated
in a polynomial fashion within several OFDM symbols. The
both algorithms above reduce the ICI by using successive
interference suppression (SIS), and have a good performance
for normalized Doppler spread (fdT ) up to 10%.

In this paper, we present a new iterative algorithm for joint
multi-path Rayleigh channel complex gains and data recovery
in very fast fading environments (fdT > 10%). Exploiting
the channel nature, the delays are assumed invariant and
perfectly estimated as we have already done in OFDM [1]
[2] and CDMA [10] contexts. It should be noted that an
initial, and generally accurate estimation of the number of
paths and time delays can be obtained by using the MDL
(minimum description length) and ESPRIT (estimation of
signal parameters by rotational invariance techniques) methods
[9]. However, we test by simulation the sensitivity of our
algorithm to errors of estimated delays. In order to make
the polynomial approximation in [2] more accurate, we ap-
proximate the time-variation of each complex gain within one
OFDM symbol by a polynomial model. Based on the Jakes
process, an auto-regressive (AR) model of the polynomial
coefficients dynamics is built, making it possible to employthe
Kalman filter estimator for the polynomial coefficients. Hence,
the channel matrix can be easily computed. In order to perform
polynomial coefficients estimation, we use the estimate along
with the channel matrix output to recover the transmitted data.
On can, in turn, use the detected data along with pilots to
enhance the polynomial coefficients estimate giving rise toan
iterative technique for complex gains and data recovery. The
detection is performed over the ICI-free data symbol thanksto
the use of a QR (orthogonal-triangle) decomposition [11] of
the channel matrix, which is better compared to SIS equalizer.
The present proposed algorithm has a good performance for
very high Doppler spread (fdT > 10%).

This paper is organized as follows: Section II introduces
the OFDM system and the polynomial modeling. Section III
describes the AR model for the polynomial coefficients and
the Kalman filter. Section IV covers the algorithm for joint
complex gains and data estimation. Section V presents the
simulations results which validate our technique. Finally, our
conclusions are presented in Section VI.

The notations adopted are as follows: Upper (lower) bold
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face letters denote matrices (column vectors).[x]k denotes the
kth element of the vectorx, and [X]k,m denotes the[k,m]th
element of the matrixX. We will use the matlab notation
X[k1:k2,m1:m2] to extract a submatrix withinX from row k1

to row k2 and from columnm1 to column m2. IN is a
N × N identity matrix and0N,L is a N × L matrix of zeros
(0N = 0N,N ). diag{x} is a diagonal matrix withx on its
main diagonal, diag{X} is a vector whose elements are the
elements of the main diagonal ofX and blkdiag{X, Y} is a
block diagonal matrix with the matricesX andY on its main
diagonal. The superscripts(·)T and(·)H stand respectively for
transpose and Hermitian operators. Tr(·) and E[·] are the trace
and expectation operations, respectively.J0(·) is the zeroth-
order Bessel function of the first kind.

II. OFDM SYSTEM AND POLYNOMIAL MODELING

A. OFDM System Model

Consider an OFDM system with N sub-carriers, and a
cyclic prefix lengthNg. The duration of an OFDM symbol is
T = vTs, whereTs is the sampling time andv = N +Ng. Let
x(n) =

[

x(n)[−
N
2 ], x(n)[−

N
2 +1], ..., x(n)[

N
2 −1]

]T
be thenth

transmitted OFDM symbol, where{x(n)[b]} are normalized
QAM-symbols (i.e., E

[

x(n)[b]x(n)[b]
∗
]

= 1). After transmis-
sion over a multi-path Rayleigh channel, thenth received
OFDM symboly(n) =

[

y(n)[−
N
2 ], y(n)[−

N
2 +1], ..., y(n)[

N
2 −

1]
]T

is given by [2] [1]:

y(n) = H(n) x(n) + w(n) (1)

wherew(n) =
[

w(n)[−
N
2 ], w(n)[−

N
2 +1], ..., w(n)[

N
2 −1]

]T
is

a complex Gaussian noise vector with covariance matrixσ2IN

andH(n) is a N ×N channel matrix with elements given by:

[H(n)]k,m =
1

N

LX
l=1

h
e
−j2π( m−1

N
− 1

2
)τl

N−1X
q=0

α
(n)
l (qTs)e

j2π
m−k

N
q
i
(2)

whereL is the number of paths,αl is thelth complex gain of
varianceσ2

αl
andτl ×Ts is the lth delay (τl is not necessarily

an integer, butτL < Ng). The L individual elements of
{α

(n)
l (qTs) = αl(qTs + nT )} are uncorrellated. They are

wide-sense stationary (WSS), narrow-band complex Gaussian
processes, with the so-called Jakes’ power spectrum of max-
imum Doppler frequencyfd (i.e., E [αl(q1Ts)α

∗
l (q2Ts)] =

σ2
αl

J0

(

2πfdTs(q1 − q2)
)

) [15]. The average energy of the
channel is normalized to one,i.e.,

∑L

l=1 σ2
αl

= 1.

B. Complex Gain Polynomial Modeling

In [8], a piece-wise linear method is used to approximate
the equivalent discrete-time channel taps. In [2], the authors
show that the time-variation of Rayleigh channel complex
gain, within Nc OFDM symbols, can be approximated by a
polynomial model ofNc coefficients, choosen according to
the Doppler spreadfdT .

In this section, in order to make the approximation in [2]
more accurate for high Doppler spread, each Rayleigh channel
complex gainα(n)

l =
[

α
(n)
l (−NgTs), ..., α

(n)
l

(

(N − 1)Ts

)]T
,

within one OFDM symbol, is approximated by a polynomial
model ofNc coefficients (i.e., a (Nc−1) degree polynomial).
The optimal polynomialα(n)

pol
l

, which is least-squares fitted

(linear and polynomial regression) [12] toα(n)
l , and itsNc

coefficientsc(n)
l =

[

c
(n)
1,l , ..., c

(n)
Nc,l

]T
are given by:

α
(n)
pol

l

= QT c(n)
l = Sα

(n)
l and c(n)

l =
(

QQT
)−1

Qα
(n)
l (3)

whereQ andS are aNc×v and av×v matrices, respectively,
defined as:

[Q]k,m = (m − Ng − 1)(k−1) (4)

S = QT
(

QQT
)−1

Q (5)

It provides the MMSE approximation for all polynomials
containingNc coefficients, given by:

MMSEl =
1

v
E
�
ξ
(n)
l

H
ξ
(n)
l

�
=

1

v
Tr
�
(Iv − S)R(0)

αl
(Iv − ST )

�
(6)

where ξ
(n)
l = α

(n)
l − α

(n)
pol

l

is the model error andR(s)
αl

=

E

[

α
(n)
l α

(n−s)
l

H
]

is thev×v correlation matrix ofα(n)
l with

elements given by:

[R(s)
αl

]k,m = σ2
αl

J0

(

2πfdTs(k − m + sv)

)

(7)

Under this polynomial approximation, the observation
model in (1) for thenth OFDM symbol can be rewritten as:

y(n) = K(n) c(n) + w(n) (8)

where c(n) = [c(n)
1

T

, ..., c(n)
L

T

]T is a LNc × 1 vector,

K(n) = 1
N

[Z(n)
1 , ..., Z(n)

L ] is a N × LNc matrix andZ(n)
l =

[M1diag{x(n)}fl, ..., MNc
diag{x(n)}fl] is a N × Nc matrix,

wherefl is the lth column of theN ×L Fourier matrixF and
Md is a N × N matrix given by:

[F]k,l = e
−j2π( k−1

N
− 1

2
)τl and [Md]

k,m
=

N−1X
q=0

q
d−1

e
j2π

m−k

N
q (9)

Moreover, the channel matrix can be easily computed as [2]:

H(n) =

Nc
∑

d=1

Md diag{Fχ
(n)
d } (10)

whereχ
(n)
d =

[

c
(n)
d,1 , ..., c

(n)
d,L

]T
. The matricesMd can be easily

computed and stored, using the properties of power series.

III. AR M ODEL AND KALMAN FILTER

A. The AR Model forc(n)

c(n)
l are correlated complex Gaussian variables with zero-

means and correlation matrix given by:

R(s)
cl

= E[c(n)
l c(n−s)

l

H
] =

�
QQT

�−1

QR(s)
αl

QT
�

QQT
�−1

(11)

Hence, the dynamics ofc(n)
l can be well modeled by an auto-

regressive (AR) process [13] [14]. A complex AR process of
orderp can be generated as:

c(n)
l = −

p
∑

i=1

A(i)
l c(n−i)

l + u(n)
l (12)
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where A(1)
l , ..., A(p)

l are Nc × Nc matrices andu(n)
l is a

Nc × 1 complex Gaussian vector with covariance matrixUl.
A(1)

l , ..., A(p)
l and Ul are the AR model parameters obtained

by solving the set of Yule-Walker equations defined as:

TlAl = − Vl and Ul = R(0)
cl

+

p
∑

i=1

A(i)
l R(−i)

cl
(13)

whereAl = [A(1)
l

T

, ..., A(p)
l

T

]T , Vl = [R(1)
cl

T
, ..., R(p)

cl

T
]T are

pNc ×Nc matrices andTl is a pNc × pNc correlation matrix
defined by:

Tl =







R(0)
cl

· · · R(−p+1)
cl

...
. . .

...
R(p−1)

cl
· · · R(0)

cl






(14)

Using (12), we obtain the AR model of orderp for c(n):

c(n) = −

p
∑

i=1

A(i)c(n−i) + u(n) (15)

whereA(i) = blkdiag
{

A(i)
1 , ..., A(i)

L

}

is aLNc ×LNc matrix

andu(n) = [u(n)
1

T

, ..., u(n)
L

T

]T is aLNc×1 complex Gaussian
vector with covariance matrixU = blkdiag{U1, ..., UL}.

B. The Kalman Filter

Based on the AR model ofc(n) in (15), we define
the state space model for the OFDM system asg(n) =

[cT
(n), ..., cT

(n−p+1)]
T . Thus, using (15) and (8), we obtain:

g(n) = S1g(n−1) + S2u(n) (16)

y(n) = S3g(n) + w(n) (17)

whereS2 = [ILNc
, 0LNc,(p−1)LNc

]T is apLNc ×LNc matrix,
S3 = [K(n), 0N,(p−1)LNc

] is a N × pLNc matrix andS1 is a
pLNc × pLNc matrix defined as:

S1 =















−A(1) −A(2) −A(3) · · · −A(p)

ILNc
0LNc

0LNc
· · · 0LNc

0LNc
ILNc

0LNc
· · · 0LNc

...
. ..

. . .
. . .

...
0LNc

· · · 0LNc
ILNc

0LNc















(18)

The state model (16) and the observation model (17) allow
us to use Kalman filter to adaptively track the polynomial
coefficientsc(n). Let ĝ(n) be our a priori state estimate at step
n given knowledge of the process prior to stepn, ĝ(n|n) be our
a posteriori state estimate at stepn given measurementy(n)

and,P(n) andP(n|n) are the a priori and the a posteriori error
estimate covariance matrix of sizepLNc×pLNc, respectively.
We initialize the Kalman filter withg(0|0) = 0pLNc,1 andP(0|0)

given by:

P(0|0)[t(l,s),t(l,s′)]
= R(s′−s)

cl
for l∈[1,L] s,s′∈[0,p−1] (19)

wheret(l, s) = 1 + (l− 1)Nc + sLNc : lNc + sLNc andR(s)
cl

is the correlation matrix ofcl
(n) defined in (11). Notice that

there are zero matrices between the block matricesR(s)
cl

since

the L complex gains are uncorrellated with respect to each
other. ForK = L = 2, P(0|0) is given by:

P(0|0) =









R(0)
c1 0Nc

R(1)
c1 0Nc

0Nc
R(0)

c2 0Nc
R(1)

c2
R(−1)

c1 0Nc
R(0)

c1 0Nc

0Nc
R(−1)

c2 0Nc
R(0)

c2









(20)

The Kalman filter is a recursive algorithm composed of
two stages: Time Update Equations and Measurement Update
Equations. These two stages are defined as:

Time Update Equations:

ĝ(n) = S1ĝ(n−1|n−1)

P(n) = S1P(n−1|n−1)S
H
1 + S2USH

2 (21)

Measurement Update Equations:

K (n) = P(n)S
H
3

(

S3P(n)S
H
3 + σ2IN

)−1

ĝ(n|n) = ĝ(n) + K (n)

(

y(n) − S3ĝ(n)

)

P(n|n) = P(n) − K (n)S3P(n) (22)

whereK (n) is the Kalman gain. The Time Update Equations
are responsible for projecting forward (in time) the current
state and error covariance estimates to obtain the a priori
estimates for the next time step. The Measurement Update
Equations are responsible for the feedback,i.e., for incor-
porating a new measurement into the a priori estimate to
obtain an improved a posteriori estimate. The Time Update
Equations can also be thought of a predictor equations, while
the Measurement Update Equations can be thought of a
corrector equations.

IV. JOINT QR-DETECTION AND KALMAN ESTIMATION

A. Data QR-detection

The QR-detection allow us to estimate the data symbol
with free ICI. First, we transform the channel matrixH(n)

by performing a so-called QR-decomposition:

H(n) = Q(n)R(n) (23)

whereQ(n) is aN×N unitary matrix (i.e., Q
H
(n)Q(n) = IN )

andR(n) is a N × N upper triangular matrix. Then, we can
rewrite equation (1) as:

y′

(n) = Q
H
(n)y(n) = R(n)x(n) + Q

H
(n)w(n) (24)

The upper triangular form ofR(n) now allow us to iteratively
calculate estimates, with free ICI, for the originally data
symbols

{

[x(n)]N , [x(n)]N−1, ..., [x(n)]1
}

as:

[

x̃(n)

]

k
=

[

y′

(n)

]

k
−

N
∑

m=k+1

[

R(n)

]

k,m

[

x̂(n)

]

m

[

R(n)

]

k,k
[

x̂(n)

]

k
= O

(

[

x̃(n)

]

k

)

(25)

whereO(.) denotes the quantization operation appropriate to
the constellation in use.
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B. Iterative Algorithm

In the iterative algorithm for joint data QR-detection and
complex gains Kalman estimation, theNp pilots subcarriers
are evently inserted into the N subcarriers at the positions
P = {pr | pr = (r − 1)Lf + 1, r = 1, ..., Np}, whereLf

is the distance between two adjacent pilots. The algorithm
proceeds as follows:

initialization:
• g(0|0) = 0pLNc,1

• computeP(0|0) as (19)
• n← n + 1

• execute the Time Update Equations of Kalman filter(21)
• compute the channel matrix using(10)
• i← 1

recursion:
1) remove the pilot ICI from the received data subcarriers
2) QR-detection of data symbols(23) (24) (25)
3) execute the Measurement Update Equations of Kalman filter(22)
4) compute the channel matrix using(10)
5) i← i + 1

wherei represents the iteration number.

C. Mean Square Error (MSE) Analysis

The error between thelth exact complex gain and thelth
estimated polynomial̂α(n)

pol
l

is given by:

e(n)
l = α

(n)
l − α̂

(n)
pol

l

= ξ
(n)
l + QT e(n)

cl
(26)

wheree(n)
cl

= c(n)
l − ĉ(n)

l and ξ
(n)
l is the polynomial model

error defined in section II-B. Neglecting the cross-covariance
terms betweenξ(n)

l and e(n)
cl

, the mean square error (MSE)
betweenα(n)

l andα
(n)
pol

l

is given by:

MSEl =
1

v
E
[

e(n)
l

H

e(n)
l

]

= MMSEl +
1

v
Tr

(

QT MSEcl
Q

)

(27)

whereMSEcl
= E

[

e(n)
cl

e(n)
cl

H]

. Notice that, at the convergence
of the Kalman filter, we have:

MSEcl
= P(n|n)[t(l,0),t(l,0)]

(28)

provided that the data symbols are perfectly estimated (i.e.,
data-aided).

The on-line Bayesian Cramer-Rao Bound (BCRB) is an
important criterion for evaluting the quality of our complex
gains Kalman estimation. The on-line BCRB for the estimation
of α

(n)
l , in data-aided (DA) context, is studied in [3]:

BCRB(α
(∞)
l ) = MMSEl +

1

v
Tr

(

QT BCRB(c(∞)
l )Q

)

(29)

where BCRB(c(K)
l ) is the on-line BCRB associated to the

estimation ofc(K)
l which is given by:

BCRB(c(K)
l ) = BCRB(c)[t(l,0),t(l,0)] (30)

BCRB(c) is the on-line BCRB for the estimation ofc =
[c(K)

T , ..., c(1)
T ]T in DA context which is given by:

BCRB(c) =
(

blkdiag
{

J(K), ..., J(2), J(1)

}

+ R−1
c

)−1

(31)
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Fig. 2. The Kalman estimated complex gain of the 2nd path over 10 OFDM
symbols after ten iterations for SNR= 20dB, fdT = 0.3 andNc = 3

whereRc is calculated in the same way asP(0|0) with s, s′ ∈

[0,K−1], andJ(n) = 1
N2σ2 F

H
(n)MF (n). M andF (n) are a

NNc×NNc and aNNc×LNc matrices, respectively, defined
as:

M =







M1,1 · · · M1,Nc

...
. . .

...
MNc,1 · · · MNc,Nc






(32)

F (n) =
[

F
(n)
1 · · · F

(n)
L

]

(33)

whereMd,d′ andF
(n)
l are aN×N and aNNc×Nc matrices,

respectively, defined as:

Md,d′ = diag
{

diag
{

MH
d Md′

}}

(34)

F
(n)
l = blkdiag

{

v(n)
l , v(n)

l , ..., v(n)
l

}

(35)

with v(n)
l = diag{x(n)}fl. It should be noted that, when the

number of observationsK increases,BCRB(c(K)
l ) decreases

and converges to an asymptoteBCRB(c(∞)
l ).

V. SIMULATION

In this section, we verify the theory by simulation and we
test the performance of the iterative algorithm. The normalized
channel model is GSM Rayleigh model [2] [1] withL = 6
paths and maximum delayτmax = 10Ts. A 4QAM-OFDM
system with normalized symbols,N = 128 subcarriers,
Ng = N

8 subcarriers,Np = 32 pilots (i.e., Lf = 4) and
1
Ts

= 2MHz is used (note that(SNR)dB = ( Eb

N0

)dB+3dB).
These parameters are selected in order to be in concordance
with the standard Wimax IEEE802.16e. The MSE and the
BER are evaluated under a rapid time-varying channel such
as fdT = 0.1, fdT = 0.2 and fdT = 0.3 corresponding
to a vehicle speedVm = 140km/h, Vm = 280km/h and
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Fig. 3. BER vs SNR forNc = 3 andfdT = 0.2

Vm = 420km/h, respectively, forfc = 10GHz. In order to
decrease the complexity of the Kalman filter, we choose an
AR model of orderp = 1.

Fig. 1 shows the evolution ofMSE versus SNR, with the
iterations, forfdT = 0.3 and Nc = 3. It is observed that,
with DA, the MSE obtained by simulation agrees with the
theoretical value ofMSE given by (28). Fig. 1 also shows
that MSE with DA is very close to the on-line BCRB. This
means that the Kalman filter works very well. After four and
ten iterations, a great improvement is realized and the MSE is
close to the MSE with DA. For illustration, Fig. 2 gives the
real and the imaginary parts of the exact, the DA estimated and
the estimated (with pilots after ten iterations) complex gain of
the second path. This is obtained for one channel realization
over 10 OFDM symbols with SNR= 20dB, fdT = 0.3 and
Nc = 3. We notice how good is the estimation of multi-path
complex gains for very rapidly channels.

Fig. 3 gives the BER performance of our algorithm for
fdT = 0.2 with Nc = 3, compared to the algorithms in [2]
and [1]. As reference, we plotted the performance obtained
with perfect knowledge of channel and perfect suppression
of ICI. This result shows that our algorithm performs better
than the algorithms proposed in [2] and [1]. After eight
iterations, a significant improvement occurs; the performance
of our algorithm and the performance obtained with perfect
knowledge of channel and ICI are very close. At a very high
SNR, it is normal to not reach the reference because we have
a small error floor due to the data symbol detection error.

Fig. 4 gives the BER performance after ten iterations of our
iterative algorithm, forNc = 3 andfdT = 0.3, with imperfect
delay knowledge. SD denotes the standard deviation of the
time delay errors (modeled as zero mean Gaussian variables).
It can be noticed that the algorithm is not very sensitive to a
delay error of SD< 0.1Ts. By using the ESPRIT method [9]
to estimate the delays, we have a SD< 0.05Ts, for all SNR as
shown in Fig. 5. When combined with the ESPRIT method,
our algorithm thus has negligible sensitivity to delay errors.

VI. CONCLUSION

In this paper, we have presented a new iterative algorithm
for joint multi-path Rayleigh channel complex gains and data
recovery in fast fading environments. The rapid time-variation
complex gain within one OFDM symbole are approximated by
a polynomial model. Exploiting the fact that the delays can be
assumed to be invariant (over several symbols) and perfectly
estimated, the polynomial coefficients are tracked using the
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Fig. 4. Comparison of BER, for the case of imperfect knowledge of delays,
with Nc = 3 andfdT = 0.3

0 10 20 30 40
10

−4

10
−3

10
−2

10
−1

SNR

SD
 (S

tan
da

rd 
De

via
tio

n) 
[ T

s ]

 

 

τ
1
 = 0

τ
4
 = 3.2T

s

τ
6
 = 10T

s

Fig. 5. Delay estimation errors for the first, fourth and sixthpaths, using the
ESPRIT method [9] (estimated correlation matrix, averaged over 1000 OFDM
symbols,i.e 0.072sec), forfdT = 0.3

Kalman filter. The data symbols are estimated by performing a
QR-decomposition of the channel matrix. Theoretical analysis
and simulation results show that our algorithm has a good
performance for high Doppler spread.
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