Robust supervised classification with mixture models: Learning from data with uncertain labels

Abstract : In the supervised classification framework, human supervision is required for labeling a set of learning data which are then used for building the classifier. However, in many applications, human supervision is either imprecise, difficult or expensive. In this paper, the problem of learning a supervised multi-class classifier from data with uncertain labels is considered and a model-based classification method is proposed to solve it. The idea of the proposed method is to confront an unsupervised modelling of the data with the supervised information carried by the labels of the learning data in order to detect inconsistencies. The method is able afterward to build a robust classifier taking into account the detected inconsistencies into the labels. Experiments on artificial and real data are provided to highlight the main features of the proposed method as well as an application to object recognition under weak supervision.
Type de document :
Article dans une revue
Pattern Recognition, Elsevier, 2009, 42 (11), pp.2649-2658. 〈10.1016/j.patcog.2009.03.027〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00325263
Contributeur : Charles Bouveyron <>
Soumis le : jeudi 12 février 2009 - 11:43:05
Dernière modification le : vendredi 24 novembre 2017 - 13:30:32
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 11:58:58

Fichier

RR_RMDA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Charles Bouveyron, Stephane Girard. Robust supervised classification with mixture models: Learning from data with uncertain labels. Pattern Recognition, Elsevier, 2009, 42 (11), pp.2649-2658. 〈10.1016/j.patcog.2009.03.027〉. 〈hal-00325263v2〉

Partager

Métriques

Consultations de la notice

475

Téléchargements de fichiers

318