Mácajová and \v{S}koviera Conjecture on Cubic Graphs.

Abstract : A conjecture of Má\u{c}ajová and \u{S}koviera asserts that every bridgeless cubic graph has two perfect matchings whose intersection does not contain any odd edge cut. We prove this conjecture for graphs with few vertices and we give a stronger result for traceable graphs.
Document type :
Journal articles
Discussiones Mathematicae Graph Theory, University of Zielona Góra, 2010, 30 (2), pp.315-333
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00325255
Contributor : Jean-Marie Vanherpe <>
Submitted on : Saturday, November 7, 2009 - 3:48:50 PM
Last modification on : Wednesday, November 29, 2017 - 10:28:37 AM
Document(s) archivé(s) le : Wednesday, September 22, 2010 - 1:27:57 PM

Files

MacajovaSkovieraConjecture.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00325255, version 2
  • ARXIV : 0809.4839

Collections

Citation

Jean-Luc Fouquet, Jean-Marie Vanherpe. Mácajová and \v{S}koviera Conjecture on Cubic Graphs.. Discussiones Mathematicae Graph Theory, University of Zielona Góra, 2010, 30 (2), pp.315-333. 〈hal-00325255v2〉

Share

Metrics

Record views

158

Files downloads

85