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FRACTIONAL EMBEDDINGS AND STOCHASTIC TIME

J. CRESSON AND P. INIZAN

Abstract. As a model problem for the study of chaotic Hamiltonian systems, we look for
the effects of a long-tail distribution of recurrence times on a fixed Hamiltonian dynamics.
We follow Stanislavsky’s approach of Hamiltonian formalism for fractional systems. We
prove that his formalism can be retrieved from the fractional embedding theory. We deduce
that the fractional Hamiltonian systems of Stanislavsky stem from a particular least action
principle, said causal. In this case, the fractional embedding becomes coherent.

1. Introduction

Fractional calculus has been widely developped for a decade and its efficiency has already
been proved in various topics such as continuum mechanics (see [6]), chemisty (see [3]),
transport theory (see [14]), fractional diffusion (see [7]), etc.

In [19], a link is drawn with chaotic Hamiltonian systems. Because of the appearance of
fractal structures in phase spaces of nonhyperbolic Hamiltonian systems, fractional dynamics
may arise in such systems. Zaslavsky then explained [19, chap. 12-13] that time takes on
a fractal structure, meaning that it can be considered as a succession of specific temporal
intervals. However, further investigations have to be carried out to understand and clarify
the link between this peculiar temporal comportment and the fractional dynamics.

A contribution is done in [18]. As a model problem for the effects of a given distribution of
recurrence times on the underlying Hamiltonian dynamics, we use Stanislavsky’s approach for
his definition of an Hamiltonian formalism for fractional systems. Indeed, this author looks
for the effects induced by the assumption that the time variable is governed by a particular
stochastic process on a given Hamiltonian dynamics. This kind of process contains notably
the case of the algebraic decay of recurrence times that occurs in the study of chaotic Hamil-
tonian systems (see [19]). He proves, under strong assumptions, that the induced dynamics is
fractional and that the structure of the new system looks like the classical Hamiltonian one.
This allows him to give a definition of an Hamiltonian formalism for fractional systems.

However, an important property of Hamiltonian systems is that they can be obtained
by a variational principle, called the Hamilton least action principle (see [2]). A natural
question with respect to Stanislavsky’s construction is to know if his definition of fractional
Hamiltonian system can be derived from a variational principle.

In this paper, by using the fractional embedding theory developped in [8], we prove that
Stanislavky’s Hamiltonian formalism for fractional systems coincides with the fractional Hamil-
tonian formalism induced by the fractional embedding. In particular, this means that Stanis-
lavsky’s fractional Hamiltonian systems can be obtained by a variational principle. Moreover,
this fractional formalism is coherent, meaning that there exists a commutative diagram for
the obtention of the fractional equations.

In section 2 we discuss Stanislavsky’s formalism. Section 3 is devoted to the development of
the fraction embedding theory using the Caputo derivatives. We obtain a causal and coherent
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embedding by restricting the set of variations underlying the fractional calculus of variations.
We also prove that the fractional embedding of the usual Hamiltonian formalism resulting
from the Lagrangian one is coherent. In section 4, we prove that the fractional Hamilton-
ian formalism stemming from the causal fractional embedding coincides with Stanislavsky’s
formalism. We finally discuss open problems in section 5.

2. Stanislavky’s Hamiltonian formalism for fractional systems

2.1. Definition of the internal time. Let T1, T2, . . . be nonnegative independant and
identically distributed variables, with distribution ρ. We set T (0) = 0 and for n ≥ 1, T (n) =
∑n

i=1 Ti. The Ti represent random temporal intervals. Let {Nt}t≥0 = max{n ≥ 0 |T (n) ≤ t}
be the associated counting process. We suppose that there exists 0 < α < 1 such that

ρ(t) ∼
a

t1+α
, t → ∞, a > 0, 0 < α < 1. (1)

Therefore the variables Ti belong to the strict domain of attraction of an α-stable distribution.
Theorem 3.2 of [13] implies:

Theorem 1. There exists a process {S(t)}t≥0 and a regularly varying function b with index
α such that

{b(c)−1Nct}t≥0
FD
=⇒ {S(t)}t≥0, as c → ∞

where
FD
=⇒ denotes convergence in distribution of all finite-dimensional marginal distributions.

The process {S(t)}t≥0 is a hitting-time process (see [13]) and is also called a first-passage
time. From [5], the distribution of {S(t)}t≥0, denoted pt, verifies

L[pt](v) = E[e−vS(t)] = Eα(−vtα),

where L is the Laplace transform and Eα is the one-parameter Mittag-Leffler function. It
follows that

∫ ∞

0
e−wtpt(x) dt = wα−1e−xwα

(2)

The process {S(t)}t≥0 is increasing and may play the role of a stochastic time, which is called
internal time in [18]. The distribution pt(τ) represents the probability to be at the internal
time τ on the real time t. Using this new time, Stanislavsky studies Hamiltonian systems
which evolve according to S(t).

2.2. Fractional Hamiltonian equations. We consider an Hamiltonian system, with Hamil-
tonian H(x, p), and associated canonical equations

d

dt
x(t) = ∂2H(x(t), p(t)),

d

dt
p(t) = −∂1H(x(t), p(t)).

(3)

If t is replaced by S(t), how is the dynamics modified? To answer this question, Stanislavsky
introduces new variables xα and pα defined by

xα(t) = E[x(S(t))] =
∫ ∞

0 pt(τ)x(τ)dτ,

pα(t) = E[p(S(t))] =
∫ ∞

0 pt(τ)p(τ)dτ.
(4)

Furthermore, he assumes that

∂1H(xα(t), pα(t)) =
∫ ∞

0 pt(τ)∂1H(x(τ), p(τ))dτ,

∂2H(xα(t), pα(t)) =
∫ ∞

0 pt(τ)∂2H(x(τ), p(τ))dτ,
(5)
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which leads to

Theorem 2. Let (x, p) be a solution of (3). Then condition (5) is verified if and only if
(xα, pα) defined by (4) verifies

0D
α
t xα(t) = ∂2H(xα(t), pα(t)),

0D
α
t pα(t) = −∂1H(xα(t), pα(t)),

(6)

where aD
α
t is the left Caputo derivative defined by

aD
α
t f(t) =

1

Γ(1 − α)

∫ t

a

(t − τ)−αf ′(τ) dτ.

Proof. As x verifies (3), we have
∫ ∞

0
pt(τ)∂2H(x(τ), p(τ)) dτ =

∫ ∞

0
pt(τ)

d

dτ
x(τ)dτ

The Laplace transform of this expression gives

L

[∫ ∞

0
pt(τ)∂2H(x, p) dτ

]

(s) =

∫ ∞

0
L[pt](s)

d

dτ
x(τ)dτ

= sα−1

∫ ∞

0
e−τsα d

dτ
x(τ)dτ from (2)

= s2α−1L[x](sα) − sα−1x(0).

Given that L[xα](s) = sα−1L[x](sα), we have

L

[∫ ∞

0
pt(τ)∂2H(x(τ), p(τ)) dτ

]

(s) = L [0D
α
t xα] (s).

By taking the Laplace image of this relation, we obtain

0D
α
t xα(t) =

∫ ∞

0
pt(τ)∂2H(x(τ), p(τ)) dτ.

In a similar way, we also have

0D
α
t pα(t) = −

∫ ∞

0
pt(τ)∂1H(x(τ), p(τ)) dτ,

and the equivalence follows. �

For a presentation of the fractional calculus and its applications, see [17] and [15]. Hence,
we will say that a fractional system of the form

0D
α
t x(t) = f1(x(t), p(t)),

0D
α
t p(t) = f2(x(t), p(t)),

is Hamiltonian in the sense of Stanislavsky if there exists a function H(x, p) such that

f1(x, p) = ∂2H(x, p),
f2(x, p) = −∂1H(x, p).

We show that the fractional derivative 0D
α
t appears as a natural consequence of the struc-

ture of the internal time S(t). The fractional exponent α is exactly determined by the be-
haviour (1) of long time intervals. We note that if we had α ≥ 1 in (1), the α-stable distri-
bution would be the Gaussian one, we would have pt(τ) = δτ (t) and then S(t) ≡ t. In this
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case, internal time and real time would be the same. Consequently, for α ≥ 1, the associated
derivative is the classical one.

3. Fractional embedding of Lagrangian and Hamiltonian systems

One important property of classical Hamiltonian systems is that they are solutions of a
variational principle, called the Hamilton least action principle (see [2]). A natural question
is to know if the fractional Hamiltonian systems defined by Stanislavky can be derived from
a variational principle.

Fractional Euler-Lagrange and Hamilton equations has been first derived in [16], in order
to include frictional forces into a variational principle. In [1], a fractional Euler-Lagrange
equation is obtained using a fractional least action principle. This formalism includes left
and right fractional derivatives. The related Hamilton equations are derived in [4]. However,
their equations are different from those obtained by Stanislavsky.

Using the fractional embedding theory developped in [8], we prove that Stanislavsky Hamil-
tonian formalism stems from a fractional variational principle, called causal, and moreover
that this construction is coherent.

We sum up here the general ideas of the fractional embedding theory for the Caputo
derivative. Similarly to the left one, the right Caputo derivative is defined by

tD
α
b f(t) =

−1

Γ(1 − α)

∫ b

t

(τ − t)−αf ′(τ) dτ.

The left fractional integral is defined by

aD
−α
t f(t) =

1

Γ(α)

∫ t

a

(t − τ)α−1f(τ) dτ,

and the right one by

tD
−α
b f(t) =

1

Γ(α)

∫ b

t

(τ − t)α−1f(τ) dτ.

3.1. Fractional embedding of differential operators. Let f = (f1, . . . , fp) and g =

(g1, . . . , gp) be two p-uplets of smooth functions R
k+2 −→ R

l. Let a, b ∈ R with a < b.
We denote O(f,g) the differential operator defined by

O(f,g)(x)(t) =

p
∑

i=0

(fi ·
di

dti
gi)(x(t), . . . ,

dk

dtk
x(t), t), (7)

where, for any functions f and g, (f · g)(t) = f(t) · g(t), where · means a product component
by component.

The fractional embedding of O(f,g), denoted Eα(O(f,g)), is defined by

Eα(O(f,g))(x)(t) =

p
∑

i=0

(fi · (aD
α
t )igi)(x(t), .., (aD

α
t )kx(t), t)

We define the ordinary differential equation associated to O(f,g) by

O(f,g)(x) = 0. (8)

The fractional embedding Eα(O(f,g)) of (8) is defined by

Eα(O(f,g))(x) = 0.
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3.2. Lagrangian systems. Now we consider a Lagrangian system, with smooth Lagrangian
L(x, v, u) and u ∈ [a, b]. The Lagrangian L can naturally lead to a differential operator of the
form (7):

O(1, L)(x)(t) = L(x(t),
d

dt
x(t), t).

Now we identify L and O(1, L). The fractional embedding of L, Eα(L), is hence given by

Eα(L)(x)(t) = L(x(t), aD
α
t x(t), t).

In Lagrangian mechanics, the action and its minima play a central role. For any mapping
g, the action of g, denoted A(g) is defined by

A(g)(x) =

∫ b

a

g(x)(t) dt.

For example, with the identification L ≡ O(1, L), the action of L is given by

A(L)(x) =

∫ b

a

L(x(t),
d

dt
x(t), t) dt,

and concerning the fractional embedding of L, the associated action is

A(Eα(L))(x) =

∫ b

a

L (x(t), aD
α
t x(t), t) dt.

The extremum of the action of a Lagrangian L provides the equation of motion associated:

Theorem 3. The action A(L) is extremal in x if and only if x satisfies the Euler-Lagrange
equation, given by

∂1L(x(t),
d

dt
x(t), t) −

d

dt
∂2L(x(t),

d

dt
x(t), t) = 0. (9)

This equation is denoted EL(L).

This procedure should not be modified with fractional derivatives. Indeed, the strict defini-
tion of the Lagrangian L does not involve any temporal derivative. The dynamics is afterwards
fixed with the choice of the derivative D and the relation v(t) = Dx(t). The variational prin-
ciple providing the Euler-Lagrange equation uses a integration by parts, which remains in the
fractional case:

∫ b

a

[aD
α
t f(t)] g(t)dt =

∫ b

a

f(t) [bD
α
t g(t)] dt

+ g(b)aD
−(1−α)
b f(b) − f(a)aD

−(1−α)
b g(a).

We introduce the space of variations

Vα = {h ∈ C1([a, b]) | aD
−(1−α)
b h(a) = h(b) = 0}.

For h ∈ Vα, we have

A(Eα(L))(x + h) = A(Eα(L))(x)+
∫ b

a

[∂1L + tD
α
b ∂2L](x(t), aD

α
t x(t), t)h(t) dt + o(h),
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which implies that the differential of A(Eα(L)) in x is given, for any h ∈ Vα, by

dA(Eα(L))(x, h)=

∫ b

a

[∂1L+tD
α
b ∂2L](x, aD

α
t x, t)h(t) dt,

= 〈[∂1L+tD
α
b ∂2L](x(·), aD

α
t x(·), ·), h〉,

where 〈f, g〉 =
∫ b

a
f(t)g(t) dt is a scalar product defined on C1([a, b]).

If E ⊂ Vα, we will say that A(Eα(L)) is E-extremal in x if for all h ∈ E, dA(Eα(L))(x, h) =
0.

So we obtain a first Euler-Lagrange equation:

Theorem 4. A(Eα(L)) is Vα-extremal in x if and only if x verifies

∂1L(x(t), aD
α
t x(t), t)+tD

α
b ∂2L(x(t), aD

α
t x(t), t) = 0. (10)

Proof. A(Eα(L)) is Vα-extremal in x if and only if for all h ∈ Vα, we have

〈[∂1L+tD
α
b ∂2L](x(·), aD

α
t x(·), ·), h〉 = 0.

This is equivalent to [∂1L+ tD
α
b ∂2L](x(·), aD

α
t x(·)) ∈ V ⊥

α . We conclude by noticing that

V ⊥
α = Vα

⊥
= {0}, where Vα is the adherence of Vα in C1([a, b]), equal to C1([a, b]) entirely. �

Equation (10) will be called general fractional Euler-Lagrange equation and will be denoted
ELg(Eα(L)). Contrary to (9), two operators are involved here. We will now discuss the
problematic presence of tD

α
b .

3.3. Coherence and causality. Because of the simultaneous presence of the two derivatives,
the position of x at time t depends on its past positions, through aD

α
t , but also on its future

ones, through tD
α
b . The principle of causality is here violated, which seems crippling from

a physical point of view. Moreover, we note that (9) can be written in the form (8), with
f = (1, 1) and g = (∂1L,−∂2L). The fractional embedding Eα(EL(L)) of (9) is therefore

∂1L(x(t), aD
α
t x(t), t)−aD

α
t ∂2L(x(t), aD

α
t x(t), t) = 0,

which shows that ELg(Eα(L)) 6≡ Eα(EL(L)): fractional embedding and least action principle
are not commutative. So we obtain two procedures providing different fractional equations,
which seems also unsatisfactory. We are facing a Cornelian choice: shall we preserve causality
or the least action principle? A possible way to solve this problem is to restrict the space
of variations. We note Ṽα = {h ∈ Vα | aD

α
t h = −tD

α
b h} and Kα = aD

α
t + tD

α
b , defined

on C1([a, b]). For any f, g ∈ Vα, 〈Kα f, g〉 = 〈f,Kα g〉. We show that Kα is essentially
self-adjoint and we obtain a new Euler-Lagrange equation:

Theorem 5. A(Eα(L)) is Ṽα-extremal in x if and only if there exists a function g such that
x verifies

∂1L(x(t), aD
α
t x(t), t)−aD

α
t ∂2L(x(t), aD

α
t x(t), t) = Kα g.

Proof. A(Eα(L)) is Ṽα-extremal in x if and only if [∂1L+tD
α
b ∂2L](x(·), aD

α
t x(·)) ∈ Ṽ ⊥

α . Given

that Ṽ ⊥
α = (Ker Kα)⊥ = Im Kα, A(Eα(L)) is extremal if and only if there exists g̃ such that

∂1L(x(t), aD
α
t x(t), t)+tD

α
b ∂2L(x(t), aD

α
t x(t), t) = Kα g̃.

We conclude by setting g(t) = g̃(t) + ∂2L(x(t), aD
α
t x(t), t). �



FRACTIONAL EMBEDDINGS AND STOCHASTIC TIME 7

Restricting of the space of variations breaks the unicity of the solution. However, among
those solutions, there is a single one which remains causal (without the operator tD

α
b ), for

g = 0:

∂1L(x(t), aD
α
t x(t), t)−aD

α
t ∂2L(x(t), aD

α
t x(t), t) = 0. (11)

Equation (11) will be called causal fractional Euler-Lagrange equation, and will be denoted
ELc(Eα(L)).

Now causality is respected and we have ELc(Eα(L)) ≡ Eα(EL(L)). In this case, the
fractional embedding is told coherent, in the sense that the following diagram commutes:

L

(causal) LAP
��

Eα
// Eα(L)

causal FLAP
��

(

∂1L − d
dt

∂2L
)

= 0
Eα

// (∂1L − aD
α
t ∂2L) = 0

where (F)LAP states for ”(fractional) least action principle”. As aD
1
t = −tD

1
b =

d

dt
, we

can say that the least action is also causal in the classical case.
However, in the fractional case, the physical meaning of Ṽα is not clear, but it might be

related to a reversible dynamics of the variations. Furthermore, this underlines the significant
role of variations in the global dynamics.

3.4. Fractional Hamiltonian systems based on fractional Lagrangian ones. There
exists a natural derivation of an Hamiltonian system from a Lagrangian system based on the
Legendre transformation. We consider an autonomous Lagrangian system, with Lagrangian
L(x, v), and we suppose that

∀x, v 7→ ∂2L(x, v) is bijective. (12)

The (static) momentum associated to the (static) variable x is p = ∂2L(x, v). So there exists
a mapping f named Legendre transformation such that v = f(x, p). The Hamiltonian H

associated to L is defined by

H(x, p) = pf(x, p) − L(x, f(x, p)). (13)

It implies ∂1H(x, p) = −∂1L(x, f(x, p)) and ∂2H(x, p) = f(x, p).
Let introduce the function

FLH(x, p, v, w) =





p − ∂2L(x, v)
∂1H(x, p) + ∂1L(x, f(x, p))

∂2H(x, p) − f(x, p)





The link between Lagrangian and Hamiltonian formalisms is done through the equation

FLH(x, p, v, w) = 0. (14)

The momentum p induces a function p(t)=∂2L(x(t), v(t)), which can be considered as the
dynamical momentum.

For the classical dynamics, (14) becomes

FLH

(

x(t), p(t),
d

dt
x(t),

d

dt
p(t)

)

= 0,
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i.e.

p(t) = ∂2L

(

x(t),
d

dt
x(t)

)

,

∂1H(x(t), p(t)) = −∂1L

(

x(t),
d

dt
x(t)

)

,

∂2H(x(t), p(t)) =
d

dt
x(t).

Moreover, if x(t) is solution of the Euler-Lagrange equation (9), we obtain the canonical
equations

d

dt
x(t) = ∂2H(x(t), p(t)),

d

dt
p(t) = −∂1H(x(t), p(t)).

For the fractional case, the fractional embedding (8) of (14) is given by

p(t) = ∂2L (x(t), aD
α
t x(t)) ,

∂1H(x(t), p(t)) = −∂1L (x(t), aD
α
t x(t)) ,

∂2H(x(t), p(t)) = aD
α
t x(t).

Then the following result states:

Theorem 6. If x(t) is solution of the causal fractional Euler-Lagrange equation (11), we
have

aD
α
t x(t) = ∂2H(x(t), p(t)),

aD
α
t p(t) = −∂1H(x(t), p(t)).

These are the equations describing the dynamics of a fractional Hamiltonian system derived
from a Lagrangian formalism. But Hamiltonian systems can also be considered directly as it
will be seen.

3.5. Embedded Hamiltonian systems. Now we consider an Hamiltonian system as de-
fined in section 2, with an Hamiltonian H(x, p) and with equations (3) associated. The
fractional embedding (8) of (3) is

aD
α
t x(t) = ∂2H(x(t), p(t)),

aD
α
t p(t) = −∂1H(x(t), p(t)).

(15)

Furthermore, by indroducing the function

LH(x, p, v, w) = pv − H(x, p),

we see that classical Hamiltonian systems are critical points of the action of LH defined by

A(LH)(x, p) =

∫ b

a

LH

(

x(t), p(t),
d

dt
x(t),

d

dt
p(t)

)

dt.

In the fractional case, the action becomes

A(Eα(LH))(x, p)=

∫ b

a

LH (x(t), p(t), aD
α
t x(t), aD

α
t p(t)) dt.

Using the causal fractional Euler-Lagrange equation for LH , we obtain
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Theorem 7 (Hamiltonian coherence). Let H be an Hamiltonian function. The solutions
(x(t), p(t)) of the fractional system (15) coincide with causal critical points of the action
A(Eα(LH)). More precisely, the following diagram commutes:

LH

(causal) LAP
��

Eα
// Eα(LH)

causal FLAP
��

{

d
dt

x(t) = ∂2H
d
dt

p(t) = −∂1H Eα

//

{

aD
α
t x(t) = ∂2H

aD
α
t p(t) = −∂1H

Proof. The causal fractional Euler-Lagrange equation for LH is

− ∂1H(x(t), p(t)) − aD
α
t p(t) = 0,

aD
α
t x(t) − ∂2H(x(t), p(t)) = 0,

which is exactly (15).
�

So we have coherence between the directly embedded equations and the equations obtained
by a variational principle. But we have also coherence between this section and the previous
one, i.e. between the fractional Hamiltonian systems resulting from Lagrangian ones and the
embedded Hamiltonian systems.

In other words, the equivalent approaches for Hamiltonian systems in the classical case
remain equivalent in the fractional case if we use causal variational principles.

Now we will discuss the link between this formalism and Stanislavsky’s one.

4. Compatibility between the two formalisms

Condition (5) means that the partial derivatives of H commutes with E[·(S(t))]. This con-
dition could just seem of technical order and could appear as unrelated to the real dynamics.
However, by using the fractional embedding, we can precise the underlying dynamical link,
in the case of natural Lagrangian systems.

We consider a natural Lagrangian system, i.e. with a Lagrangian L of the form L(x, v) =
1

2
mv2 − U(x), and the Hamiltonian H(x, p) derived as in section 3.4. So we have H(x, p) =

1

2m
p2 + U(x), with p = ∂2L(x, v) = mv. We suppose that (x, p) is solution of the classical

Hamiltonian equations (3). We define the associated variables xα and pα by (4).

Theorem 8. If xα is solution of the causal fractional Euler-Lagrange equation (11) associated
to L, then condition (5) is verified.

Proof. We set p̃α(t) = ∂2L(xα(t), 0D
α
t xα(t)), i.e. p̃α(t) = m 0D

α
t xα(t). Then, from theorem

(6), (xα, p̃α) is solution of

0D
α
t xα(t) = ∂2H(xα(t), p̃α(t)),

0D
α
t p̃α(t) = −∂1H(xα(t), p̃α(t)).
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Moreover, we have

p̃α(t) = m 0D
α
t

∫ ∞

0
pt(τ)x(τ) dτ = m

∫ ∞

0
pt(τ)

d

dτ
x(τ) dτ

=

∫ ∞

0
pt(τ)mv(τ) dτ =

∫ ∞

0
pt(τ)p(τ) dτ = pα(t). (16)

So we can replace p̃α by pα in (16), which concludes the proof.
�

5. Conclusion

If we consider the temporal evolution variable of a Lagrangian system as a succession of
random intervals, and if their density has a power-law tail, then the dynamics of this system is
fractional. The associated equations can be determined through a fractional embedding, based
on a least action principle. In order to obtain causal and coherent equations, it is necessary
to restrict the space of variations. This condition might be seen as a way to cancel the
finalist aspect of the least action principle. Even if it is still unclear, this model of time could
notably be appropriated for the description of some chaotic Hamiltonian dynamics. Some
numerical experiments show that distributions of Poincaré recurrence times may possess a
power-law tail (see [19, chap. 11], [10], [9]). Consequently, the time may be decomposed
into a succession of recurrence times. For long time scale dynamics, the number of intervals
is great and the new characteristic time clock may become S(t). This new time takes into
account the peculiar structure of the recurrence times: if the power-law exponent α verifies
0 < α < 1, the long time scale dynamics becomes fractional with the same exponent α. This
idea of stacked dynamics based on two time scales could be linked with [11], where close
results are obtained. However, because of the Kac lemma ([12]), which states that the mean
recurrence time is finite, condition (1) may be valid only locally, near some island boundaries,
called sticky zones. Further investigations have to be carried on to clarify this point.
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