
HAL Id: hal-00323990
https://hal.science/hal-00323990

Submitted on 23 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed and Adaptive Revocation Mechanism for
P2P networks

Thibault Cholez, Isabelle Chrisment, Olivier Festor

To cite this version:
Thibault Cholez, Isabelle Chrisment, Olivier Festor. A Distributed and Adaptive Revocation Mecha-
nism for P2P networks. ICN 2008, Apr 2008, Cancun, Mexico. pp. 290-295. �hal-00323990�

https://hal.science/hal-00323990
https://hal.archives-ouvertes.fr


A Distributed and Adaptive Revocation Mechanism

for P2P networks

Thibault Cholez, Isabelle Chrisment and Olivier Festor

MADYNES - INRIA Nancy-Grand Est, France

{thibault.cholez, isabelle.chrisment, olivier.festor}@loria.fr

Abstract—With the increasing deployment of P2P networks,
supervising the malicious behaviours of participants, which
degrade the quality and performance of the overall delivered
service, is a real challenge. In this paper, we propose a fully
distributed and adaptive revocation mechanism based on the
reputation of the peers. The originality of our approach is that
the revocation is integrated in the core of the P2P protocol and
does not need complex consensus and cryptographic mechanisms,
hardly scalable. The reputation criteria evolve with the contribu-
tion of a peer to the network in order to highlight and help fight
against selfish or malicious behaviours. The preliminary results
show that the user perceived delays are not highly impacted and
that our solution is resistant to reputation and revocation attacks.

Index Terms—P2P networks, revocation mechanism, reputa-
tion mechanism, remote accounts, KAD

I. INTRODUCTION

Peer-to-Peer (P2P) networks have proved their ability to

gather and share a large amount of resources thanks to the

collaboration of many individual peers. They are known to

have many advantages compared to the client-server scheme:

P2P networks scale better; the cost of the infrastructure is

distributed and they are fault tolerant.

However, P2P networks encounter several difficulties in-

duced by the growing number of malicious peers. The lack

of central authority and the individual behaviour of the peers

make it difficult for the P2P network to manage them. Ma-

licious peers can be classified in three main categories; the

malicious peer:

• does not follow the P2P protocol and tries to make attacks

• shares malicious content (malware, pollution, illegal con-

tent)

• behaves in a selfish fashion

Several studies have been made to measure the impact of these

bad behaviours on the network. [1] and [8] monitored Gnutella

and highlighted the tragedy of the commons, consequence of

selfish behaviour: 70% of users do not share anything, 50%

of resources are shared by only 1% of users. The authors

warn against the limitation of spontaneous cooperation in

anonymous groups and the possible collapse of such networks

without real control mechanisms. The pollution phenomenon

has also been studied by [12]; it appeared that, on average,

50% of the songs shared on Kazaa are polluted and even more

of the newer files. Thus, malicious behaviours really degrade

the quality of services proposed by public P2P networks.

In this context, P2P networks need a way to have the

behaviour of their users supervised. We propose a fully dis-

tributed and adaptive revocation mechanism. Our architecture

is designed for structured P2P networks which have proved

their ability to be efficient [3] in their organisation and service

offerings. The revocation is decided and adapted according

to the reputation of each peer which is provided by remote

accounts stored in a DHT (Distributed Hash Table). For the

time being, the reputation evolves with the contribution of the

peers to highlight selfish behaviours.

This document is structured as follows. Section II presents

the related works on reputation and revocation within P2P

networks. The foundations of our architecture are described

in Section III which includes the concept of remote accounts

used to store the reputation, the evolution of the reputation and

the revocation mechanism. The revocation is further detailed

and is illustrated in Section IV for the KAD network. Section

V discusses a first performance evaluation and security issues.

Finally, Section VI concludes the document and presents future

works.

II. RELATED WORKS

A. Reputation

Reputation management in a distributed environment is very

challenging. The great majority of the reputation systems

has indeed a local view, where each peer stores locally the

reputation of another after having had some relationship with it

[10] [6]. This approach has however several drawbacks. First,

it is impossible to know if a peer is malicious before contacting

it (feedbacks are not shared among the peers). Second, it is

not adapted for large public P2P networks as the probability

to meet a peer several times is so low that the reputation is

inaccurate if it is used. That is why credit systems currently

implemented in applications like eMule1 can not fight against

free riding; the local knowledge is not sufficient to determine

if a peer free rides (few peers are known, few transactions

are established with each one). The advantages are that the

system scales well and it is suited for small communities of

peers interacting frequently.

More recently, the concept of remote accounts presented

in PeerMint [7] can lead to another solution for reputation

management. The idea is the following: each peer has a

public account (i.e. an information set) stored in the P2P

network. The storage of an account is done by mapping it

1Description of eMule credit system: http://www.emule-project.net/home/
perl/help.cgi?l=1&rm=show topic&topic id=134



on a set of peers thanks to the DHT used by structured P2P

networks (Chord, Pastry, Kademlia...). This set of peers is

periodically renewed to keep the information in the network

despite churn; moreover, replication makes the mechanism

more reliable. The remote accounts allow to build a global

reputation management system where the reputation of each

peer is stored in the DHT and accessible to the others.

B. Revocation

Designing a revocation mechanism adapted for P2P net-

works is difficult. The first way to revoke a peer is to build an

access control system. The control cannot be made by a central

authority because it is not adapted in a P2P environment, so

it is the responsibility of the network to enforce control in

a distributed way. In [11] and [14], the authors present and

experiment different approaches to achieve admission control

in a peer group. Several policies are possible: the new peer

must gather the agreement of a fixed number of peers, or a

number proportional to the size of the group. The second

proposal [14] evaluates the performances of cryptographic

mechanisms used to implement the admission control. It

appears that they scale badly and are more suited for ad-hoc

networks with high security requirements than for large public

P2P networks.

In [5] an original way to achieve dynamic revocation in a

P2P network is presented. When a peer detects that another

is malicious, it sends a revocation notification that includes

the malicious peer and itself, considering that its own life is

less important than the goodness of the network. Therefore,

it prevents the revocation mechanism to be hijacked because

the cost to revoke is very high. However, this mechanism has

important limitations. In fact, it can only be used whithin a

private network but not in a public one where each peer has

individual interests.

III. GENERAL ARCHITECTURE

A. Remote Accounts

In our system, we use remote accounts because they are

efficient to introduce reputation in P2P networks. It is a way

to adapt a centralised reputation system (for example eBay)

to a decentralised network. With this system, each user has a

grade evolving with the feedbacks of the others, so that each

knowledge is shared with the community.

Stored in the DHT, each peer’s account has a logical address

which must remain unchanged after each session in addition

to the peer’s address itself. The application eMule already

uses two identities for the peers of the network. The first

called clientID (or KadID) is the 128 bits address of a peer

in the DHT and is randomly chosen at the first connection.

The second is called userID and results from a hash of the

computer. This address is used for the credit system and

public/private keys are associated to it to ensure the identity

of the peer claiming a userID. Our solution links the peer’s

account to the userID as presented in figure 1. In this way,

the userID is not used to localy store the credits of a peer but

provides an entry in the DHT where to store its public account.

Fig. 1. Account storage in the DHT

Conflicting reputation references are avoided by making a

lookup for its own ID before creating the associated account.

An account just contains few data, that is easily storable

even with replication:

• userID (128 bits) : place of the account in the DHT

• publicKey (128 bits) : the account’s owner has the asso-

ciated private key

• trustRating (16 bits) : reputation of the account’s owner

• blackboard (few kiloBytes) : displays the current trans-

actions of the account’s owner

B. Evolution of Reputation

In a file sharing application, the evolution of the reputation

concerns the way a peer contributes to the network, increas-

ing when it uploads data and inversely, decreasing when it

consumes resources. Thus, users are motivated to share data

which are interesting for the community. In parallel, existing

mechanisms ensure that rare data are sent with priority. With

such a reputation rate, identifying free riders becomes easier.

The major difficulty consists in finding a secure way to create

and update the reputation. When a peer joins the network for

the first time, it receives an initial positive reputation allowing

it to start the first transactions. This initial reputation is needed

to initiate transactions inside the network. No initial positive

reputation would result in a global deadlock, like an automaton

without a token.

Next, the evolution must be based on the fact that a

transaction always involves two peers which exchange the

same amount of data in opposite directions. During a trans-

action, both peers have to write the exchange on a part of

their account, we called ”blackboard”. A blackboard’s entry

displays information for each transaction in progress: the

partner in the transaction, the exchange direction, the amount

of data sent or received (periodically updated). At the end of

the transaction, the peers in charge of the accounts have to

update the reputation according to the information displayed

on the blackboards. To prevent a collusion of malicious peers

which could display false transactions in order to increase

their reputation, peers in charge of the accounts can not trust

directly the information sent by the involved peers. They

have to communicate among themselves to check if the same

announcements have been received by the other part to check

the consistency. This condition ensures that the transaction



Fig. 2. Accounts usage during a transaction

is reflected by both peers with the same ratio and avoids the

hijacking of the mechanism. Each bonus of reputation resulting

from a transfer has its opposite. Figure 2 presents the usage

of remote accounts during a transaction and the evolution of

the reputation as a consequence.

In P2P networks, the question of privacy is crucial. The

reputation mechanism does not set up a new menace for the

private life of users. The reputation grade is just a ratio be-

tween downloaded and uploaded data. Considering the grade,

it is not possible to infer the activity of a peer, but only if

the activity is balanced or not. Moreover, it is not possible

to deduce from the blackboard which file is being transferred

because several transactions are needed to retrieve a complete

file.

C. Revocation Mechanism

The revocation mechanism uses the reputation displayed on

the account of each peer to decide if, and how, a peer must be

revoked. The reputation can evolve until a threshold triggering

the revocation. As P2P networks are based on individual peers

serving each other, a way to revoke a peer in a fully distributed

manner is to check whether the requesting peer is worthy of

receiving the service before providing it. If all the peers of the

network check the reputation before providing a service, a peer

with a bad reputation is automatically revoked, its requests

being refused by the network. Moreover, this mechanism is

adaptive because the refused services can change according to

the different criteria of reputation used (contribution, quality

of shared content...). The services provided by a P2P networks

are generic: a bootstrapping process, a publication process

(indexation of the shared files in the network), a search engine,

and direct connections to download and upload data.

The idea of adapted sanctions has been presented by [9].

The authors describe three levels of counter-action according

to the level of free riding detected: decrementing TTL, ig-

noring requests and disconnecting the malicious peer. In our

solution, each service can be checked independently. When a

Revoked Services Sharing Security

bootstrap and routing table No Yes

publication and upload No Yes

download Yes Yes

search No No

TABLE I
RELEVANCY OF THE REVOKED SERVICES ACCORDING TO THE

REPUTATION CRITERIA

Fig. 3. Reputation check during the bootstrapping process

peer only has a bad sharing ratio, it is relevant to remove its

rights to download data but it is not necessary to remove the

other services needed to participate to the network. So, this

peer will be able to download again after having shared more

resources. On the opposite, when a peer is revoked for security

reasons, all its rights must be removed in order to exclude it

entirely from the network (see table I).

IV. DESIGN FOR THE KAD NETWORK

This section explains how and what services can be revoked,

taking example of the KAD network. KAD is a part of the pop-

ular eMule and aMule file-sharing applications. It is based on

the Kademlia protocol [13] and is one of the widest deployed

structured P2P network with millions of simultaneous users.

A. Bootstrapping Process

This phase is necessary to join the network. Concretely, the

bootstrapping peer asks another peer to send it other contacts

from the network to initialise its routing table and inversely, to

be referenced by other peers. As a first step of the revocation

mechanism, the receiving peer will have to check the reputa-

tion of the bootstrapping peer before sending its contacts. This

process is illustrated in figure 3. Unfortunately, a malicious

peer can become a bridge for revoked members by avoiding the

check step. Therefore, controlling the bootstrapping process

allows to quickly carry out some total revocations. Controlling

the other services allows overcoming the previously described

weakness and refining the sanctions.



Fig. 4. Reputation checking during the publication process

B. Other Services

When a peer is connected to the network, services (publi-

cation of contents, search, data download...) are achieved by

sending requests to the other peers. In Kademlia [13] this

is done in two phases. Firstly, Kademlia REQ are sent to

find nodes which are potentially able to deliver the service

(according to their place in the DHT). This phase is general

and only concerns the iteration mechanism used to find several

peers in a part of the P2P network. In the second step, when the

nodes are found, a specific request is sent to ask for a particular

service. The reputation checking must be done before the

specific request for three reasons. Firstly, a peer can be a bridge

and search contacts for other uncontrolled peers. Secondly, the

real services are provided by the specific requests. Controlling

the reputation at this point allows to revoke independently

the different services. Finally, checking the reputation for

Kademlia REQ would increase the overhead for no advantage.

The figure 4 presents the running of a publication request and

includes the reputation checking. The other requests (search,

data download) follow the same scheme.

However, inserting the revocation mechanism into the

search function is not relevant for several reasons. Firstly,

it is not a service through which a peer can damage the

network. Then, searching is useless when the other services

are inactive behind. Finally, it would also introduce overhead

to the network and unnecessary delay for all users.

C. Implementation

We have implemented the revocation mechanism in KAD.

To do that, we have introduced different modifications in the

KAD client:

• our modified client can manage a new kind of information

called ”Account”;

• the associated requests search/store Account were written,

which partially behave like existing requests on key-

words, files or notes;

• new functions were added in the UDPListener, where all

network’s requests are processed. In fact, these functions

do the service-oriented revocation, searching for the rep-

utation and checking it.

Fig. 5. Publication of accounts between modified KAD clients inside a
tolerance zone

• KadID and userID allocation were cheated to control the

place of the peers in the DHT.

We have tested that the reputation storage and retrieval

and the revocation of services work fine on the modified

peers. However, as our implementation defines new data types

and messages to manage the accounts, we can just test our

revocation mechanism on a few peers. Presently, as we test the

mechanism with few resources, we have defined the KadID

and UserID of modified peers to place them in the same

tolerance zone. In this way, we are sure that the accounts

can be stored (figure 5) when using the KAD publication

mechanism. That is enough to verify the mechanism, but

without the real number of replicated peers, performance

measures would be wrong. That is why we are going to scale

up our testbed on EmanicsLab to measure performances and

compare the results with the evaluation presented in section

V.

V. ANALYSIS AND DISCUSSIONS

A. Performances Evaluation

The thesis [2] has led a performance evaluation of the KAD

network which allows us to discuss some a priori performance

results. The average delay needed to store information in the

network is about 200 seconds. This time is needed to find ten

peers (for the replication) with a KadID close to the hash of

the information to store. This delay will occur the first time

that a peer connects itself to the network and periodically

later to maintain the account in the network despite the

churn. The delay to retrieve the information fluctuates and

depends on the replication. The more replication there is, the

more robust the stored information is and the quicker it is

retrieved. The information is retrieved linearly, so the more

a peer waits, the more results are returned. A 100 seconds

delay seems to be sufficient to retrieve enough information

to guess the real reputation of a peer. This delay could seem

huge because it appears prior to each service of the network,

except the search as explained. But in fact, 100 seconds to

bootstrap are not penalising, the publication process is entirely

transparent for the user and 100 seconds preceding a download



are insignificant regarding the average waiting time spent in

download queues. These elements show that the resulting

delays would not be sensed by the users; this will be confirmed

by the implementation.

B. Security Issues: Case Study

Security issues are a major constraint when designing

such mechanisms. We have tried to anticipate the possible

malicious behaviours of each actor to make the mechanism

resistant to attacks.

1) Accounting and Reputation Attacks: The first interest of

a malicious peer is to avoid its reputation to decrease when it

downloads, and to increase its reputation more than allowed

when it uploads. To do this, some malicious peers will try

to modify the information displayed on the blackboard at the

end of the transaction. In the first case, the protocol does not

allow to decrease the amount displayed on the blackboard

because this action has no meaning during a transfer. In

the second case, there would be a disagreement between the

two blackboards and the reputation must still be updated

otherwise the mechanism would be easily hijackable. In case

of disagreement, the value which must be used to update

both reputations is the one displayed by the downloading peer

because this value can not be decreased and the downloading

peer has no interest to increase it (its reputation would decrease

more than needed). An agreement can occur between two peers

but only one will gain reputation against the other.

It is also possible that a peer in charge of the account of

another lies when the reputation is requested. This behaviour

does not have a lot of consequences because of the replication.

A reputation’s request will always get several responses. As

the majority of the peers are supposed to be honest, it is simple

to retrieve the right value among the responses using majority

decisions. It also prevents the mechanism from byzantine

failures.

However, the initial reputation could become a problem

if the hash function giving the userID (ie a new account) is

hijackable. In fact, a malicious user could create and use a

new account when its initial reputation is over or transfer

the reputation of the new account to the main via fake

transactions; but a possible solution is described further.

2) Revocation Attacks: The revocation mechanism is robust

because it is fully distributed. If a malicious peer decides to

bypass the protocol, answering to revoked peers or ignoring

good peers’s requests, will have a very limited impact. The

revocation is assured because all the peers of the network

refuse to serve revoked peers; one individual action (whatever

it is) has no consequence for the mechanism.

But there is still a way to hijack the revocation mechanism.

It consists in a coalition of peers placed in the same point of

the DHT, so that they are able to take in charge the majority

of the replicated account of a peer. If an account is replicated

n times, placing such (n/2 +1) peers in this way can make the

entire network revoke the victim peer if the malicious peers

Fig. 6. Probability to take the control over an account in function of number
of malicious peers

lie together. If we consider the following equations:

P (X = i) =
Ci

x ∗ C
10−i

4000

C10
4000+x

(1)

P (X > 6) =

i<=10∑

i=6

P (X = i) (2)

The probability (2) is based on the indexation mechanism

of KAD which uses a tolerance zone of 8 bits defining which

peers are able to store an information (on average 4000 peers

for 1 million of unfirewalled users). Let x be the number of

malicious peers in a zone; the probability to take the control

over an account is equivalent to take control on a defined

number of malicious peers until having more than the half

of the total number of requested peers for the replication (by

default 10). The probability to choose i malicious peers among

10 is represented by the hypergeometric law with parameters

(10, x, 4000+x) (1). The attack is successful when at least 6

peers are taken.

The graph 6 shows the probability that the attack be suc-

cessful regarding the number of malicious peers. We can see

that the tolerance zone in which an account is stored (regarding

the ID) is big enough to make a total control difficult without

at least thousands of peers because the storage process is

not entirely deterministic (with a number of controlled peers

greater than 10000 the probability is close to one). Therefore,

if we make the assumption that the possibility to obtain

many KadID is limited (basically one ID per IP address

or computer), this attack becomes very unlikely given the

resources needed.

But the current implementation in KAD is clearly insuf-

ficient and permits to announce up to 216 fake peers in the

same zone [17]. However, several propositions have been

investigated to limit the Sybil attack. In [17], the authors

propose a central authority (CA) delivering KadIDs by cell

phone. The KadID is encrypted by the CA private key from

an IP address and an expiration time and can be decrypted

by any peer with the CA public key to check the validity



of a KadID. Castro et al. [4] presented another design of

trusted certification authorities to secure peer joining. We can

also consider with interest the project Keypeer [18] which

develops a certificate authority delivering keys over a DHT.

Finally, KadID and userID allocation can be linked. When

KadIDs are distributed by an authority (either centralized or

distributed) but not chosen by the client, the hijacking of

userIDs (to retrieve reputation) is also resolved. In fact, with

a stronger KadID, the userID can be derivated from it by a

public function instead of being calculated separately.

It is also possible to detect the peers participating in an

Eclipse attack and to revoke them to stop it. The detection

has been investigated by [15] and [16]. They observe via

anonymous auditing the bounding degree of a node to check

if it is involved in the attack or not.

VI. CONCLUSION

Supervising the behaviours of the malicious users is the

key for the good development of public P2P networks. Re-

garding the weakness of the currently implemented incentive

mechanisms and the consequences of malicious and selfish

behaviours on the networks, it is important to make the be-

haviours of the peers suit with the P2P philosophy. To answer

to this major problem, we have proposed a revocation mech-

anism which is fully distributed, adaptive, and which does

not require distributed consensus or complex cryptographic

mechanisms. The revocation is not a layer above the network

but is inserted in the core of the protocol, supervising the

services provided by the P2P network. The reputation needed

to take decisions is provided by remote accounts based on the

DHT used by structured P2P networks. For the time being,

the evolution of the reputation concerns the way the peers

contribute to the network (regarding the bandwidth usage)

to fight against the tragedy of the common problem. Each

transaction between two peers is temporarily displayed on

their blackboard to prove the evolution of the reputation. First

analysis show that the resulting delays should not be sensed

by the users. Moreover, the case study done to inventory the

attacks tends to prove that the system itself is robust, as long

as the allocation of a peer’s ID is secured.

The future works consist in scaling up our testbed to

evaluate the performances of the mechanisms implemented on

KAD, particularly concerning the delays and the overhead. In

a next step, we will develop the reputation mechanism to take

into consideration new criteria such as the quality of the shared

content to fight against pollution and malware diffusion, or to

detect and revoke peers participating in a Sybil attack.

REFERENCES

[1] Eytan Adar and Bernardo A. Huberman. Free riding on gnutella. Journal

First Monday, September 2000.

[2] Rene Brunner. A performance evaluation of the Kad-protocol. Master’s
thesis, University of Mannheim and Institut Eurecom, 2006.

[3] Miguel Castro, Manuel Costa, and Antony Rowstron. Debunking
some myths about structured and unstructured overlays. In NSDI ’05:

Proceedings of the 2nd USENIX Symposium on Networked Systems

Design and Implementation, Boston, MA, USA, May 2005.

[4] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and
Dan S. Wallach. Secure routing for structured peer-to-peer overlay
networks. SIGOPS Oper. Syst. Rev., 36(SI):299–314, 2002.

[5] Jolyon Clulow and Tyler Moore. Suicide for the common good: a new
strategy for credential revocation in self-organizing systems. SIGOPS

Oper. Syst. Rev., 40(3):18–21, 2006.
[6] Elizabeth Chang Farookh Khadeer Hussain and Omar Khadeer Hussain.

State of the art review of the existing bayesian-network based approaches
to trust and reputation computation. In ICIMP 2007: The Second

International Conference on Internet Monitoring and Protection, July
2007.

[7] David Hausheer and Burkhard Stiller. Peermint: Decentralized and
secure accounting for peer-to-peer applications. In Raouf Boutaba,
Kevin C. Almeroth, Ramn Puigjaner, Sherman X. Shen, and James P.
Black, editors, NETWORKING, volume 3462 of Lecture Notes in Com-

puter Science, pages 40–52. Springer, 2005.
[8] Daniel Hughes, Geoff Coulson, and James Walkerdine. Free riding on

gnutella revisited: The bell tolls? IEEE Distributed Systems Online,
6(6):1, 2005.

[9] Murat Karakaya, Ibrahim Korpeoglu, and Ozgur Ulusoy. A distributed
and measurement-based framework against free riding in peer-to-peer
networks. In P2P ’04: Proceedings of the Fourth International Con-

ference on Peer-to-Peer Computing, pages 276–277, Washington, DC,
USA, 2004. IEEE Computer Society.

[10] Mujtaba Khambatti, Partha Dasgupta, and Kyung Dong Ryu. A role-
based trust model for peer-to-peer communities and dynamic coalitions.
In IWIA ’04: Proceedings of the Second IEEE International Information

Assurance Workshop, page 141, Washington, DC, USA, 2004. IEEE
Computer Society.

[11] Yongdae Kim, Daniele Mazzocchi, and Gene Tsudik. Admission
control in peer groups. In NCA ’03: Proceedings of the Second IEEE

International Symposium on Network Computing and Applications, page
131, Washington, DC, USA, 2003. IEEE Computer Society.

[12] J. Liang, R. Kumar, Y. Xi, and K. Ross. Pollution in peer-to-peer file
sharing systems. In IEEE Infocom, pages 1174–1185, march 2005.

[13] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In IPTPS ’01: Revised

Papers from the First International Workshop on Peer-to-Peer Systems,
pages 53–65, London, UK, 2002. Springer-Verlag.

[14] Nitesh Saxena, Gene Tsudik, and Jeong H. Yi. Admission control
in peer-to-peer: design and performance evaluation. In SASN ’03:

Proceedings of the 1st ACM workshop on Security of ad hoc and sensor

networks, pages 104–113, New York, NY, USA, 2003. ACM Press.
[15] Atul Singh, Miguel Castro, Peter Druschel, and Antony Rowstron.

Defending against eclipse attacks on overlay networks. In EW11:

Proceedings of the 11th workshop on ACM SIGOPS European workshop,
page 21, New York, NY, USA, 2004. ACM.

[16] Atul Singh, Tsuen-Wan Ngan, Peter Druschel, and Dan S. Wallach.
Eclipse attacks on overlay networks: Threats and defenses. In INFO-

COM, 2006.
[17] Moritz Steiner, Taoufik En Najjary, and Ernst W Biersack. Exploiting

KAD: possible uses and misuses. Computer communications review,

Volume 37 N5, October 2007, 2007.
[18] Rita H. Wouhaybi and Andrew T. Campbell. Keypeer: A scalable, re-

silient distributed public-key using chord. columbia university. Technical
report, Columbia University, November 2005.


