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Abstract

This paper is concerned with the stability problem for the planar linear switched system ẋ(t) =
u(t)A1x(t)+(1−u(t))A2x(t), where the real matrices A1, A2 ∈ R

2×2 are Hurwitz and u(·) : [0,∞[→ {0, 1} is
a measurable function. We give coordinate-invariant necessary and sufficient conditions on A1 and A2 under
which the system is asymptotically stable for arbitrary switching functions u(·). The new conditions unify
those given in previous papers and are simpler to be verified since we are reduced to study 4 cases instead
of 20. Most of the cases are analyzed in terms of the function Γ(A1, A2) = 1

2
(tr(A1)tr(A2) − tr(A1A2)).

Keywords: planar switched systems, asymptotic stability, quadratic Lyapunov functions

1 Introduction

Let A1 and A2 be two 2× 2 real Hurwitz matrices. In this paper we are concerned with the problem of finding
necessary and sufficient conditions on A1 and A2 under which the switched system

ẋ(t) = u(t)A1x(t) + (1 − u(t))A2x(t), x = (x1, x2) ∈ R
2, (1)

is globally asymptotically stable, uniformly with respect to measurable switching functions u(·) : [0,∞[→ {0, 1}
(GUAS for short, see Definition 1 below).

This problem has been studied in [3] in the case in which both A1 and A2 are diagonalizable in C (diagonaliz-
able case in the following) and in [1] in the case in which at least one among A1 and A2 is not (nondiagonalizable
case in the following). (See also [7] as well as the related work [6].)

In both cases the stability conditions are given in terms of coordinate-invariant parameters. Unfortunately
the parameters used in the diagonalizable case become singular in the nondiagonalizable one and therefore the
two cases were studied separately.

The purpose of this note is to unify and simplify these conditions, reformulating them in terms of new
invariants that permit to treat all cases at the same time.

We have reduced the cases to be studied from 20 (14 in the diagonalizable case2 and 6 in the nondiagonal-
izable one) to the following 4 cases (see Theorem 1).

1The first two authors were supported by a FABER grant of Université de Bourgogne
2The stability conditions given in [3] were not correct in the case called RC.2.2.B. See [7] for the correction
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S1: the first one corresponds to the case in which there exists a common quadratic Lyapunov function. The
condition of S1 is indeed equivalent to the condition given in [10] but is simpler to check. Recall however
that the existence of a common quadratic Lyapunov function is only a sufficient condition for GUAS

(i.e. there exist GUAS systems not admitting a quadratic Lyapunov function). See [4, 7] for details.

S2: the second one corresponds to the situation in which there exists v ∈ (0, 1) such that vA1 + (1− v)A2 has
a positive real eigenvalue. In this case the system is unbounded since it is possible to build a trajectory
going to infinity approximating the (non admissible) trajectory corresponding to u(t) ≡ v and having the
direction of the unstable eigenvector of vA1 + (1 − v)A2.

S3: in the third case there exists a nonstrict common quadratic Lyapunov function. The system is only
uniformly stable, but not GUAS, since there exists a trajectory not tending to the origin when t goes to
infinity.

S4: in the fourth case the stability analysis of the system reduces to the study of a single trajectory called
worst trajectory. If this trajectory tends to the origin then the system is GUAS (in this case there exists
a polynomial Lyapunov function, but not a quadratic one). If it is periodic then the system is uniformly
stable but not GUAS. If it is unbounded then the system is unbounded.

For a discussion of various issues related to stability of switched systems, we refer the reader to [4, 5].
The paper is organized as follows. In Section 1.1 we recall the fundamental notions of stability and the

different types of Lyapunov functions used in the paper. Section 2 contains our main result. In Section 3.1 we
define the normal forms that are needed in the proof. In Section 3.2 we give the details of the proof.

1.1 Notions of stability

Let us recall some classical notions of stability which will be used in the following.

Definition 1 For δ > 0 let Bδ be the unit ball of radius δ, centered in the origin. Denote by U the set of
measurable functions defined on [0,∞[ and taking values on {0, 1}. Given x0 ∈ R2, we denote by γx0,u(·)(·) the
trajectory of (1) based in x0 and corresponding to the control u(·). We say that the system (1) is

• unbounded at the origin if there exist x0 ∈ R
2 and u(·) ∈ U such that γx0,u(·)(t) goes to infinity as t

goes to infinity;

• uniformly stable at the origin if for every ε > 0 there exists δ > 0 such that γx0,u(·)(t) ∈ Bε for every
t > 0, for every u(·) ∈ U and every x0 ∈ Bδ;

• globally uniformly asymptotically stable at the origin (GUAS, for short) if it is uniformly stable
at the origin and globally uniformly attractive, i.e., for every δ1, δ2 > 0, there exists T > 0 such that
γx0,u(·)(t) ∈ Bδ1

for every t ≥ T , for every u(·) ∈ U and every x0 ∈ Bδ2
.

Remark 1 The stability properties of the system (1) do not change if we allow measurable switching functions
taking values in [0, 1] instead of {0, 1} (see for instance [7]). More precisely the system (1) with u(·) : [0,∞[→
{0, 1} is GUAS (resp. uniformly stable, resp. unbounded) if and only the system (1) with u(·) : [0,∞[→ [0, 1]
is. In the following we name convexified system the switched system with u(·) taking values in [0, 1].

Since the stability properties of the system (1) do not depend on the parametrization of the integral curves
of A1x and A2x, we have the following.

Lemma 1 If the switched system ẋ = u(t)A1x+ (1− u(t))A2x, u(·) : [0,∞[→ {0, 1}, has one of the stability
properties given in Definition 1, then the same stability property holds for the system ẋ = u(t)(A1/α1)x+ (1−
u(t))(A2/α2)x, for every α1, α2 > 0.

Definition 2 A common Lyapunov function ( LF for short) V : R2 −→ R+ for a switched system of the form
(1) is a continuous function such that V (·) is positive definite (i.e. V (x) > 0, ∀x 6= 0, V (0) = 0) and V (·) is
strictly decreasing along nonconstant trajectories.
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A positive definite continuous function V : R2 −→ R+ is said to be a nonstrict common Lyapunov function
if V (·) is nonincreasing along nonconstant trajectories.

A common quadratic Lyapunov function (quadratic LF for short) is a function of the form V (x) = xTPx
where P is a positive definite symmetric matrix and the matrices AT

1 P + PA1 and AT
2 P + PA2 are negative

definite.

We recall that, for systems of type (1), the existence of a LF is equivalent to GUAS3 (see for instance [4]).
Moreover the existence of a nonstrict LF guarantees the uniform stability of (1).

2 Stability conditions for two-dimensional bilinear switched sys-

tems

We start this section by defining the notations and the objects that will be used to state our stability result.
In the following the word invariant will indicate any object which is invariant with respect to coordinate
transformations. As usual, we denote by det(X) and tr(X) the determinant and the trace of a matrix X . If
X ∈ R

2×2 the discriminant is defined as

δX = tr(X)2 − 4 det(X) .

Given a pair of matrices X,Y we define the following object:

Γ(X,Y ) :=
1

2
(tr(X)tr(Y ) − tr(XY )) .

By means of these invariants we can define the following invariants associated to (1):

τi :=































tr(Ai)
√

|δAi
|

if δA1
6= 0 , δA2

6= 0 ,

tr(Ai)
√

|δAj
|

if δA1
δA2

= 0 but δAj
6= 0 ,

tr(Ai)

2
if δA1

= δA2
= 0 ,

k :=
2τ1τ2

tr(A1)tr(A2)

(

tr(A1A2) −
1

2
tr(A1)tr(A2)

)

,

∆ := 4(Γ(A1, A2)
2 − Γ(A1, A1)Γ(A2, A2)) .

R :=
2Γ(A1, A2) +

√
∆

2
√

det(A1) det(A2)
eτ1t1+τ2t2 ,where, for i = 1, 2 ,

ti :=















π
2 − arctan tr(A1)tr(A2)(kτi+τ3−i)

2τ1τ2

√
∆

if δAi
< 0

arctanh 2τ1τ2

√
∆

tr(A1)tr(A2)(kτi−τ3−i)
if δAi

> 0
2
√

∆
(tr(A1A2)−tr(A1)tr(A2)/2)τi

if δAi
= 0

.

Remark 2 Let us define

sign(x) :=







+1 if x > 0
0 if x = 0

−1 if x < 0
.

Notice that, for every matrix X ∈ R2×2, one has Γ(X,X) = det(X). Also, since the Killing form of R2×2

is defined as B(X,Y ) = 4 tr(XY ) − 2 tr(X)tr(Y ) one has sign(k) = sign(B(A1, A2)). Finally, notice that if
A1, A2 are Hurwitz then τi < 0 for i = 1, 2 and signΓ(A1, A2) = sign(τ1τ2 − k).

3In [2, 7, 8, 9] it is actually shown that the GUAS property is equivalent to the existence of a polynomial LF

3



2.1 Statement of the results

In this section we state our main result which characterizes conpletely the stability properties of two-dimensional
bilinear switched systems. Our necessary and sufficient conditions apply both to the non-degenarate cases
studied in [3] and to the degenarate ones studied in [1].

Theorem 1 We have the following stability conditions for the system (1)

S1 If Γ(A1, A2) > −
√

det(A1) det(A2), and tr(A1A2) > −2
√

det(A1) det(A2) then the system admits a
quadratic LF.

If −
√

det(A1) det(A2) < Γ(A1, A2) ≤
√

det(A1) det(A2) then the condition tr(A1A2) > −2
√

det(A1) det(A2)
is automatically satisfied. As a consequence the system admits a quadratic LF.

S2 If Γ(A1, A2) < −
√

det(A1) det(A2), then the system is unbounded,

S3 If Γ(A1, A2) = −
√

det(A1) det(A2), then the system is uniformly stable but not GUAS,

S4 If Γ(A1, A2) >
√

det(A1) det(A2), and tr(A1A2) ≤ −2
√

det(A1) det(A2) then the system is GUAS,
uniformly stable (but not GUAS) or unbounded respectively if

R < 1,R = 1,R > 1.

The following corollary will be derived from item S1 of the previous theorem.

Corollary 1 If det([A1, A2]) ≥ 0 then the system admits a quadratic LF.

Remark 3 In the diagonalizable case δA1
δA2

6= 0 the parameters τ1, τ2, and k are invariant under the transfor-
mation (A1, A2) → (A1/α1, A2/α2), for every α1, α2 > 0. This is no more true in the nondiagonalizable case.
Notice however that in any case the stability conditions of Theorem 1 do not depend on coordinate transfor-
mations or on rescalings of the type (A1, A2) → (A1/α1, A2/α2). This is true in particular for the function R.

3 Proof of the main results

3.1 Normal forms

The aim of this section is to reduce all the possible choices of the matrices A1, A2 to suitable normal forms,
obtained up to coordinates transformations and rescaling of the matrices (see Lemma 1 and Remark 3 above),
and depending directly on the coordinate invariant parameters introduced above. The normal forms used here
describe all the possible situations for two-dimensional bilinear switched systems, covering at the same time
the diagonalizable case studied in [3] and the nondiagonalizable one studied in [1]. They will play a key role in
the proof of our results.

Lemma 2 We have the following cases depending on the rank of [A1, A2]:

1. If det([A1, A2]) 6= 0, up to a linear change of coordinates and a renormalization according to Lemma 1,
we can assume the following.

A1 =

(

τ1 1
sign(δA1

) τ1

)

, (2)

(a) If det([A1, A2]) < 0 there exists F ∈ R, |F | ≥ 1 such that

F +
sign(δA1

δA2
)

F
= 2k

and A2 has the form

A2 =

(

τ2 sign(δA2
)/F

F τ2

)

. (3)

4



(b) If det([A1, A2]) > 0 then δAi
> 0 for i = 1, 2, k ∈ (−1, 1) and A2 has the form

A2 =

(

τ2 +
√

1 − k2 k

k τ2 −
√

1 − k2

)

. (4)

2. Under the hypothesis that rank([A1, A2]) = 1, it is always possible, up to exchanging A1 and A2, to find
a linear change of coordinates which diagonalizes A1 and renders A2 upper triangular.

3. If [A1, A2] = 0 then it must be sign(δA1
) = sign(δA2

). If δAi
< 0 for i = 1, 2 or δAi

> 0 for i = 1, 2
then, up to a linear change of coordinates and a renormalization according to Lemma 1, A1, A2 assume
the form (2) and (3), respectively, with F = k = ±1. If δA1

= δA2
= 0 then A1, A2 can be put in upper

triangular form with the elements of Ai equal to τi on the diagonal, for i = 1, 2.

Proof of Lemma 2. For simplicity we will prove the lemma just in the case det([A1, A2]) 6= 0, the other
case being analogous. Note that Lemma 2 was proven in [3] when δA1

< 0, δA2
< 0 and in [1] in the case

δA1
δA2

= 0. Therefore, we can assume either δA1
> 0 or δA2

> 0. First consider the case δA1
> 0. In this case

we can find a system of coordinates such that

A1 =

(

λ1 0
0 λ2

)

, A2 =

(

a b
c d

)

, a, b, c, d ∈ R. (5)

Without any loss of generality we can assume that λ1 < λ2. The discriminant of A1 is (λ2 − λ1)
2 and the

discriminant of A2 is δA2
= (a− d)2 + 4bc, which can be positive or negative. We have

[A1, A2] =

(

0 b(λ1 − λ2)
c(λ2 − λ1) 0

)

. (6)

Therefore det [A1, A2] = bc(λ1 − λ2)
2 and δ[A1,A2] = −4bc(λ1 − λ2)

2 and k = d−a√
|δA2

|
. If det [A1, A2] < 0

consider the linear transformation

T =

(

−
√

−b
c

√

−b
c

1 1

)

,

which diagonalizes [A1, A2]. Then a straightforward computation shows that

2
√

|δA1
|
T−1A1T =

(

τ1 1
1 τ1

)

and
2

√

|δA2
|
T−1A2T =

(

τ2 sign(δA2
)/F

F τ2

)

,

where F satisfies the equation F + sign(δA2
)/F = 2k, and moreover we can assume |F | ≥ 1 up to eventually

exchange the reference coordinates. If δA1
< 0 then it must be δA2

> 0 and, exchanging the roles of A1 and
A2, we can repeat the previous procedure obtaining

A1 =

(

τ1 sign(δA1
)/F

F τ1

)

, A2 =

(

τ2 1
sign(δA2

) τ2

)

.

Then the required normal forms are obtained by exchanging the coordinates and by a dilation along one of the
coordinate axis.

Consider now the case det [A1, A2] = bc(λ1 − λ2)
2 > 0. We have

bc > 0 ⇒ δA2
= (a− d)2 + 4bc > 0 and |k| =

|a− d|
√

(a− d)2 + 4bc
< 1 .

In this case [A1, A2] is no more diagonalizable. Using the transformation

U =

(

1
c

√
bc − 1

c

√
bc

1 1

)

we get

2
√

|δA1
|
U−1A1U =

(

τ1 1
1 τ1

)

and
2

√

|δA2
|
U−1A2U =

(

τ2 +
√

1 − k2 k

k τ2 −
√

1 − k2

)

,

which concludes the proof of the lemma.
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3.2 Proof of Theorem 1 and Corollary 1

To prove our main result we will assume, from now on, that A1, A2 are under the normal forms given by
Lemma 2. The following lemma, which can be proved by direct computation, will be used to take advantage
of the conditions of [10] which describe the systems admitting a quadratic LF.

Lemma 3 For any σ ∈ [0, 1], we define

φ(σ) := det (σA1 + (1 − σ)A2) , ψ(σ) := det (σA1 + (1 − σ)A−1
2 ) .

We have

φ(σ) = σ2 detA1 + 2σ(1 − σ)Γ(A1, A2) + (1 − σ)2 detA2 (7)

and

ψ(σ) =
1

detA2
(σ2 detA1 detA2 + σ(1 − σ)tr(A1A2) + (1 − σ)2) . (8)

Proof of S1. Recall that the main result in [10] claims that the system (1) admits a quadratic LF if
and only if φ(σ) > 0 and ψ(σ) > 0 for every σ ∈ [0, 1]. Notice from Lemma 3 that φ(σ) > 0 if and only
if either Γ(A1, A2) > 0 or the discriminant ∆ of (7) is negative. Analogously ψ(σ) > 0 if and only if either
tr(A1A2) > 0 or the discriminant tr(A1A2)

2 − 4 det(A1) det(A2) of (8) is negative. It is therefore clear that
the cases considered in S1 are those satisfying the conditions of [10]. The last statement of S1 comes from the
following series of inequalities

√

det(A1) det(A2) ≥
1

2
(tr(A1)tr(A2) − tr(A1A2)) ≥ −1

2
tr(A1A2) .

This concludes the proof of S1.

Proof of Corollary 1. To prove Corollary 1 in the case det([A1, A2]) > 0 we use the point 1.(b) of
Lemma 2. In particular we have that Γ(A1, A2) = τ1τ2 − k > 0 and tr(A1A2) = 2(τ1τ2 + k) > 0 so that the
conditions of S1 are satisfied. In the case det([A1, A2]) = 0 the result was already known (see for instance [5]),
and it can be easily proved by using the normal forms defined in Lemma 2.

In what follows we will always assume det([A1, A2]) < 0.

Proof of S2 and S3. Assume that Γ(A1, A2) ≤ −
√

det(A1) det(A2). Then a straightforward computation
shows that the minimum of φ(σ) is given by

σ0 =
detA2 − Γ(A1, A2)

detA1 + detA2 − 2Γ(A1, A2)
∈ (0, 1) and φ(σ0) =

−∆

4(detA1 + detA2 − Γ(A1, A2))
≤ 0 .

In particular in the case described by S2 we have φ(σ0) < 0 and therefore the matrix σ0A1 + (1− σ0)A2 has a
positive real eigenvalue, so that the system is unbounded (see Remark 1).

Similarly when ∆ = 0 and Γ(A1, A2) < 0 we have φ(σ0) = 0 so that the system cannot be GUAS. In this
case to prove that the system is uniformly stable it is possible to show that the system admits the following
non strict quadratic LF:

V (x) = V (x1, x2) = x2
1 +

(sign(δA1
)sign(δA2

) − F 2)2

4F 2(τA1
F − τA2

sign(δA1
))2

x2
2

Proof of S4. First observe that, under the conditions of S4, we have F < −1 and k < 0 since, when A1

and A2 are in normal form, tr(A1A2) = F +
sign(δA1

δA2
)

F + 2τ1τ2 = 2(k + τ1τ2) < 0 and |F | > 1.
To prove S4 we introduce the set of points where the vector fields A1x and A2x are parallel:

Z = {x ∈ R
2 : Q(x) = 0} ,

where Q(x) := det(A1x,A2x). The discriminant of the quadratic function Q(x) coincides with ∆. Since ∆ > 0
then Z consists on a pair of noncoinciding straight lines passing through the origin. Take a point x ∈ Z \ {0}.
We say that Z is direct (respectively, inverse) in x if A1x and A2x have the same (respectively, opposite) versus.
We have the following lemma.
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Lemma 4 If Z is direct (resp. inverse) in x0 ∈ Z \ {0} then Z is direct (resp. inverse) in every point of
Z \ {0}. Moreover in the case S4 we have that Z is always direct.

Proof of Lemma 4. Let Z = D1 ∪D2 where D1, D2 are straight lines passing through the origin. Let us
observe that, if x ∈ Di

∃αi ∈ R s.t. A2A
−1
1 A1x = A2x = αiA1x ,

i.e. αi is an eigenvalue of A2A
−1
1 and A1x belongs to the eigenspace associated to it. So α1α2 = det(A2A

−1
1 ) =

det(A2)
det(A1)

> 0 which implies that sign(α1) = sign(α2) i.e. Z is either direct in every point or inverse in every

point. On the other hand it is easy to verify that A−1 = 1
detA1

(2τ1Id − A1), where Id denotes the identity
matrix, which, in the case S4, implies

α1 + α2 = tr(A2A
−1
1 ) = tr

( 1

detA1
(2τ1A2 −A2A1)

)

=
2Γ(A1, A2)

det(A1)
> 0

so that Z is direct.

Let mi be the slope of Di, for i = 1, 2. Then, if vi is a vector spanning Di, the orientation of the vector
A1vi with respect to the radial direction is determined by the quantity

sign(det (A1vi, vi)) = sign(m2
i − sign(δA1

)).

Similarly, the orientation of the vector A2vi with respect to the radial direction is given by

sign(det (A2vi, vi)) = sign

(

m2
i sign(δA2

) − F 2

F

)

= sign(F 2 −m2
i sign(δA2

)).

Lemma 5 If Z is direct, i.e. if Γ(A1, A2) > 0, it must be

sign(m2
i − sign(δA1

)) = sign(F 2 −m2
i sign(δA2

)) = +1

Proof of Lemma 5. Since Γ(A1, A2) > 0 by the previous equalities we get that ε := sign(m2
i − sign(δA1

)) =
sign(F 2 −m2

i sign(δA2
)). If ε = 0 we are in the conditions of S1, since [A1, A2] = 0. If ε = −1 then it must be

sign(δA1
) = sign(δA2

) = 1. In this case we have F 2 < m2
i < 1 which is impossible since |F | > 1.

As a consequence the vectors Aix point in the clockwise sense for every x ∈ Z. This property allows to
define the main tool for checking the stability of (1) under the conditions of S4.

Definition 3 Assume that we are in the conditions of S4 and under the normal forms of Lemma 2. Fix
x0 ∈ R2 \ {0}. The worst-trajectory γx0

is the trajectory of (1), based at x0, and having the following property.
At each time t, γ̇x0

(t) forms the smallest angle in clockwise sense with the exiting radial direction.

Figure 1 expresses graphically the meaning of the previous definition.
It is clear that the worst trajectory always rotates clockwise around the origin when δAi

≤ 0 for some
i ∈ {0, 1}. If δAi

> 0 for i = 1, 2 then the eigenvectors of A1 are (1, 1)T and (1,−1)T , while the eigenvectors
of A2 are (1, F )T and (1,−F )T . In this case it is easy to check that m1m2 < 0 and therefore, from Lemma 5,
without loss of generality we can assume

F < m2 < −1 < 1 < m1 < −F.

As a consequence D1 and D2 divide the space into four connected components, each one intersecting the
eigenspace of exactly one among A1 and A2. This implies that also in this case the worst trajectory rotates
clockwise around the origin. This trajectory is the concatenation of integral curves of A2x from points of D1

to points of D2 and integral curves of A1x from points of D2 to points of D1 (see Figure 2).
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with the exiting radial direction
‘‘worst trajectory’’: forms the smallest angle

Figure 1: The worst trajectory

1

m = −1

m = F
x = A  x

x = A  x
m = −F m = m

m = 1

m = m

1

x = A  x

1

2

2

Figure 2: Construction of the worst trajectory in the case δA1
> 0, δA2

> 0
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instability

> 1
= 1< 1

(a) (b) (c)

GUAS uniform stability

Figure 3: The worst trajectory: meaning of the function R

As explained in the previous papers [1, 3] the behaviour of the worst trajectory is sufficient to derive the
stability properties of (1). Let us analyse the worst trajectory γx0

(·) where x0 ∈ Di. Assume that T > 0 is
such that x1 = γx0

(T ) is the first intersection point between the worst trajectory and Di. The worst trajectory
tends to the origin as time goes to infinity if and only if R := |x1|/|x0| < 1, and in this case the system is
GUAS (see Figure 3 (a)). It is periodic if and only if R = 1, and in this case the system is uniformly stable
but not GUAS (see Figure 3 (b)). It blows up if and only if R > 1, and in this case the system is unbounded
(see Figure 3 (c)).

The computation of R was done in details in [1, 3]. The formula which is given in Section 2 is a simpler
reformulation of the ones previously obtained, in terms of our invariants. This concludes the proof of S4.
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