Large time behavior of differential equations with drifted periodic coefficients modeling Carbon storage in soil

Abstract : This paper is concerned with the linear ODE in the form $y'(t)=\lambda\rho(t)y(t)+b(t)$, $\lambda <0$ which represents a simplified storage model of the carbon in the soil. In the first part, we show that, for a periodic function $\rho(t)$, a linear drift in the coefficient $b(t)$ involves a linear drift for the solution of this ODE. In the second part, we extend the previous results to a classical heat non-homogeneous equation. The connection with an analytic semi-group associated to the ODE equation is considered in the third part. Numerical examples are given.
Type de document :
Article dans une revue
Applied Mathematics and Computation, Elsevier, 2012, 218, pp.5641-5654
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00323332
Contributeur : Alain Pham Ngoc Dinh <>
Soumis le : lundi 14 novembre 2011 - 17:50:59
Dernière modification le : jeudi 3 mai 2018 - 15:32:06
Document(s) archivé(s) le : mercredi 15 février 2012 - 02:21:01

Fichiers

utpe1b.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00323332, version 2
  • ARXIV : 0809.3530

Collections

Citation

Stephane Cordier, Le Xuan Truong, Long Nguyen Thanh, Alain Pham Ngoc Dinh. Large time behavior of differential equations with drifted periodic coefficients modeling Carbon storage in soil. Applied Mathematics and Computation, Elsevier, 2012, 218, pp.5641-5654. 〈hal-00323332v2〉

Partager

Métriques

Consultations de la notice

287

Téléchargements de fichiers

116